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Quantum electrodynamical modes in pair plasmas
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Department of Physics, Ume̊a University, SE–901 87 Ume̊a, Sweden

Abstract. We predict the existence of new nonlinear electromagnetic wave
modes in pair plasmas. The plasma may be either non-magnetized or immersed
in an external magnetic field. The existence of these modes depends on the
interaction of an intense circularly polarized electromagnetic wave with a plasma,
where the nonlinear quantum vacuum effects are taken into account. This gives
rise to new couplings between matter and radiation. We focus on pair plasmas,
since the new modes are expected to exist in highly energetic environments, such
as pulsar magnetospheres and the next generation of laser–plasma systems.

PACS numbers: 52.27.Fp, 52.35.Mw, 52.38,-r, 52.40.Db

1. Introduction.

Quantum electrodynamics (QED) offers new phenomena with no classical
counterparts, such as the Casimir effect. Similarly, and related to the Casimir effect,
is so called photon–photon scattering (see, e.g., [1, 2, 3, 4]). The effective interaction
between photons in a quantum vacuum is mediated by virtual electron–positron pairs,
and therefore cannot occur within standard Maxwell electrodynamics. Photon–photon
collisions have attracted much interest over the years, both from an experimental and
an astrophysical point of view (see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
and references therein). The effect of photon–photon scattering could be of
fundamental importance in high-intensity laser pulses, in ultra-strong cavity fields, in
the surroundings of neutron stars and magnetars, and in the early Universe. However,
the presence of plasmas in many highly energetic systems makes their theoretical
analysis less tractable than the pure quantum vacuum model. Anyhow, we here
present a theory of electromagnetic wave interaction in plasmas, taking photon–photon
scattering into account. It is shown that under certain circumstances the weak QED
effects will act to generate distinct new wave modes. Specifically, we focus on pair
plasmas, and argue that our new modes could be of importance in the next generation
of laser–plasmas, as well as in pulsar magnetospheres.

2. Basic equations.

The weak nonlinear self-interaction of photons in the quantum vacuum can be
expressed in terms of the Heisenberg–Euler Lagrangian [1]

L = ǫ0F + κǫ20
(
4F

2 + 7G
2
)
, (1)
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where F = −FabF
ab/4 = (E2 − c2B2)/2, G = −FabF̂

ab/4 = cE · B, and

F̂ab = ǫabcdF
cd/2 is the dual of Maxwell’s field strength tensor Fab. Here κ ≡

2α2
~

3/45m4
ec

5 ≈ 1.63×10−30 ms2/kg, α is the fine-structure constant, ~ is the Planck
constant divided by 2π, me is the electron mass, and c is the speed of light in vacuum.
The Lagrangian (1) is valid when

ω ≪ ωe ≡ mec
2/~, |E| ≪ ES ≡ mec

2/eλc (2)

respectively. Here e is the elementary charge, λc the Compton wavelength, ωe the
Compton frequency, and ES ≃ 1018 V/m the Schwinger field strength. The first
inequalility states that the individual photons should not create real electron–positron
pairs out of vacuum fluctuations, while the second states that the collective energy of
many photons should not create real electron–positron pairs.

Using Eq. (1), the dispersion relation, in the absence of matter fields, for photons
in a background electromagnetic field E, B is [5, 15]

ω(k, E, B) = c|k|
(
1 − 1

2
λ|Q|2

)
, (3)

where

|Q|2 = ε0

[
E2 + c2B2 − (k̂ · E)2 − c2(k̂ · B)2 − 2ck̂ · (E × B)

]
, (4)

and λ = λ±, where λ+ = 14κ and λ− = 8κ for the two different polarisation states of
the photon. Furthermore, k̂ ≡ k/k.

We may add the matter fields to the Lagrangian (1). Introducing the vector
potential Ab, such that Fab = ∂aAb − ∂bAa, Euler–Lagrange’s equations give us the
sourced Maxwell equations

∂bF
ab = 2ǫ0κ∂b

[
(FcdF

cd)F ab + 7

4
(FcdF̂

cd)F̂ ab
]

+ µ0j
a, (5)

where ja is the four current. Using the Lorentz gauge ∂bA
b = 0, Eq. (5) yields

[
1 − 2ǫ0κ(FcdF

cd)
]
�Aa = 2ǫ0κ

[
F ab∂b(FcdF

cd) + 7

4
F̂ ab∂b(FcdF̂

cd)
]

+ µ0j
a, (6)

where � = ∂a∂a is the d’Alambertian.
For a circularly polarized electromagnetic wave E0 = E0(x̂± iŷ) exp(ik · r− iωt)

propagating along a constant magnetic field B0 = B0ẑ, the invariants satisfy

FcdF
cd = −2E2

0

(
1 −

k2c2

ω2

)
+ 2c2B2

0 , FcdF̂
cd = 0, (7)

where k is the wave vector and ω the frequency of the circularly polarized
electromagnetic wave. Using these expressions, Eq. (6) reduces to

�Aa = −4ǫ0κ

[
E2

0

(
1 −

k2c2

ω2

)
− c2B2

0

]
�Aa + µ0j

a, (8)

which, together with the dynamical equations for the particle current ja, is our main
equation.
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3. Unmagnetized plasmas

With B0 = 0, the effect due to the presence of a plasma can be written in terms of a
modified wave operator

� → � −
ω2

p

c2
, (9)

where the plasma frequency is given by [21, 22]

ωp =
∑

j

γ
−1/2

j ωpj =
∑

j

(
n0jq

2
j

ǫ0mjγj

)1/2

, (10)

where the sum is over particle species, qj is the charge, mj is the rest mass, n0j denotes
the particle density in the laboratory frame, and the relativistic factor of each particle
species is γj = (1+q2

jE
2
0/m2

jc
2ω2)1/2. Making a harmonic decomposition of the fields,

we see that Eq. (9) gives

� −
ω2

p

c2
=

ω2 − ω2
p

c2
− k2. (11)

In the low frequency limit, ω2 ≪ k2c2, we obtain from (6) and (11) the nonlinear
dispersion relation

ω2 =
2α

45π

(
E0

ES

)2
k4c4

ω2
p + k2c2

. (12)

Next we focus our attention on a pair plasma. For an equal density (n0)
electron–positron plasma, with ultra-relativistic particle motion (γe ≫ 1), we use
the approximation ω2

p ≈ 2ω2
pe(ω/ωe)(ES/E0), where ωe = mec

2/~ and ωpe =

(e2n0/ǫ0me)
1/2. We then obtain [23]

ω3 =
α

45π

(
ωe

ωpe

)(
E0

ES

)3
k4c4

ωpe + (E0/ES)(kcωe/2ωωpe)kc
. (13)

from Eq. (12). We note that the Compton frequency ωe is much larger than ωpe for
virtually all plasmas, and corresponds to electron densities up to ∼ 1038 m−3.

If the amplitude of the vector potential varies slowly, we can derive a nonlinear
Schrödinger equation by taking the media response into account. We may take the
scalar potential φ = 0. The weakly varying vector potential amplitude A = A(t, z)
then satisfies [24]

i

(
∂

∂t
+ vg

∂

∂z

)
A +

v′g
2

∂2A

∂z2
+ a(|A|2 − A2

0)A = 0, (14)

where vg = ∂ω/∂k, v′g = ∂2ω/∂k2, a = −∂ω/∂A2
0, and A2

0 = E2
0/ω2. We note that

the response from the medium through ωpe depends on several parameters.

4. Magnetized plasmas

In the presence of a magnetic field, the plasma contribution to the dispersion relation
can be obtained by substituting

� → � −
∑

j

ωω2
pj

ωγj ± ωcj
, (15)
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for the d’Alembertian. The sum is over the plasma particle species j,

ωcj =
qjB0

mj
, (16)

is the gyrofrequency, and

γj = (1 + ν2
j )1/2, (17)

is the the gamma factor of species j, with νj satisfying [21, 22]

ν2
j =

(
eE0

cmj

)2 1 + ν2
j

[ω(1 + ν2
j )1/2 ± ωcj]2

. (18)

Making a harmonic decomposition of the fields, and looking for low-frequency
modes in an ultra-relativistic pair plasma, we use the approximations ω ≪ kc and
γe ≫ 1, at which Eq. (6) together with (15) gives [25]

k2c2

ω2
≈

4α

45π

[(
E0

ES

)2
k2c2

ω2
+

(
cB0

ES

)2
]

k2c2

ω2
∓

ω2
pe

ωωe

ES

E0

. (19)

In the limit of no photon–photon scattering, i.e. α → 0, we recover the modes found
in Ref. [22].

Magnetized pair plasmas can be found in the surroundings of pulsars and strongly
magnetized stars, e.g. in the form of accretion disks. At a distance from the star’s
surface, the magnetic field will be weak, being essentially dipole in character, and the
first term in the square bracket of Eq. (19) will be the dominant QED contribution.

Close to neutron stars or magnetars, the magnetic field strengths are in the range
106−1011 T [26,27], and, depending on the frequency of the circularly polarized wave,
the second term in the square bracket of Eq. (19) may dominate the behavior of the
wave mode. If cB0 & ES , we have

ω ≈ ∓ωe
E0

ES

[
1 −

4α

45π

(
cB0

ES

)2
](

kc

ωpe

)2

. (20)

5. Discussion and conclusion

Most situations in which photon–photon scattering can be important are of an
extreme nature. Examples of environments where the effects may either be
dynamically significant, or measurable, are the next generation of high power lasers
and possibly their combination with plasmas into laser–plasma systems [12, 20], high
field superconducting cavities [14], and astrophysical environments, such as pulsar
magnetospheres [26] and the vicinity of magnetars [27]. In astrophysical environments,
effects such as photon splitting or magnetic lensing have been suggested to take
place [5,6,7,16]. Even in cosmology, the effects of photon–photon scattering could be
detectable using precision observations of the cosmic microwave background [28, 19].

However, plasmas may in many circumstances be a prominent component of the
physical systems considered above. For example, it is currently believed that the
highest experimental field strengths could be obtained using laser–plasma systems [29].
Therefore, the addition of plasmas to the dynamics of photon–photon scattering adds
an important piece to our understanding of the nonlinear quantum vacuum, and as
shown here, could provide a unique signature of photon–photon scattering. It remains
to be seen whether this can be realized in a laboratory or in astrophysics.
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