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UNIQUE CONTINUATION ESTIMATES FOR
THE LAPLACIAN AND THE HEAT EQUATION

ON NON-COMPACT MANIFOLDS

LUC MILLER

Abstract. This article concerns some quantitative versions of unique contin-

uation known as observability inequalities. One of them is a lower bound on

the spectral projectors of the Dirichlet Laplacian which generalizes the unique
continuation of an eigenfunction from any open set Ω. Another one is equiv-

alent to the interior null-controllability in time T of the heat equation with

Dirichlet condition (the input function is a source in (0, T ) × Ω). On a com-
pact Riemannian manifolds, these inequalities are known to hold for arbitrary

T and Ω.

This article states and links these observability inequalities on a complete
non-compact Riemannian manifold, and tackles the quite open problem of

finding which Ω and T ensure their validity. It proves that it is sufficient for Ω

to be the exterior of a compact set (for arbitrary T ), but also illustrates that
this is not necessary. It provides a necessary condition saying that there is no

sequence of balls going infinitely far “away” from Ω without “shrinking” in a
generalized sense (depending on T ) which also applies when the distance to Ω

is bounded.
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1. Introduction.

Let M be a smooth connected complete n-dimensional Riemannian manifold
with metric g and boundary ∂M . When ∂M 6= ∅, M denotes the interior and
M = M ∪ ∂M . Let ∆ denote the (negative) Dirichlet Laplacian on L2(M) with
domain D(∆) = H1

0 (M) ∩H2(M). Let Ω be an open subset of M and let T be a
positive time.
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2 L. MILLER

To begin with, we formulate various quantitative versions of unique continuation
on M for the heat equation and the spectral projectors 1√−∆6µ, with references to
their introduction and proof on a compact M . Besides their intrinsic significance,
they have applications to the controllability of distributed systems and the estima-
tion of its cost (e.g. heat conduction, plate vibrations). Then we state the main
result which addresses the quite open problem of their validity in this non-compact
setting by describing their logical relationship and by providing some sufficient and
some necessary geometric conditions.

1.1. Controllability/observability for the heat equation. Consider the heat
equation on M with Dirichlet boundary condition and a source term located in
ΩT = (0, T )× Ω (1ΩT

denotes its characteristics function):

∂tφ−∆φ = 1ΩT
f on Rt ×M, φ = 0 on Rt × ∂M,

φ(0) = φ0 ∈ L2(M), f ∈ L2
loc(R;L2(M)).

(1)

Definition 1. The heat equation on M is said to be null-controllable in time T
from Ω if for all φ0 ∈ L2(M) there is a control function f ∈ L2(R×M) such that
the solution φ ∈ C0([0,∞), L2(M)) of (1) satisfies u = 0 at t = T .

By duality (cf. [DR77]), it is equivalent to the following quantitative version of
unique continuation for solutions u(t, x) = et∆u0(x) of the heat equation without
source term: ∂tu = ∆u on Rt ×M , u = 0 on Rt × ∂M .

Definition 2. The heat equation on M is said to be final-observable in time T
from Ω if there is a positive constant CT,Ω such that:

∀u0 ∈ L2(M), ‖eT∆u0‖L2(M) 6 CT,Ω‖et∆u0‖L2(ΩT ) .(2)

The best constant CT,Ω in (2) can be considered as the controllability cost since
it is also the best constant such that ‖f‖L2(ΩT ) 6 CT,Ω‖u0‖L2(M), for all intial
condition u0 and control f solving the controllability problem in def.1.

When M is compact, Lebeau and Robbiano proved in [LR95] that these con-
trollability/observability properties hold (for arbitrary T and Ω). In [MZ03], it is
mentioned that their approach does not apply to unbounded Euclidean domains
(indeed Weyl’s asymptotics for eigenvalues and Russell’s construction of biorthogo-
nal functions are used in [LR95]) and that the only result available on these specific
properties is that they hold when M is a domain of the Euclidean space with the
flat metric and the exterior of Ω is bounded (cf. [CDMZ01]). To this open prob-
lem, this article contributes the adaptation of the Lebeau-Robbiano approach to a
non-compact M , the extension of the sufficient condition in [CDMZ01] and the nec-
essary condition in [Mil04b] to a non-Euclidean M , and a finer sufficient condition
for a homogeneous M which applies even if the exterior of Ω is not compact.

1.2. Observability at low-frequencies for the heat and the Laplacian. In
[LR95], Lebeau and Robbiano take advantage of the fast damping of high frequen-
cies to reduce def.2 to the following estimate on the cost of fast null-controllability
at low-frequencies.

Definition 3. Fast observability at low-frequencies for the heat equation on M
from Ω holds if there are positive constants D1 and D2 such that for all τ ∈ (0, 1]
and µ > 1:

∀u0 ∈ 1√−∆6µ L
2(M), ‖eτ∆u0‖L2(M) 6

D2√
τ
eD1µ‖et∆u0‖L2(Ωτ ) .(3)
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When M is compact, this improvement of prop.1 in [LR95] (allowing γ to take
the endpoint value γ = 1) is a corollary of prop.2 in [LZ98]. In [LR95], the parabolic
problem was reduced to a space-time elliptic one following a classical idea in the
uniqueness for parabolic equations (cf. [Lin90]). The improvement in [LZ98] was
obtained by first reducing def.3 to the following lower bound for 1Ω 1√−∆6µ, i.e. the
restriction of the spectral projectors to Ω.

Definition 4. Observability at low-frequencies for the Laplacian on M from Ω
holds if there are positive constants C1 and C2 such that for all µ > 0:

∀v ∈ 1√−∆6µ L
2(M), ‖v‖L2(M) 6 C2e

C1µ‖v‖L2(Ω) .(4)

When M is compact, this is an inequality on sums of eigenfunctions proved as
th.3 in [LZ98] and th.14.6 in [JL99]. In particular, when v is an eigenfunction of ∆,
this is a quantitative version of elliptic unique continuation. This spectral property
should have wide applications besides the study of nodal sets (cf. [JL99]) and the
control of vibrations (cf. [Mil04a]).

1.3. Carleman inequalities and interpolation. In [LZ98] and [JL99], this ob-
servability at low-frequencies for the Laplacian is reduced to the following interpo-
lation inequality for the space-time Laplacian P = ∆ + ∂2

t on MT = (0, T ) ×M
with Dirichlet condition on the “parabolic” boundary Γ = (Rt × ∂M)× ({0}× M)
and with observation of the Neumann condition on {0} × Ω.

Definition 5. The Laplacian P satisfies the interpolation inequalities in time T
from Ω if ∀α ∈ (0, 1/2), ∃δ ∈ (0, 1), ∃C > 0, ∀ψ ∈ H2(MT ) s.t. ψ = 0 on Γ,

‖ψ‖H1((αT,(1−α)T )×M) 6 C‖ψ‖δ
H1(MT )

(
‖Pψ‖L2(MT ) + ‖∂tψet=0‖L2(Ω)

)1−δ
.(5)

When M is compact, this is lemma.A in [LZ98] and lemma.14.5 in [JL99] (it is
also related to lemma.4.3 in [Lin91]). Following classical ideas in unique continua-
tion for elliptic equations, the interpolation inequalities are based on Carleman-type
estimates. The needed type, namely Carleman estimate for boundary problems,
were introduced by Robbiano in [Rob95]. The specific Carleman inequalities used
in [LZ98] and [JL99] are proved in prop.1 and prop.2 of [LR95].

1.4. The theorems. Before stating the main result, we introduce a geometric
condition. The fundamental tone λ∗(B) of an open subset B of M is:

λ∗(B) = inf
ϕ∈C∞0 (B)\{0}

‖∇ϕ‖2L2(M)

‖ϕ‖2L2(M)

.

When B is smooth and compact (e.g. B is a ball with radius lower than the injec-
tivity radius), then λ∗(B) is just the first eigenvalue of the Dirichlet Laplacian on
B in the classical sense. In particular, the Euclidean ball Br with radius r satisfies
λ∗(Br) = λ∗(B1)/r2, and the balls B(x, r) of center x ∈ M and radiusxs r satisfy
λ∗(B(x, r)) ∼ λ∗(B1)/r2 as r → 0. (Cf. e.g. sect.3.9 in [Cha93].)

Definition 6. The sequence of (Bk)k∈N of open subsets of M goes “away” from
Ω without “shrinking” with a factor T if distT (Bk,Ω)2 − 4T 2λ∗(Bk) → +∞ as
k → +∞, where distT is the following averaged distance with Gaussian weight of
variance T :

distT (B,Ω)2 = −2T log
∫

Ω\B
exp

(
−dist(x,B)2

2T

)
dx > dist(B,Ω)2 − 2T vol(Ω) .

In [Mil04b], a necessary condition similar to def.6 was proved in the Euclidean
case (using pointwise rather than L2 Gaussian upper bounds) and illustrated by
elementary examples. In particular, it applies even if the distance to Ω is bounded.



4 L. MILLER

Remark 1. Assuming that λ∗κ,r is the fundamental tone of the sphere of radius r in
the space form of constant sectional curvature κ ∈ R and that the Ricci curvatures
of M are all greater than or equal to (n− 1)κ, we have λ∗(B) 6 λ∗κ,r for every ball
B of radius r (cf. [Che75] or th.3.24 of [Cha93]). If the volume of Ω is finite and the
radii of the balls Bk are all greater than a positive constant, then def.6 just says
that the geodesic distance from Bk to Ω tends to infinity.

Theorem 1. Each of the following statements implies the next one:
i) Ω is the non-empty exterior of a compact set K su ch that K ∩ Ω ∩ ∂M = ∅.
ii) ∂2

t + ∆ satisfies the interpolation inequalities in time T from Ω (def.5).
iii) Observability at low-frequencies for the Laplacian on M from Ω holds (def.4).
iv) Fast observability at low-frequencies for the heat on M from Ω holds (def.3).
v) The heat equation on M is final-observable in time T from Ω (def.2).
vi) There is no sequence (Bk)k∈N of open subsets of M going “away” from Ω

without “shrinking” with a factor T (def.6).

To obtain a sufficient condition for these observability inequalities that would
be further from the case of a compact M than i) in th.1, one is lead to make some
assumptions on the geometry of M . For instance, if M is a homogeneous manifold,
a uniform version of def.5 holds: for any given R > r > 0 and α ∈ (0, 1/2),
∃δ ∈ (0, 1), ∃C > 0, ∀x ∈ M , ∀ψ ∈ H2(MT ) s.t. ψ = 0 on Γ,

‖ψ‖H1((αT,(1−α)T )×BR) 6 C‖ψ‖δ
H1(MT )

(
‖Pψ‖L2(MT ) + ‖∂tψet=0‖L2(Br)

)1−δ
,(6)

where Br and BR are the balls with center x and respective radii r and R. Indeed,
for fixed x this interpolation inequality results from lem.2.3, and δ and C do not
depend on x since M is homogeneous. The next theorem relaxes the assumption
that the uncontrolled region M \ Ω be compact.

Theorem 2. If the Ricci curvature of M is bounded below and the uniform inter-
polation inequalities (6) hold (e.g. if M is homogeneous), then th.1 holds with i)
replaced by:

i’) There are positive constants r and d such that any point in M is at a distance
smaller than d of some ball of radius r included in Ω.

It would be interesting to know which boundedness assumptions on the geometry
of M ensure (6).

2. Sufficient condition: i) ⇒ ii)

The key to the proof of i) ⇒ ii) is the following global Carleman inequality with
boundary term, similar to the local one in prop.1 of [LR95]. Taking advantage of
the structure of P , it provides unique continuation with respect to t only, but in
terms of integral quantitities on the whole manifold M .

Let F be the space of functions f ∈ C∞(R×M) such that supp(f) ⊂ (−∞, T )×
M and fe[0,T ]×∂M = 0. Let F0 be the space of functions f ∈ F such that fet=0 = 0.

Proposition 2.1. Let ϕ : R → R be a smooth function of time such that ϕ̇(t) 6= 0
and ϕ̈(t) > 0 for all t ∈ [0, T ]. There are positive constants h0 and C such that for
all h ∈ (0, h0) and g ∈ F0:∫

MT

|h2Pg|2e
2ϕ
h + h

∫
{0}×M

|h∂tg|2e
2ϕ
h > Ch

∫
MT

(
|g|2 + |h∂tg|2 + |h∇g|2

)
e

2ϕ
h .(7)

Proof. For each f ∈ F , let f0 = fet=0.Let (f, g) =
∫

MT
fḡ, ‖f‖2 = (f, f), (f, g)0 =∫

M
f0ḡ0, ‖f‖20 = (f, f)0. We also introduce standard semiclassical notations where

h ∈ (0, 1) is a (small) parameter: Dt = h
i ∂t, ∇x = h

i∇, ∆x = −h2∆, ‖f‖21 =
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‖f‖2 + ‖Dtf‖2 + ‖∆xf‖2. With f = eϕ/hg and Pϕ = h2eϕ/h ◦ P ◦ e−ϕ/h, the
Carleman inequality (7) writes:

‖Pϕ‖2 + h‖Dtf‖20 > Ch‖f‖21 .(8)

We denote by ϕk the derivative of order k of ϕ, and let ϕ
k

= inf [0,T ]|ϕk|, ϕ̄k =
sup[0,T ]|ϕk|. As usual, we introduce the hermitian and anti-hermitian parts of Pϕ:

A =
Pϕ + P ∗

ϕ

2
= D2

t + ∆x − ϕ2
1 and B =

Pϕ − P ∗
ϕ

2i
= Dtϕ1 + ϕ1Dt = 2ϕ1Dt − hϕ2 ,

Since Pϕ = A + iB, we have ‖Pϕf‖2 = ‖Af‖2 + ‖Bf‖2 + i[(Bf,Af) − (Af,Bf)].
Since by integration by parts (g,Af) = (Ag, f)− ih(g,Dtf)0 and (g,Bf) = (Bg, f)
for all f ∈ F0 and g ∈ F , we deduce that:

‖Pϕf‖2 = ‖Af‖2 + ‖Bf‖2 + i([A,B]f, f) + 2h(ϕ1Dtf,Dtf)0 .(9)

The computation of the commutator of A and B, after the simplifications:

[A,B] = [D2
t − ϕ2

1, Dtϕ1 + ϕ1Dt] = Dt[D2
t , ϕ1] + [D2

t , ϕ1]Dt + ϕ1[Dt, ϕ
2
1] + [Dt, ϕ

2
1]ϕ1,

yields i[A,B] = 4hϕ2(D2
t + ϕ2

1)− h3ϕ4 = 4hϕ2(A−∆x + ϕ2
1)− h3ϕ4. Therefore,

i([A,B]f, f) = 4h
(
(Af, ϕ2f) + ‖√ϕ2∇xf‖2 + 2‖ϕ1f‖2

)
− h3(ϕ4f, f) .

Since |(Af, 4hϕ2f)| 6 ‖Af‖2/4 + (4h)2‖ϕ2f‖2, we deduce:

i([A,B]f, f) > h
(
4ϕ

2
‖∇xf‖2 + (8ϕ2

1
− 16hϕ̄2

2)‖f‖2
)
− ‖Af‖2/4 .(10)

Since 2|(ϕ1Dtf, 2hϕ2f)| 6 ‖ϕ1Dtf‖2 + (2h)2‖ϕ2f‖2, we have:

‖Bf‖2 = ‖2ϕ1Dtf‖2 + ‖hϕ2f‖2 − 2 Re(ϕ1Dtf, 2hϕ2f) > ϕ2
1
‖Dtf‖2 − 5h2ϕ̄2

2‖f‖2 .

Plugging this inequality and (10) in (9) yields:

‖Pϕf‖2 > (3/4))‖Af‖2 + hCh‖f‖21 + 2h(ϕ1Dtf,Dtf)0 > hCh‖f‖21 − 2hϕ̄1‖Dtf‖20,

with Ch = min
{

8ϕ2
1
− 21hϕ̄2

2, 4ϕ2
, ϕ2

1

}
. Taking h0 > 0 small enough, so that

Ch0 > 0 yields (8) for all h ∈ (0, h0), which completes the proof of prop.2.1. �

This global Carleman inequality implies (as in lemma.3 of [LR95]) the following
global interpolation inequality whith the notations of def.5:

Lemma 2.2. Let U be an open subset of M such that U ⊂ Ω. ∀τ ∈ (0, T ),
∃δ ∈ (0, 1), ∃C > 0, ∀ψ ∈ H2(MT ) s.t. ψ = 0 on Γ,

‖ψ‖H1(Uτ ) 6 C‖ψ‖δ
H1(ΩT \Ωτ )

(
‖Pψ‖L2(MT ) + ‖ψ‖H1((Ω\U)τ ) + ‖∂tψet=0‖L2(Ω)

)1−δ
.

Proof. Let τ ′ ∈ (τ, T ) and let χ1 : R → [0, 1] be a smooth function such that
χ(t) = 1 for t 6 τ and χ(t) = 0 for t > τ ′. Let χ2 : M → [0, 1] be smooth function
such that supp(χ2) ⊂ Ω and χ2 = 1 on U . Applying prop.2.1 with φ(t) = exp(−t)
and g = χψ where χ = χ1χ2, using h < 1 and dividing by h3, yields positive
constants C0 and h0 < 1 such that for any ψ as in lem.2.2 and all h ∈ (0, h0):

h

∫
MT

|Pψ, [P, χ]ψ|2e
2ϕ
h +

∫
{0}×Ω

|∂tψ|2e
2ϕ
h > C0

∫
UT

|ψ, ∂tψ,∇ψ|2e
2ϕ
h .

Since ϕ is decreasing, φ(0) = 1, supp([P, χ]) ⊂ (Ω \U)τ ∪ (Ωτ ′ \Ωτ ) and [P, χ] is a
differential operator of order one, there is a C1 > 0 depending on χ such that:

he‖Pψ‖2L2(MT ) + hC1e‖ψ‖2H1((Ω\U)τ ) + hC1e
2ϕ(τ′)

h ‖ψ‖2H1(Ωτ′\Ωτ ) + e‖∂tψet=0‖2L2(Ω)

> C0e
2ϕ(τ)

h ‖ψ‖2H1(Uτ ) , for all h ∈ (0, h0) ,
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Therefore, there are constants h1 ∈ (0, h0), D0 > 0, D1 > 1 − ϕ(τ) > 0, and
D2 = ϕ(τ)− φ(τ ′) > 0 such that:

e
D1
h

(
‖Pψ‖L2(MT ) + ‖ψ‖H1((Ω\U)τ ) + ‖∂tψet=0‖L2(Ω)

)
+ e−

D2
h ‖ψ‖H1(Ωτ′\Ωτ )

> D0‖ψ‖H1(Uτ ) , for all h ∈ (0, h1) .

Optimizing with respect to h as in [Rob95] completes the proof of lem.2.2. �

Gluing together local interpolation inequalities (as in sect.3.B of [LR95]) on a
fixed compact set intersecting Ω yields the following global interpolation inequality.
(The first term of its left-hand-side corresponds to (2) in sect.3 of [LR95] with t
and x interverted, whereas the second term corresponds to (1).)

Lemma 2.3. For all compact subsets K ′ and K ′′ such that K ′ ⊂M , for all segment
S ⊂ (0, T ), ∀τ ∈ (0, T ), ∃δ ∈ (0, 1), ∃C > 0, ∀ψ ∈ H2(MT ) s.t. ψ = 0 on Γ,

‖ψ‖H1(K′
τ ) + ‖ψ‖H1(S×K′′) 6 C‖ψ‖δ

H1(MT )

(
‖Pψ‖L2(MT ) + ‖∂tψet=0‖L2(Ω)

)1−δ
.

Assume i), i.e. M \ K = Ω 6= ∅ for some compact subset K of M such that
K ∩ Ω ⊂ M . Let V be an open subset of M containing K ∩ Ω such that V is
compact and V ⊂ M . Applying lem.2.2 to U = Ω \ V using ΩT \ Ωτ ⊂ MT and
Ω \ U ⊂ V , and applying lem.2.3 to K ′ = V , K ′′ = K, S = [αT, (1 − α)T ] and
τ = (1− α)T yield: ∃δ′ ∈ (0, 1), ∃C ′ > 0, ∀ψ ∈ H2(MT ) s.t. ψ = 0 on Γ,

‖ψ‖H1(Ω(1−α)T ) 6 C ′Aδ′
(
B + ‖ψ‖H1(V(1−α)T )

)1−δ′

,(11)

‖ψ‖H1(V(1−α)T ) 6 C ′Aδ′B1−δ′ ,(12)

‖ψ‖H1((αT,(1−α)T )×K) 6 C ′Aδ′B1−δ′ ,(13)

with A = ‖ψ‖H1(MT ) and B = ‖Pψ‖L2(MT ) + ‖∂tψet=0‖L2(Ω). Plugging (12) into
(11) as in lem.4 of [LR95] yields the estimate ‖ψ‖H1(Ω(1−α)T ) 6 C ′′Aδ′′B1−δ′′ . Since
(αT, (1−α)T )×M ⊂ Ω(1−α)T∪(αT, (1−α)T )×K, adding the square of this estimate
to the square of (13) yields def.5 with δ = max {δ′, δ′′} and C large enough.

Remark 2.4. Even when K∩ Ω∩∂M 6= ∅, the statement of def.5 avoids the corner
{0} × ∂M , hence it should still be true and tractable. When K ⊂ M , choosing a
V containing K avoids using (13) and yields an estimate of ψ on M(1−α)T rather
the smaller set (αT, (1− α)T )×M in def.5.

3. From interpolation to observability: ii) ⇒ iii)

Let µ > 0, ϕ ∈ C∞
comp(M) and v = 1√−∆6µ ϕ. Since C∞

comp(M) is dense in
L2(M), it is enough to prove (4) for such v.

Let dEλ denote the projection valued measure associated to the self-adjoint
operator

√
−∆. The cardinal hyperbolic sine function is the smooth function shc ∈

C∞(R) defined by: shc(0) = 0 and shc(t) = (exp(t)− exp(−t))/(2t) for t 6= 0.
Let Fµ(t, λ) = t shc(tλ)106λ6µ. For all j and k in N, λj∂k

t Fµ ∈ C(Rt;L∞(Rλ)).
Therefore the function ψ defined by:

ψ(t, x) = Fµ(t,
√
−∆)ϕ =

∑
k∈N

t2k+1

(2k + 1)!
(−∆)kv ,

satisfies ψ ∈ Hj(XT ) for all j ∈ N and T > 0. Moreover, since ϕ ∈ D((
√
−∆)j) for

all j ∈ N, we have ψ(t, ·) ∈ ∩j∈ND((
√
−∆)j) ⊂ H1

0 (M) for all t.
We assume that P = ∂2

t + ∆ satisfies the interpolation inequalities in time
T from Ω for some α ∈ (0, 1/2), δ ∈ (0, 1), C > 0. Since Fµ(0, λ) = 0 and
ψ(t, ·) ⊂ H1

0 (M), we have ψ = 0 on Γ, so that (5) applies to ψ. We have Pψ = 0
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since ∂2
t Fµ(t, λ) = (λ)2Fµ(t, λ), and ∂tψet=0 = v since (t shc(t))′et=0 = shc(0) = 1,

so that (5) writes:

‖ψ‖H1((αT,βT )×M) 6 C‖ψ‖δ
H1(MT )‖v‖

1−δ
L2(Ω) , with β = 1− α .(14)

The left-hand-side of (14) squared is greater or equal to:

‖ψ‖2L2((αT,βT )×M) =
∫ βT

αT

∫
|Fµ(t, λ)|2d(Eλϕ,ϕ) dt =

∫ βT

αT

∫ µ

0

|t shc(tλ)|2d(Eλϕ,ϕ) dt

> (αT )2
∫ βT

αT

dt

∫ µ

0

d(Eλϕ,ϕ) = (1− 2α)α2T 3‖v‖2L2(M) .

Similarly,

‖ψ‖2H1(MT ) =
∫ T

0

∫ µ

0

(1 + λ2)|t shc(tλ)|2d(Eλϕ,ϕ) dt 6 T (1 + µ2)e2Tµ‖v‖2L2(M) .

Plugging these last two estimates in (14) yields,

‖v‖2L2(M) 6
1 + µ2

(1− 2α)α2T 2
e2Tµ‖v‖2δ

L2(M)‖v‖
2(1−δ)
L2(Ω) .

Therefore, for any C1 > T/(1− δ), there is a C2 > 0 such that (4) holds.

4. From the Laplace to the heat equation: iii) ⇒ iv)

Assume that observability at low-frequencies for the Laplacian on M from Ω
holds. Let τ ∈ (0, 1], µ > 1 and u0 ∈ 1√−∆6µ L

2(M). For all t ∈ [0, τ ], we may
apply (4) to v = et∆u0 since it is in 1√−∆6µ L

2(M):

C2
2e

2C1µ‖et∆u0‖2L2(Ω) > ‖et∆u0‖2L2(M) =
∫ µ

0

e−2tλ2
d(Eλu0, u0) .

First integrating on [0, τ ] with the new variable s = t/τ , then using τ 6 1 and
finally

∫ 1

0
exp(−αt)dt = (1− exp(−α))/α > (2α)−1 for α > ln 2 yields:

C2
2e

2C1µ‖et∆u0‖2L2(Ωτ ) > τ

∫ 1

0

∫ µ

0

e−2τsλ2
d(Eλu0, u0) ds

> τ

∫ 1

0

e−2sµ2
ds

∫ µ

0

d(Eλu0, u0) >
τ

4µ2
‖u0‖2L2(M) .

Therefore, for any D1 > C1, there is a D2 > 0 such that (3) holds.

5. From low-frequencies to full observability: iv) ⇒ v)

By duality (cf. [DR77]), def.3 is equivalent to the following null-controllability
at low frequencies (cf. def.1): for all τ ∈ (0, 1] and µ > 1, there is a bounded
operator Sτ

µ : L2(M) → L2(R ×M) such that for all φ0 ∈ 1√−∆6µ L
2(M), the

solution φ ∈ C0([0,∞), L2(M)) of (1) with control function f = Sτ
µφ0 satisfies

1√−∆6µ φ = 0 at t = τ . Moreover, we have the cost estimate: ‖Sτ
µ‖ 6 D2√

τ
eD1µ.

We introduce a dyadic scale of frequencies µk = 2k (k ∈ N) and a sequence of
time intervals τk = σδT/µ

δ
k where δ ∈ (0, 1) and σδ = (2

∑
k∈N 2−kδ)−1 > 0, so

that the sequence of times defined recursively by T0 = 0 and Tk+1 = Tk + 2τk
converges to T . The strategy of Lebeau and Robbiano in [LR95] is to steer the
initial state φ0 to 0 through the sequence of states φk = φ(Tk) ∈ 1√−∆>µk−1

L2(M)
at frequencies converging to infinity by applying recursively the control function
fk = Sτk

µk
φk to φk during a time τk and zero control during a time τk. This strategy

is succesful if φk tends to zero and the control function f(t) =
∑

k 106t−Tk6τk
fk(t)
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is in L2(0, T ;L2(M)). Since the cost estimate above implies ‖Sτk
µk
‖ 6 D2e

D1µk/
√
τk,

it only remains to check that:

εk = ‖φk‖ and Ck = DeD1µk/µδ
k satisfy lim

k
εk = 0 and

∑
k∈N

C2
kε

2
k <∞ .(15)

Since 1√−∆6µk
φ(Tk +τk) = 0, we have εk+1 6 e−τkµ2

k‖φ(Tk +τk)‖. The expression
of φ(Tk + τk) in terms of the source term fk (Duhamel’s formula) and ‖et∆‖ 6
1 (contractivity of the heat semigroup) imply ‖φ(Tk + τk)‖ 6 2(εk +

√
τk‖fk‖).

Therefore εk+1 6 2e−τkµ2
k(1+

√
τkCk)εk. Since Ck+1/Ck = eD1µk/2δ/2, we deduce:

Ck+1εk+1

Ckεk
6 2e−τkµ2

k
(
1 +D2e

D1µk
)
eD1µk/2δ/2 6 D exp

(
2D1µk − σδTµ

2−δ
k

)
,

for some D > 0. Since 2 − δ > 1 this implies
∑

k∈N C
2
kε

2
k < ∞, which proves (15)

and completes the proof of the null-controllability in def.1.

6. Necessary condition: v) ⇒ vi)

The main ingredient is an L2 Gaussian upper bound on the heat kernel. Follow-
ing [CGT82] (and section 6.2 in the book [Tay96]), the finite propagation speed of
solutions to the wave equation yields:

‖1U e
t∆ 1V ‖L(L2(M)) 6

1√
4πt

∫
|s|>ρ

exp
(
−s

2

4t

)
ds 6 exp

(
−ρ

2

4t

)
,(16)

for any open sets U and V in M such that ρ = dist(U, V ) = inf(x,y)∈U×V dist(x, y).
Assume that the sequence (Bk)k∈N of open subsets of M goes away from Ω

without shrinking with a factor T (def.6). For any k ∈ N, let ∆̃k denote the Dirichlet
Laplacian on Bk with domain D(∆̃k) = H1

0 (Bk) ∩ H2(Bk) and let ∆k denote its
extension to L2(M) by zero. Let ũk ∈ L2(Bk) be an eigenfunction of −∆̃k with
unit norm associated to its first eigenvalue λ∗(Bk) > 0, and let uk ∈ L2(M) be the
extension of ũk by zero. Since ∆k is an extension of ∆, we have:

‖eT∆uk‖L2(M) > ‖eT∆kuk‖L2(M) = ‖eT ∆̃k ũk‖L2(Bk) = exp(−λ∗(Bk)T ) .

Partitioning Ω into slices U = {x ∈ Ω | ρ 6 dist(x,Bk) < ρ+ ε} of thickness ε > 0,
applying (16) to each U with V = Bk, summing up and letting ε→ 0 yields:

‖et∆uk‖L2(ΩT ) 6
√
T

∫
Ω\B

exp
(
−dist(x,B)2

2T

)
dx =

√
T exp

(
−distT (Bk,Ω)2

4T

)
.

Plugging the last two inequalities in (2) contradicts the limit in def.6. Therefore
the heat equation on M is not final-observable in time T from Ω.

7. Finer sufficient condition: i′) ⇒ ii)

In this section, we prove that th.2 results from the following covering lemma ob-
tained by combining the argument of the proof of lem.1.2 in [Shu92] with Gromov’s
volume comparision theorem (prop.4.1.iii in [CGT82] or th.3.10 in [Cha93]):

Lemma 7.1. If the Ricci curvature of M is bounded below there are ρ0 > 0 and
N ∈ N∗ such that for any ρ ∈ (0, ρ0) there is a sequence of balls Bρ(yj) (j ∈ N)
with center yj ∈ M and radius ρ covering M such that each ball Bρ(yj) intersects
no more than N other balls Bρ(yk) (k 6= i).

Let Bρ(yj) (j ∈ N) be a covering with multiplicity not greater than N as in this
lemma. Assuming i’), for each j ∈ N, there is an xj ∈ Ω such that Br(xj) ∈ Ω and
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dist(yj , Br(xj)) 6 d. Setting R = r+d+ρ implies Bρ(yj) ⊂ BR(xj), so that, fixing
α ∈ (0, 1/2), applying (6) with x = xj yields ∀j, ∀ψ ∈ H2(MT ) s.t. ψ = 0 on Γ,

‖ψ‖H1((αT,(1−α)T )×Bρ(yj)) 6 C‖ψ‖δ
H1(MT )

(
‖Pψ‖L2(MT ) + ‖∂tψet=0‖L2(Ω)

)1−δ
.

Summing up over j implies:

‖ψ‖H1((αT,(1−α)T )×M) 6 NC‖ψ‖δ
H1(MT )

(
‖Pψ‖L2(MT ) + ‖∂tψet=0‖L2(Ω)

)1−δ
.

Therefore def.5 holds and the proof of i′) ⇒ ii) is completed.
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