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Gilles Pagès∗ Jacques Printems†

July 31, 2004

Abstract

We investigate in this paper the numerical performances of quadratic functional quantization
and their applications to Finance. We emphasize the rôle played by the so-called product quantizers
and the Karhunen-Loève expansion of Gaussian processes. Numerical experiments are carried out
on two classical pricing problems: Asian options in a Black-Scholes model and vanilla options in a
stochastic volatility Heston model. Pricing based on “crude” functional quantization is very fast
and produce accurate deterministic results. When combined with a Romberg log-extrapolation, it
always outperforms Monte Carlo simulation for usual accuracy levels.

Key words: Functional quantization, Product quantizers, Romberg extrapolation, Karhunen-Loève
expansion, Brownian motion, SDE, Asian option, stochastic volatility, Heston model.
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1 Introduction

This paper is an attempt to investigate the numerical aspects of functional quantization of stochastic
processes and their applications to the pricing of derivatives through numerical integration on path-
spaces; we will mainly focus on the Brownian motion and the Brownian diffusions viewed as square
integrable random vectors defined on a probability space (Ω,A,P) taking their values in the Hilbert
space L2

T
:= L2

R([0, T ], dt) endowed with the usual norm defined by |g|L2
T

= (
∫ T

0 g2(t)dt)1/2.
Functional quantization is the natural extension to stochastic processes of the so-called optimal

vector quantization of random vectors which has been extensively investigated since the late 1940’s in
Signal processing and Information Theory. Its aim is to provide an optimal spatial discretization of
a random vector-valued signal X with distribution PX by a random vector taking at most N values
x1, . . . , xN , called elementary quantizers. Then, instead of transmitting the complete signal X(ω)
itself, one first selects the closest xi in the quantizer set and transmits its (binary coded) label i. After
reception, a proxy X̂(ω) of X(ω) is reconstructed using the code book correspondence i 7→ xi. For
a given N , there is (at least) one N -tuple of elementary quantizers which minimizes over (Rd)N the
quadratic quantization error ‖X − X̂‖2 induced by replacing X by X̂. In d-dimension, this minimal
quantization error goes to zero at a N−

1
d -rate as N → +∞. Stochastic optimization procedure

based on simulation have been devised to compute these optimal quantizers. For an expository of
mathematical aspects of quantization in finite dimension we refer to [5] and the references therein.
For Signal processing and algorithmic aspects, we refer to [4], [3] and [18].
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In the early 1990’, optimal quantization has been introduced in Numerical Probability to devise
some quadrature integration formulæ with respect to the distribution PX on Rd: EF (X) ≈ EF (X̂)
if N is large enough (even bounded by [F ]Lip‖X − X̂‖2 if F is Lipschitz continuous) and EF (X̂) is a
weighted convex combination of the F (xi). This approach is efficient in medium dimensions (at least
1 ≤ d ≤ 4, see [14], [15] and [18]) especially when many integrals need to be computed against the
same distribution PX : tables of the optimal weighted N -tuples can be computed and kept off-line like
as for Gauss points. Later, optimal quantization has been used to design some tree methods in order
to solve non-linear problems involving the computation of many conditional expectations: American
option pricing, non-linear filtering for stochastic volatility models, portfolio optimization (see [17] for
a review of applications to computational Finance).

Recently, the extension of optimal quantization to stochastic processes viewed as random variables
taking their values in their path-space has given raise to many theoretical developments (see [11],[12],
[2], etc). This functional quantization can be seen as a discretization of the path-space of a process,
typically the Hilbert space L2

T
. In this paper we aim to develop the numerical aspects of functional

quantization and their applications to the pricing of path-dependent derivatives. More precisely, we
will focus on additive integral functionals F defined on L2

T
by ξ 7→ F (ξ) =

∫ T
0 f(t, ξ(t)) dt, ξ ∈ L2

T
.

The starting point is to search for some “good” computable quantizers (stationnary but possibly not
optimal) and then to use the derived quadrature formulæ as a deterministic alternative to Monte
Carlo simulation for integrating EF (X) for some process X. In a Gaussian setting, this can be done
by using an expansion of X in an appropriate orthonormal basis and, in a non Gaussian setting (like
diffusions) by some “quantizing mappings” based on some integral equations (see [13]). Since optimal
functional quantization theoretically converges at a rather poor (logN)−θ-rate for some θ depending
on the pathwise regularity of the process X, one has to bet on its performances for “reasonably small”
values of N (say N≤10 000).

The paper is organized as follows: in Section 2 we provide the reader with some background on
quantization of Hilbert spaces and Gaussian processes viewed as L2

T
-valued random vectors. Section 3

is devoted to stationary quantizers and their computational applications (one-dimensional optimal
quantizers, etc). Section 4 deals with the weighted quadrature formulæ for the expectations EF (X)
of H-valued random vectors X. In Section 5 we investigate a special class of quantizers called scaled
product quantizers which will be the key of numerical applications. When X is a Gaussian vector,
its Karhunen-Loève (K-L) expansion (i.e. its PCA in infinite dimension) plays a crucial rôle. A
procedure is described to tabulate the optimal product quantizers. For the Brownian motion these
tables are available on the web. In Section 6, a Romberg like method is proposed to speed up numerical
integration. In Section 7 we carry out several numerical experiments on two pricing problems: Asian
options in a Black-Scholes model and vanilla Calls in a Heston stochastic volatility model. The results
are quite promising. In particular, we point out the striking efficiency of a Romberg log-extrapolation
which numerically outperforms Monte Carlo simulation in both examples. In Section 8, we outline a
kind of FQ-MC method where functional quantization becomes a control variate random variable.

2 Preliminaries on quadratic functional quantization

Let (H, (. | .)H ) be a separable Hilbert space and X : (Ω,A,P) → H be a H-valued random vector
with distribution PX defined on H endowed with its Borel σ-field Bor(H). Typical settings are H = R,
Rd endowed with its canonical Euclidean norm and L2

T
for functional quantization, etc. Quadratic

optimal quantization consists in studying the best ‖ . ‖2-approximation of X ∈ L2
H

(Ω,P) by H-valued
random vectors taking at most N values, including all the induced questions like asymptotic error
bounds, rates, construction of nearly optimal quantizers. This framework naturally includes many
non-Gaussian processes like diffusions for example (see [13]).

Let x := (x1, . . . , xN )∈ HN be a N -quantizer and let Projx : H → {x1, . . . , xN } be a projection
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following the closest neighbour rule. It means that the Borel partition Proj−1
x ({xi}), i = 1, . . . , N of

H satisfies
Proj−1

x ({xi}) ⊂ {ξ∈ H | |xi − ξ|H = min
1≤j≤N

|xj − ξ|H}, 1 ≤ i ≤ N.

Such a Borel partition is called a Voronoi tessellation of H induced by x. The Voronoi cell of x is
often denoted Ci(x) := Proj−1

x ({xi}). One defines the Voronoi quantization of X induced by x by

X̂x := Projx(X).

(the exponent x will often be dropped or replaced by its size N ) It is the best L2(P)-approximation of
X by {x1, . . . , xN }-valued random vectors since, for any random vector X ′ : Ω→ {x1, . . . , xN },

‖X −X ′‖2
2

=
∑

1≤i≤N

∫

Ω
1Ci(x)(X(ω))|X(ω)−X ′(ω)|2

H
P(dω)

≥
∑

1≤i≤N

∫

Ω
1Ci(x)(X(ω)) |X(ω)− xi|2HP(dω)

= E( min
1≤i≤N

|X − xi|2H ) = ‖X − X̂x‖2
2

Note that there are infinitely many Voronoi tessellations which all produce the same quadratic
quantization error ‖X − X̂x‖2 . In fact the boundaries of the Voronoi cells of any Voronoi tessellation
is contained in the same finite union of median hyperplanes Hij ≡ (xi − xj | . )H = 0 (xi 6= xj). So, if
the distribution PX weights no hyperplane, then X̂x is P-a.s. uniquely defined.

The second step of the optimization process is to find a N -tuple x∈ HN , if any, which minimizes
the quantization error over HN . In fact one checks by the triangular inequality that the function

QX
N

: (x1, . . . , xN ) 7→ ‖X − X̂x‖2 = ‖ min
1≤i≤N

|X − xi|H ‖2

is Lipschitz continuous on HN . When N = 1, Q2
1
(x) = E|X − x|2

H
is a strictly convex function

which reaches its minimum Var(|X|H ) at x∗ := EX. Then, one shows by induction on N (see [11] for
details), that QX

N
always reaches a minimum at some optimal N -quantizer x∗ := (x∗1, . . . , x

∗
N

). As soon
as |suppPX | ≥ N , any such optimal N -quantizer has pairwise distinct components. The key argument
is that the function QX

N
is weakly lower semi-continuous on HN . Then, the support of a distribution

being σ-compact in the Hilbert space H, it is separable. So, let (zn)n≥1 denote an everywhere dense
sequence in the support of PX . Then

min
HN

(QX
N

)2 ≤ (QX
N

(z1, . . . , zN ))2 =
∫

supp(P
X

)
min

1≤i≤N
|ξ − zi|2HPX (dξ)→ 0 as N →∞

by the Lebesgue dominated convergence theorem. Elucidating the rate of convergence of minHN QX
N

toward 0 is a much more demanding problem, even in finite dimension. It has been completely
elucidated for non-singular Rd-valued random vectors by the so-called Zador Theorem (see [5]).

Theorem 1 (Zador, Bucklew & Wise, Graf & Luschgy) Assume that X∈ L2+η
Rd (Ω,P) for some η > 0.

Let f denote the density of the absolutely continuous part of PX (which can be possibly 0). Then

min
(Rd)N

(QX
N

)2 = min
x∈(Rd)N

‖X − X̂x‖2
2
∼ J2,d

N2/d

(∫

Rd
f

d
d+2 (ξ)dξ

)1+2/d

+ o

(
1

N
2
d

)
as N → +∞.
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When f 6≡ 0, this yields a sharp rate for the quadratic quantization error since the integral in the
right hand side is always finite under the assumption of the theorem. When f ≡ 0, this no longer
provides a sharp rate, although such sharp rates can be established for some special distributions (self-
similar distributions on fractal sets, etc). The true value of J2,d – which corresponds to the uniform
distribution over [0, 1]d – is unknown although one knows that J2,d = d/(2πe) + o(d).

In a Hilbert setting no such global result holds, even for Gaussian processes. However, similar
sharp rates can be established in some cases when one has a good control on the eigenvalues of the
covariance operator of the Gaussian process. The main existing results in that Gaussian setting are
brought together in the theorem below.

Theorem 2 ([11] 2002, [12] 2004) Let H=L2
T

and let (Xt)t∈[0,T ] be a centered bi-measurable Gaussian

process such that
∫ T

0
Var(Xt)dt < +∞.

(a) Let (e`)`≥1 be an orthonormal basis of H. Set c2
` := Var((X|e`)L2

T
), n ≥ 1. If there is some real

b > 1 such that c2
` = O(`−b) then,

min
HN

QX
N

= O
(

(logN)−
b−1

2

)
.

(b) Let (λ`)`≥1 denote the sequence of eigenvalues of the covariance operator ΓX of X arranged in an
ascending order and let (e

X

` )`≥1 be the corresponding orthonormal eigenbasis of H. If there is some
real b > 1 such that λ` ≥ ε0 `

−b for large enough ` (ε0 > 0), then

min
HN

QX
N
≥ ε′0 (logN)−

b−1
2 for large enough N (ε′0 > 0).

(c) If furthermore, λ` = c
λ
`−b + o(`−b) then

min
HN

QX
N

=
c

1
2
λ b

b
2

2
b−1

2 (b− 1)
1
2

(logN)−
b−1

2 + o
(

(logN)−
b−1

2

)
. (2.1)

This theorem can be extended by considering the case where c2
` and/or λ` are (upper-bounded

by) regularly varying sequences with index −b, b ≥ 1 (and
∑

` c
2
` < +∞ when b = 1). It turns out

that for many (one-parameter) processes, the index b is closely related to the Hölder regularity µ of
the application t 7→ Xt from [0, T ] into L2(Ω,P): one verifies that µ = b−1

2 . For the detailed proofs
of the different claims of this theorem in full generality we refer to [11] and [12]. For numerics, the
item of interest is (a). Let us emphasize that its proof is constructive and that it does not rely on
optimal quantizers of the process X. It uses another family of quantizers called product N -quantizers
which are designed from optimal quantizers of the one-dimensional marginals (X|e`)L2

T
of X in the

orthonormal basis (e`)`≥1 (see paragraph 5.2 for an outline of the proof). These product quantizers
and how to compute them for numerics are in fact the central topic of this paper.

This is the reason why we first provide a short background on numerical methods to obtain optimal
quantizers for distributions (Gaussian) on the real line.

3 Stationarity quantizers and first numerical applications

3.1 Smoothness of the distortion function and stationary quantizers

The quantization function QX
N

is not simply Lipschitz continuous but also differentiable at “most”
points of HN . For convenience let us introduce the distortion i.e. the square of QX

N

DX
N

(x) := E min
1≤i≤N

|X − xi|2H , x∈ HN .
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Theorem 3 (a) Let x := (x1, . . . , xN )∈ HN be an N -quantizer satisfying

∀ i 6= j, xi 6= xj and P(X∈ ∪i∂Ci(x)) = 0 (3.2)

(PX -negligible boundary of the Voronoi cells). Then DX
N

is differentiable at x with

∂DX
N

∂xi
:= 2E(1Ci(x)(X)(xi −X)) = 2

∫

Ci(x)
(xi − ξ)PX (dξ), 1 ≤ i ≤ N, (3.3)

and its differential D(DX
N

) is continuous. When x∗ is an optimal N -quantizer (and |suppPX | ≥ N),
Assumption (3.2) is satisfied (see [5] or [13]) so that

∇DX
N

(x∗) = 0. (3.4)

(b) Assume H = R and supp(PX ) = closure((m,M)) in R, m, M ∈ R. Then, for any (ordered)
N -quantizer x = (x1, . . . , xN ), x1 < . . . < xN , its (canonical) Voronoi tessellation is given by

C1(x) = (−∞, x3/2], Ci(x) := (xi−1/2, xi+1/2], i = 2, . . . , N − 1, CN (x) = (x
N−1/2

,+∞) (3.5)

where xi−1/2 :=
xi + xi−1

2
, i = 2, . . . , N . If PX is absolutely continuous with a continuous p.d.f. f ,

then DX
N

is twice continuously differentiable at x and its Hessian is given by

D2(DX
N

)(x) =

[
∂2DX

N

∂xi∂xj
(x)

]

1≤i,j≤N
(3.6)

with

∂2DX
N

∂x2
i

(x) = 2
∫ x

i+ 1
2

x
i− 1

2

f(u)du− xi+1 − xi
2

f(xi+ 1
2
)1{i≤N−1} −

xi − xi−1

2
f(xi− 1

2
)1{i≥2}, 1 ≤ i ≤ N,

∂2DX
N

∂xi∂xi−1
(x) = −xi − xi−1

2
f(xi− 1

2
), 2 ≤ i ≤ N, ∂2DX

N

∂xi∂xi+1
(x) = −xi+1 − xi

2
f(xi+ 1

2
), 1 ≤ i ≤ N−1,

and
∂2DX

N

∂xi∂xj
(x) = 0 otherwise.

(c) Uniqueness: Assume H = R and PX is absolutely continuous with a log-concave p.d.f. f (i.e.
{f > 0} = (m,M), and log f is concave on (m,M)), then {∇DX

N
= 0} = {x∗} .

The above theorem brings together several classical results about quadratic distortion for which
we refer to [5], [15]. It has several consequences on both theoretical and numerical aspects. First it
suggests to the following definition of stationary.

Definition 1 A N -quantizer x ∈ HN satisfying (3.2) and the above Equation (3.4) is called a sta-
tionary N -quantizer for X. The random vector X̂x is called a stationary N -quantization of X.

If P(X∈ Ci(x)) > 0 for every i = 1, . . . , N , the equation ∇DX
N

(x) = 0 also writes

xi =
E(1Ci(x)(X)X)
P(X∈ Ci(x))

= E(X | {X∈ Ci(x)}), i = 1, . . . , N. (3.7)

Consequently since the σ-fields generated by X̂x and {{X∈ Ci(x)}, i = 1, . . . , N} coincide

E(X|X̂x) = X̂x. (3.8)

5



In particular E(X) = E(X̂x).
Except for log-concave one-dimensional p.d.f., optimal quantizer(s) are not the only stationary

quantizers (see Proposition 4 below about “Karhunen-Loève” product quantizers).
Note that owing to (3.8) the quantization error has then a simpler expression since

E(|X − X̂x|2
H
| X̂x) = X̂x) + |X̂x|2

H

E(|X|2
H
| X̂x)− |X̂x|2

H
(3.9)

so that ‖X − X̂x‖2
2

= E(|X|2
H

)− E(|X̂x|2
H

) = E(|X|2
H

)−
∑

1≤i≤N
|xi|2P(X∈ Ci(x)). (3.10)

Applying (3.10) to X − EX finally yields

E|X − X̂x|2
H

= σ2
|X|

H
− σ2

| bXx|
H

(3.11)

where σ|Y |
H

denotes the standard deviation of |Y |H . We will see further on (Sections 4, 5 and 6) that
stationary quantizers are an important class of quantizers for numerics.

Application to processes: When H = L2
T

and X is a bi-measurable process, one also derives
from (3.7) that any stationary quantizer has the same regularity as t 7→ Xt from [0, T ] into L2(Ω,A,P)
(see [11] and [12] for details).

If, furthermore, X is a Gaussian process, one shows that stationary quantizers lie in the self-
reproducing space of X (see [11]). In particular, the components of any stationary quantizer of the
Brownian motion all lie in the Cameron-Martin space H1 := {h ∈ L2

T
/ h(t) =

∫ t
0 ḣ(s)ds, ḣ∈ L2

T
}.

3.2 Numerical computation of one-dimensional optimal quantizers

It follows from the former section that, if PX is continuous, any optimal (or at least locally optimal)
N -quantizer is stationary. This suggests to find them by using a search procedure of the zeros of the
gradient ∇DX

N
. In higher dimensions, one usually implement a stochastic gradient procedure based

on the integral representation of ∇DX
N

(combined with the so-called Lloyd’s I procedure, see [18]
for details) This has been extensively investigated and experimented in [18], especially for Gaussian
vectors. However, as far as one-dimensional log-concave distributions are concerned, extensive nu-
merical experiments carried out in [18] lead to the conclusion that the most efficient procedure is the
deterministic Newton-Raphson (NR) algorithm

xN,(t+1) = xN,(t) − [D2(DX
N

)(xN,(t))]−1∇DX
N

(xN,(t)), xN,(0)∈ RN ,

where the Hessian D2(DX
N

)(x) is given by (3.6). In particular, when dealing with the N (0; 1) distri-
bution on R (whose p.d.f. is strictly log-concave) the NR-procedure initialized at

xN,(0) =
(
−2 + 2

2i− 1
2N

)

1≤i≤N
.

converges in less than 10 iterates (in the sense that the error reaches the “computer precision”) toward
the unique optimal N -quantizer xN . A tabulation of optimal N -quantizers of the N (0; 1) distribution
has been carried out for every N ∈ {1, . . . , 400}. A file is kept off-line and can be can be downloaded
at the URL www.proba.jussieu.fr/pageperso/pages.html. It contains

– the (unique) optimal N -quantizer xN ,

– the P
ξ
-masses Pξ(Ci(xN )), i = 1, . . . , N , of its Voronoi cells (i.e. the distribution of ξ̂x

N
, ξ ∼

N (0; 1)),

6



– the induced quadratic quantization error ‖ξ − ξ̂xN ‖2 (using (3.10), given that Var(ξ) = 1),

Other quantities of interest like the L1-quantization error can be computed from these data (closed
forms are available, see [18]). (Note that quadratic N -quantizers of the multi-variate d-dimensional
N (0; Id) can be downloaded at the same URL for d = 1, . . . , 10 and various values of N .)

4 Quadrature formulæ for numerical integration

The proposition below illustrates how to use (optimal) quantization for numerical integration of func-
tionals defined on the Hilbert space H: some quadrature formulæ are established with some error
bounds. The basic idea is that on the one hand an optimal quantization X̂x is close to X in distribu-
tion and, on the other hand, for every Borel functional F : H → R and every x = (x1, . . . , xN )∈ HN ,

EF (X̂x) =
∑

1≤i≤N
PX (Ci(x))F (xi). (4.12)

As soon as one has a numerical access to the N -quantizer x and the distribution (PX (Ci(x)))1≤i≤N of
the quantization X̂x, the computation of (4.12) is straightforward. The aim of the proposition below
is to establish some error bounds for EF (X)−EF (X̂x) based on Lp-quantization errors ‖X − X̂x‖p
(with p = 2 or 4).

Item (a) below is devoted to Lipschitz continuous functionals and item (b) to a second order
quadrature formula involving stationary quantizers for smoother functionals. Other quadrature for-
mulæ based on Lp-quantization, p 6= 2, can be derived.

Proposition 1 Let X∈ L2
H(Ω,P) and let F : H → R be a Borel functional defined on H

(a) First order quadrature formula: If F is Lipschitz continuous, then

|EF (X)− EF (X̂x)| ≤ [F ]Lip‖X − X̂x‖2

for every N -quantizer x ∈ HN . In particular, if (xN )N≥1 denotes a sequence of quantizers such

that lim
N
‖X − X̂xN ‖2 = 0, then the distribution

N∑

i=1

PX (Ci(xN ))δxNi of X̂xN weakly converges to the

distribution PX of X as N → +∞.
(b) Second order quadrature formulæ: Assume that x is a stationary quantizer for X.

– Let θ : H → R+ be a nonnegative convex function. If θ(X)∈ L2(P) and if F is locally Lipschitz
with at most θ-growth, i.e. |F (x)− F (y)| ≤ [F ]

Liploc
|x− y| (θ(x) + θ(y)), then F (X)∈ L1(P) and

|EF (X)− EF (X̂x)| ≤ 2[F ]
Liploc
‖X − X̂x‖2‖θ(X)‖2 . (4.13)

– If F is differentiable on H with an α-Hölder differential DF (α∈ (0, 1]), then

|EF (X)− EF (X̂x)| ≤ [DF ]α‖X − X̂x‖1+α
2

. (4.14)

When F is twice differentiable and D2F is bounded then, one may replace [DF ]1 = [DF ]Lip by
1
2‖D2F‖∞ in (4.14).

– If DF is is locally Lipschitz with at most θ-growth, θ convex, θ(X)∈ L4(P), then

|EF (X)− EF (X̂x)| ≤ 3[DF ]
Liploc
‖X − X̂x‖2

4
‖θ(X)‖4 . (4.15)

(c) An inequality for convex functionals: Assume that x is a stationary quantizer. Then for
any convex functional F : H → R

EF (X̂x) ≤ EF (X). (4.16)
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The proofs of these quadrature formulæ are postponed to an annex.

Remark: The error bound (4.15) involves ‖X − X̂x‖4 about which very little is known when x is an
optimal (or simply stationary) quadratic quantizer of X: its rate of convergence as N goes to infinity
known is not elucidated and numerical computation needs some extra computations. So one often
uses a less elegant (and probably less sharp) bound: assume that DF is is locally Lipschitz with at
most θ-growth, θ convex, θ(X)∈ Lp(P) for every p ≥ 1, then, for every ε∈ (0, 1],

|EF (X)− EF (X̂x)| ≤ [DF ]
Liploc
‖X − X̂x‖2−ε

2
‖X − X̂x‖ε

4
(1 + 3‖θ(X)‖ 1

ε

). (4.17)

Examples: • The typical regular functionals defined on (L2
T
, | . |

L2
T

) (most important example for

stochastic processes) are the integral functionals F defined by

∀ ξ ∈ L2
T
, F (ξ) =

∫ T

0
f(t, ξ(t)) dt

where f : [0, T ] × R → R is a Borel function with at most linear growth in x uniformly in t. In
particular, F is Lipschitz continuous as soon as f(t, .) is (uniformly in t), convex if f(t, .) is for every
t, etc; in particular F is differentiable with an α-Hölder differential as soon as f(t, .) is differentiable
for every t∈ [0, T ] with an α-Hölder partial differential ∂f

∂x (t, .) (uniformly in t). Then

∀ ξ ∈ L2
T
, DF (ξ) =

∫ T

0

∂f

∂x
(t, ξ(t))dt.

• The functional F defined for every ξ∈ L2
T

by

F (ξ) :=
∫ T

0
eσξ(t)+ρtdt (ρ∈ R)

is convex, locally Lipschitz with θ-linear growth, infinitely differentiable. Furthermore, using that
|eu − ev| ≤ |u− v|(eu + ev) and Schwarz inequality, one derives that

[F ]
Liploc

:= σeρ+T and θ(ξ) = |eσξ|
L2
T

. (4.18)

5 Computable rate optimal quantizers for Gaussian processes

In this section, we will focus on (bi-measurable) Gaussian processes X viewed as L2
T

-valued random
vectors, although we still consider an abstract Hilbert setting for a while. For convenience we will
assume from now on that all random vectors X are centered i.e.

EX = 0H .

First we will explain why some specific sequences of product quantizers with respect to some orthonor-
mal basis (e`)`≥1, although not optimal, produce in some cases the optimal rate of convergence (but
not the constant in the sharp rate (2.1)). We will also point out why they cannot be used in general
for numerics. As a second step, we will show that when (e`)`≥1 is the eigenbasis of the covariance
operator of X (so-called Karhunen-Loève- basis of X), the computation of the distributions of the
related quantization X̂ becomes tractable.
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5.1 Product quantizers on a Hilbert space

Assume that the Hilbert space (H, ( . | . )H ) is separable (hence it has a countable orthonormal basis).
Let X ∈ L2

H(Ω,A,P)and let (e`)`∈L be an orthonormal basis of the Hilbert space H (L = {1, . . . , d}
if dimH = d, L = N otherwise). One may expand X on this basis that is

X
H=

∑

`∈L
(X|e`)H e` P-a.s.

This equality also holds in L2
H(P). One can normalize this expansion so that

X
H=

∑

`∈L
c` ξ

`e` P-a.s. (5.19)

with c` := σ((X|e`)H ) =
√

Var((X|e`)H ) and ξ` :=
(X|e`)H

c`
1{c`>0},

so that the r.v. ξ` are centered and normalized (when c` 6= 0) and c = (c`)∈ `2(L).

Definition 2 Let N ≥ 1. A N -tuple x ∈ HN is called a product N -quantizer with respect to the
orthogonal basis (e`)`∈L if

x :=

(∑

`∈L
x

(`)
i`
e`

)

1≤i1≤N1,...,1≤i`≤N`,...

where, for every ` ∈ L, x(`) := (x(`)
1 , . . . , x

(`)
N`

) ∈ RN` is a N`-quantizer with N =
∏
`≥1N` (hence

in infinite dimension, N` = 1 and x(`) = 0 for large enough `). One denotes the component
(x(1)
i1
, . . . , x

(`)
i`
, . . . , 0, 0 . . .) of x by xi where i is the multi-index (i1, . . . , i`, . . . , 1, 1, . . .).

When there is no ambiguity, one often drops for convenience the reference to the basis (e`)`∈L and
one denotes the product quantizer by

x :=
∏

`∈L
x(`) =

(
(x(1)
i1
, . . . , x

(`)
i`
, . . .)

)
1≤i`≤N`, `≥1

.

The “marginals” x(`) of such a product quantizer will be used to produce some quantizations ξ̂` := ξ̂x
(`)

of the random variables ξ` appearing in (5.19). In view of (5.19), it is natural to specify a sub-class of
product quantizers called c-scaled product quantizers.

Definition 3 Let x :=
∏
`∈L x

(`) be a product N -quantizer and c = (c`)`∈L be a scaling vector. The
c-scaled product N -quantizer c⊗ x is defined by

c⊗ x :=
∏

`∈L
(c` x(`)) =

(∑

`∈L
c` x

(`)
i`
e`

)

1≤i1≤N1,...,1≤i`≤N`,...
.

The components of c⊗x are usually indexed by the multi-index i = (i1, . . . , i`, . . . , 1, 1, . . .)∈
∏
`≥1{1, . . . , N`}.

The proposition below describes the simple geometric shape of the Voronoi cells of such a quantizer.

Proposition 2 Let x be a product N -quantizer and c a scaling vector. Set `x := max{` /N` > 1}∈ N.
(a) Then, the quadratic distortion induced by c⊗ x is

DX
N

(c⊗ x) =
∑

`≥1

c2
` D

ξ`

N`
(x(`)) = E|X|2 +

`x∑

`=1

c2
`(D

ξ`

N`
(x(`))− 1). (5.20)
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(b) Assume that c` > 0 for every `∈ L. Then, for every multi-index i∈
∏

`∈L
{1, . . . , N`},

Ci(c⊗ x) =
∏

`∈L
(c`Ci`(x

(`))). (5.21)

Proof: Both claims follow from the orthonormality of the basis (e`)`∈L.

(a) Emin
i
|X − (c⊗ x)i|2 = E


 min

1≤i1≤N1,···,1≤i`x≤N`x

∣∣∣∣∣
∑

`∈L
c` ξ

`e` −
`x∑

`=1

c` x
(`)
i`
e`

∣∣∣∣∣

2



= E


 min

1≤i1≤N1,···,1≤i`x≤N`x

`x∑

`=1

c2
` |ξ` − x(`)

i`
|2 +

∑

`≥`x+1

c2
` (ξ`)2




=
`x∑

`=1

c2
` E

(
min

1≤i`x≤N`x
|ξ` − x(`)

i`
|2

)
+

∑

`≥`x+1

c2
` .

The first equality follows from the fact that, for every ` > `x, x(`) = E(ξ`) = 0 so that Dξ`

1
(0) =

Var(ξ`) = 1{c`>0}.

(b) One may assume without loss of generality that, for every `∈ L, the components of x(`) are in an
ascending order i.e. i 7→ x

(`)
i is nondecreasing. Let i := (i1, . . . , i`x , 1, . . .) and j := (j1, . . . , j`x , 1, . . .).

Then, if ζ =
∑

` ζ`e`∈ H, |ζ − (c⊗ x)i|2 < |ζ − (c⊗ x)j |2 iff

`x∑

`=1

c2
`

(
x

(`)
i`
− x(`)

j`

)(
ζ`
c`
− x

(`)
i`

+ x
(`)
j`

2

)
< 0.

Then, for every fixed `, setting j` = i`±1 and j`′ = i`′ if `′ 6= ` implies that

x̃
(`)
i`
<
ζ`
c`
< x̃

(`)
i`+1

i.e.
ζ`
c`
∈ Ci`(x(`)).

One checks that this condition is sufficient. ♦

Corollary 1 (a) It is possible to rearrange the orthonormal basis (e`) so that sequence (c`)`≥1 is
non-increasing. Assuming this has been done, one has

min
HN

DX
N
≤ min





m∑

`=1

c2
` min
RN`

Dξ`

N`
+

∑

`≥m+1

c2
` , N1×· · ·×Nm ≤ N, N1, . . . , Nm ≥ 2, m ≥ 1



 . (5.22)

(b) Let x =
∏
`∈Lx

(`)∈ HN , be a product N -quantizer, let c = (c`) ∈ `2(L) with c` > 0, `∈ L. Let
ξ̂` := ξ̂x

(`)
be the (Voronoi) quantization of ξ` induced by x(`). The c⊗ x-quantization of X is given by

X̂c⊗x =
∑

`≥1

c`ξ̂
`e` =

∑

i

(c⊗ x)i 1Ci(c⊗x)(X), with Ci(c⊗ x) =
∏

`≥1

{ξ` ∈ Ci`(x(`))}.

(5.23)

Proof: (a) The rearrangement is possible since c∈ `2(L). The claim follows from Proposition 2(a).
(b) It follows from (5.21) that

X∈ Ci(x) iff c` ξ
`∈ c`Ci`(x(`)), ` ≥ 1 iff ξ`∈ Ci`(x(`)), ` ≥ 1. ♦

Remark. The choice of rearranging the coefficients c` in a descending order is natural. Moreover, it
is established in [11] (Theorem 3.2 and the remarks below) that when (e`)`∈L is the Karhunen-Loève
basis (see Section 5.3 below), this choice is the optimal one.
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5.2 Product quantizers of a Gaussian process

The estimate in (a) is at the origin of the asymptotic upper-bounds of the quadratic quantization error
for Gaussian processes first established in [11]. We will briefly recall the approach in order to explain
first how it may produce the right asymptotic rate of decay of the quadratic quantization error and
second why it cannot be used in such a generality for numerical purpose. Indeed, if H = L2

T
and X

is a bi-measurable 0-centered Gaussian process such that
∫ T

0
EX2

t dt < +∞, (5.24)

then X can be seen as a L2
T

-valued random vector. Furthermore, X being a Gaussian process, the
sequence of random variables (ξ`)`≥1 is a 0-centered Gaussian sequence of normal random variables.
In particular, for every `∈ L there exists x(`)∈ RN` such that

Dξ
N`

(x(`)) = min
RN`

Dξ`

N`
= min
RN`

Dξ
N`

(x(`)), ξ ∼ N (0; 1).

Consequently, there exists a real constant K > 0 given by Zador’s Theorem such that

Dξ
N`

(x(`)) = min
RN`

Dξ`

N`
≤ KN−2

` , ` ∈ L. (5.25)

Then, if one is interested in the rate of convergence of min(L2
T

)ND
X
N

as N → ∞, one may replace
the optimization problem in the right hand side of (5.22) by the optimal size allocation problem (still
assuming (c`) is non-increasing), namely

min





m∑

`=1

c2
`

N2
`

+
∑

`≥m+1

c2
` , N1×· · ·×Nm ≤ N, N1, . . . , Nm ≥ 2, m ≥ 1



 . (5.26)

Set mN := max



m ≥ 1 s.t. N

1
m cm

(
m∏

`=1

c`

)− 1
m

≥ 1



, [u] := max{k∈ N / k ≤ u} and, then,

N` :=


N

1
m
N c`

(m
N∏

k=1

ck

)− 1
m
N


 , ` = 1, . . . ,mN , N` = 1, ` ≥ mN + 1, N` := 1. (5.27)

The resulting sequence (N`)`≥1 of quantizer sizes (whose product is at most N for every N) is asymp-
totically optimal for (5.26). If c` = O(`−b) one derives that mN = 2

b logN + o(logN) and that the
value function in (5.26) goes to 0 at a O((logN)−

b−1
2 )-rate (see [11], [16], [12] for details). This yields

the asymptotic rate of decay for ‖X − X̂c⊗xN ‖2 as N → ∞ where xN is a product quantizer whose
“marginals” x(`) are N`-optimal with N` given by (5.27). This completes the proof of Theorem 2 (a).
In fact, it even yields the slightly more accurate result (see [12], Theorem 2.2 for details). Let

Opq(N) :=





∏

`≥1

x(`), x(`) optimal N`-quantizer of the N (0; 1)-distribution, `≥ 1,
∏

`≥1

N` ≤ N


 . (5.28)

where the subscript pq means product quantizer.
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Proposition 3 Let X be a Gaussian process. Assume that c2
n ≤ c∗ n−b, b > 1. Then

min
{
‖X−X̂c⊗x‖2 , x∈ Opq(N)

}
≤

(
c∗

(
b

2

)b−1( 1
b− 1

+4CN (0;1)

))1/2
1

(logN)
b−1

2

(5.29)

where CN (0;1) := sup
N≥1

(
N2 min

y∈RN
DN (0;1)
N

(y)
)
.

A conjecture (see [12]) is that in fact CN (0;1) = lim
N

(
N2 min

x∈RN
DN (0;1)
N

(x)
)

=
π

2

√
3. (The second

equality follows from Zador’s Theorem.) Numerical experiments tend to confirm this conjecture: the
inequality maxn≤N (n2 min

x∈Rn
DN (0;1)
n (x))≤ π

2

√
3 is satisfied at least up to N = 10 000.

Consequently, if the rate of convergence of (c`) as `→∞ is known (e.g. in a power scale) for a given
orthonormal basis (e`) of L2

T
, one derives a rate of decay of the quantization error minx∈Opq(N) ‖X −

X̂c⊗xN ‖2 as N →∞ with, sometimes, some numerical estimates for finite N .
Thus for the fractional Brownian motion on the unit interval Wα = (Wα

t )t∈[0,1] with Hurst constant
α, one may consider the Haar basis defined as the restriction on [0, 1] of the functions

e0 := 1, e1 := 1[0,1/2) − 1[1/2,1], e2k+` := 2k/2e1(2kt− `), ` = 0, . . . , 2k − 1, k∈ N.

Using the self-similarity property one derives that

c2k+` =
c1

2k(α+1/2)
, ` = 0, . . . , 2k − 1, k ≥ 1.

so that an appropriate choice of m, N1,. . . , Nm (as functions of N) yields

min
χ∈(L2

T
)N
‖Wα − Ŵα

χ‖2 ≤ min
x∈Opq(N)

‖Wα − Ŵα
c⊗x‖2 ≤

K ′
α

(logN)α
.

Many other quantization rates can be obtained that way (e.g. for stationary processes by considering
the trigonometric basis (eiu .)u∈R, for multi-parameter processes, etc, see [11] and [12]).

This general approach has a major drawback for numerics: although the Voronoi cells Ci(c ⊗ x)
do have a simple geometric shape given by Equation (5.23) and even if (e`)`≥1 and the coefficients
(c`)`≥1 are known, one problem remains for numerical purposes: the distribution of X̂c⊗x, i.e.

P(X̂c⊗x = (c⊗ xi)) = P
(⋂

`∈L

{
ξ` ∈ Ci`(x(`))

})
, i ∈

∏

`≥1

{1, . . . , N`}, (5.30)

cannot be computed simply in practice. The sequence (ξ`)`∈L is Gaussian, every ξ` is centered with
variance 1{c`>0} but its distribution is characterized by its covariance structure given by

Cov(ξ`, ξ`
′
) =

∫
[0,T ]2

e`(s)e`′(t)E(XsXt) ds dt

c` c`′
1{c`,c`′>0}, `, `′∈ L. (5.31)

For a generic orthonormal basis (e`)`∈L, no closed form is available for such quantities, even if an
explicit expression for the covariance function (s, t) 7→ E(XsXt) is available. For the same reason a
Monte Carlo simulation based on Expansion (5.19) cannot be implemented at a reasonable cost.

However, there is a specific orthonormal basis of L2
T

closely related to the process X for which this
problem can be overcome.
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5.3 Product quantizers of the Karhunen-Loève expansion of a Gaussian process

As soon as a Gaussian process satisfies (5.24), there is a special orthonormal basis associated to a bi-
measurable square integrable Gaussian process (Xt)t∈[0,T ]: the eigenbasis associated to its covariance
operator by

∀ f ∈ L2
T
, ΓX (f) :=

(
t 7→

∫ T

0
f(s)E(XtXs)ds

)
.

The operator ΓX is a non-negative self-adjoint compact operator which can be diagonalized in an
orthonormal basis (e

X

` )`≥1 of L2
T

:

ΓX (e
X

` ) = λ`e
X

` , `≥ 1,

where the eigenvalues make up a nonincreasing sequence (λ`)`≥1 of nonnegative real numbers. Without
loss of generality one may assume that

∀ `∈ L, λ` > 0 (5.32)

since otherwise suppX 6= H. Then, this eigenbasis is unique. In case X is in fact a finite dimensional
Gaussian vector, then, most of what follows remains true by setting d := min{` ≥ 1 / λ` > 0} and
considering L := {1, . . . , d} instead of {1, . . . , `, . . .} as an index set.

Consequently

∀ f, g∈ L2
T
, Cov

(
(f |X)L2

T
, (g|X)L2

T

)
=

∫

[0,T ]2
f(t)g(s)E(XtXs)ds dt = (f |ΓX (g))L2

T

(5.33)

so that c2
` := E((X|eX` )2

L2
T

) =
(
e
X

` |ΓX (e
X

` )
)
L2
T

= λ` (5.34)

and Cov(ξ`, ξ`
′
) =

(e
X

` |ΓX (e
X

`′ ))L2
T

c` c`′
= δ`,`′ . (5.35)

Then: – the sequence (ξ`)`≥1 is now i.i.d. with standard normal distribution (white Gaussian noise),

– the expansion (5.19) related to (e
X

` )`∈L now reads

Xt(ω)
L2
T=

∑

`≥1

√
λ` ξ

`(ω)e
X

` (t) P(dω)-a.s. (and in L2([0, T ]× Ω, dP⊗ dt)) (5.36)

This expansion is known as the Karhunen-Loève (K-L) expansion of X and the basis (e
X

` ) as the
Karhunen-Loève basis. It is the PCA of the L2

T
-valued random variable X: for every k ≥ 1,

Var(|Proj⊥
<e

X
1 ,...,e

X
k >

(X)|
L2
T

) = λ1 + · · ·+λk is maximum among all orthonormal basis of L2
T

. Another

feature of this expansion is the simultaneous orthonormality of the basis (e
X

` )`∈L and the indepen-
dence of the ξ`, ` ∈ L. This implies by a straightforward martingale argument that Equality (5.36) is
also true P(dω)-a.s. at dt-almost every time t∈ [0, T ]. Moreover, it makes the K-L expansion quite
appropriate for Monte Carlo simulation of X (once truncated).

As concerns functional quantization, the
√
λ-scaled product quantizer

√
λ⊗ x related to the K-L

basis and the resulting quantization X̂
√
λ⊗x

t of X read

√
λ⊗ x =

∑

`∈L

√
λ` x

(`)
i`
e
X

` and X̂
√
λ⊗x

t =
∑

`≥1

√
λ` ξ̂

`e
X

` (t), ξ̂` := ξ̂x
(`)
, ` ≥ 1,

(5.37)
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respectively. But the key point is that now that the distribution (5.30) of X̂
√
λ⊗x is computable since

∀ i ∈
∏

`≥1

{1, . . . , N`}, P(X̂
√
λ⊗x = (

√
λ⊗ x)i) =

∏

`≥1

P(ξ ∈ Ci`(x(`))), ξ ∼ N (0; 1). (5.38)

(Keep in mind that (P(ξ ∈ Ci(x(`))))i=1,...,N` is simply the distribution of ξ̂x
(`)

, ξ ∼ N (0; 1)). These
quantities which are easy to compute using (3.5) are already kept off line up to N` = 1 000 (available
at the above URL, see paragraph 3.2). For our purpose here, no values for N` up to 30 are sufficient.

In some sense we moved from the numerical tractability of the distribution of the sequence (ξ`)`∈L
in a given orthonormal basis to the determination of the K-L basis of a Gaussian process. This
question cannot be solved numerically in full generality either; however for many important processes
as illustrated below this basis can be made explicit. Before passing to these fundamental examples,
let us mention two specific features of the K-L expansion for quantization. First, the lower bounds
for the quantization rates are based on some entropy estimates derived from the rate of convergence
of the eigenvalues λ` to 0 (see [11] and [12]). The second one is that, among all orthonormal basis of
L2
T

the K-L one preserves the stationarity in the following sense.

Proposition 4 Let x(`), ` ∈ L, denote a family of stationary N`-quantizers of the normal distribution
such that N`=1 for every large enough ` (i.e. x(`) = 0). Then the

√
λ-scaled product quantizer

√
λ⊗x

is a stationary quantizer for X.

Proof (See also [5], Lemma 4.8). The ξ` being independent, the ξ̂` are independent too. Furthermore,
it is obvious from (5.37) and the identity ξ̂` = (X̂

√
λ⊗x|eX` )L2

T
/
√
λ`, `∈ L, that σ(X̂

√
λ⊗x) = σ(ξ̂`, `∈

L). Consequently

E(X|X̂
√
λ⊗x) =

∑

`

√
λ`E(ξ`| ξ̂`, `∈ L) e

X

` =
∑

`

√
λ`E(ξ`| ξ̂`, ξ̂`′ , `′∈ L, `′ 6= `) e

X

`

=
∑

`

√
λ`E(ξ`| ξ̂`)eX` =

∑

`

√
λ` ξ̂

`e
X

` by the stationarity of x(`) for ξ`,

= X̂
√
λ⊗x. ♦

Basic examples of interest: – The Brownian motion on [0, T ]. The Karhunen-Loève eigenbasis
and its eigenvalues admit a closed form given by

e
W

` (t) :=

√
2
T

sin
(
π(`− 1/2)

t

T

)
, λ` :=

(
T

π(`− 1/2)

)2

, ` ≥ 1. (5.39)

– The Brownian bridge. The Karhunen-Loève eigenbasis and its eigenvalues are given by

e
X

` (t) :=

√
2
T

sin
(
π`

t

T

)
, λ` :=

(
T

π `

)2

` ≥ 1. (5.40)

5.4 Numerical optimization when the K-L expansion is explicit

5.4.1 The “blind” optimization procedure

Assume that closed forms are available for both the eigensystem (λ`, e
X

` )`≥1 of a Gaussian process X
as it is the case for both Brownian motion and Brownian bridge as emphasized above.

Then, we are in the position to solve numerically the optimization problem appearing at the right
hand side of (5.22) for every N ∈ {1, . . . , Nmax} (so far, we reached Nmax := 11 519) and then to
compute the “companion parameters” of the optimal or record scaled product quantizer

√
λ ⊗ xNrec
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(distribution of X̂
√
λ⊗xNrec , quantization error QX

N
(
√
λ ⊗ xNrec)). The reason for implementing such a

blind optimization procedure is that the values for N` and mN given in (5.27) (once set c` =
√
λ`) are

only asymptotically optimal. For numerical applications, we are interested in this optimization for
small values of N . This “blind” optimization procedure is carried out in two steps.

Phase 1(Optimization phase at fixed N): Producing for every N a
√
λ-scaled product N -

quantizer
√
λ ⊗ xopt which is optimal in the sense that it induces the lowest quadratic quantization

error among all scaled product quantizers of size exactly N .
The components x(`) of the product quantizer x are optimal quantizers of the normal distribution

N (0; 1). So, to compute
√
λ⊗xopt, the distribution of X̂

√
λ⊗xopt and the induced quadratic quantization

error QX
N

(
√
λ ⊗ xopt), we simply need to use the “library” storing the optimal N`-quantizers x(∗,N`),

their distributions (P(ξ ∈ Ci(x(∗,N`))))1≤i≤N` and the quadratic quantization errors QN (0;1)
N`

(x(∗,N`)).
The computation of the quadratic quantization error is based on formula (3.10) for distortion. In
practice, N` ≤ 100 is enough for values of N as high as 106 since decompositions involving not enough
factors will clearly be far from optimality (this heuristic rule is based on the theoretical formula (5.27)
below for the optimal values of N` as N goes to infinity).

Phase 2 (Record Selection phase): Storing for every N ∈ {1, . . . , Nmax},
– the size Nrec := Nrec(N)∈ {1, . . . , N} which produces the lowest quadratic quantization error,
– the optimal decomposition Nrec = N rec

1 × · · · ×N rec
` × · · · ×N rec

`rec
, (with N rec

` ≥ 2),

– the product quantizer xNrec := xNrec
opt (xNrec =

∏
`≥1 x

(`), x(`) optimal N rec
` -quantizer of N (0; 1), ` ≥

1) so that the
√
λ-scaled product Nrec-quantizer

√
λ⊗xrec solves the optimization problem at level N .

– the distribution of X̂
√
λ⊗xNrec (using formula (5.38)),

– the corresponding quantization error (and distortion) using (5.20) (setting c = λ).

Table 1 below provides the first three quantities for some values of N , namely N = 1, 10,
100, 1 000, 10 000 and 11 519 (the full record table, the record quantizer list including the distributions
are available at the same URL up to 11 519). Figures 1, 2, 3 show the scaled product quantizers of
the Brownian motion on [0, 1] for N = 10, 48 and for the “record value” of N = 100 that is Nrec = 96.

N Nrec Quant. Error Opti. Decomp.
1 1 0.7071 1
10 10 0.3138 5 – 2
100 96 0.2264 12 – 4 – 2

1 000 966 0.1881 23 – 7 – 3 – 2
10 000 9 984 0.1626 26 – 8 – 4 – 3 – 2 – 2
11 519 11 232 0.1617 26 – 9 – 4 – 3 – 2 – 2

Table 1 Brownian motion: Some typical “record” values for numerical implementations

Fig.2 shows the graphs of both N 7→ DW
Nrec

(
√
λ ⊗ xNrec) and N 7→ DW

N (
√
λ ⊗ xopt) for N ∈

{1, . . . , 1 000}. Fig.3 depicts log(N) 7→ (DW
Nrec

(
√
λ ⊗ xNrec))

−1 which emphasizes logN behaviour of
the distortion. The coefficients obtained by linear regression yield

1

DW
Nrec

(
√
λ⊗ xNrec)

≈ 4 logN + 2 i.e. DW
Nrec

(
√
λ⊗ xNrec) ≈

0.25
logN + 0.5

, 1 ≤ N ≤ 10 000.

The lower and upper bounds provided by (2.1) and (5.29) respectively are on [0, 1],

1
π2

22

22−1(2− 1)
=

2
π2
≈ 0.2026 < 0.25 < 1.2040 ≈ 1

π2
(1 + 2π

√
3). (5.41)
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This points out that optimal scalar quantizers are nearly globally optimal for Brownian Motion (at
least within this range of values for N). For higher values of N one may give up the blind optimization
procedure and rely on the asymptotic optimal sizes given by (5.27). Proposition 3 that is

One may even speed up this approach by using the asymptotic estimate mN ∼ log(N) for large
values of N (since b = 2 for the Brownian Motion). One may note that in fact

N` ≈
√

λ`
λ`N

, ` = 1, . . . ,mN .

In practice, the product N ′ = N1 × · · · × N`N can be significantly lower than N , especially when N
is not too large, owing to the truncation effect. So a more efficient choice is to consider the upper
truncation instead of the regular integral value in (5.27) although this time N ′ can be . . . significantly
larger than N . Furthermore, note that N ′ is a priori not a record integer Nrec and that this very
decomposition can be sub-optimal for N ′. Table 2 below gives some examples of such decompositions
corresponding to values of N beyond the shortcoming of the optimization procedure at Nmax = 11 519:
thus N = 13 500 in Table 2 provides worse results than N = 11 232 in Table 1.

N Quant. Error Decomp
13 500 0.16217 25 – 9 – 5 – 3
40 500 0.15362 25 – 9 – 5 – 4 – 3 – 3
104 400 0.14811 29 – 10 – 6 – 5 – 4 – 3
313 200 0.14140 29 – 10 – 6 – 5 – 4 – 3 – 3

Table 2. Brownian motion: some decompositions for higher values of N

5.4.2 Application to computable rate optimal quantizers for the antiderivative of the
Brownian motion

We will illustrate in this short paragraph how rate optimal product quantizers of the Brownian motion
can produce some (non Voronoi) rate optimal quantizers of its antiderivative. This process is involved
in the control variate variable of the Asian Call (see paragraph 7.1).

First note that one can integrate a Karhunen-Loève expansion of the Brownian motion. In fact,
h 7→ ∫ .

0 h(s)ds being a Lipschitz continuous function from L2
T

into (C([0, T ]), ‖ . ‖sup), one has, in
L2

(C([0,T ]),‖.‖sup)(P) (and P-a.s. in L2
T

):

∫ t

0
Wsds

L2
T=

∑

`≥1

λ` ξ
`

√
2
T

(
1− cos

(
t√
λ`

))
with λ` :=

(
T

π(`− 1/2)

)2

, ` ≥ 1, (5.42)

= 2

√
2
T

∑

`≥1

λ` ξ
` sin2

(
t

2
√
λ`

)
(5.43)

where: – (ξ`)`≥1 is i.i.d., normally distributed (and comes from the Karhunen-Loève extension of W ),

– the sequence
(
t 7→

√
2
T

(
1− cos

(
t√
λ`

)))
`≥1

is not orthonormal in L2
T

.

In fact, the expansion (5.42) converges P-a.s. and in L1(P), uniformly in t∈ [0, T ], since

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

`≥1

λ` ξ
` sin2

(
t

2
√
λ`

)∣∣∣∣∣∣
≤

∑

`≥1

λ`|ξ`|.
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The series on the right hand of the inequality lies in L1(P) since
∑

`≥1 λ` < +∞ and ξ` ∼ ξ1∈ L1(P).
The same holds for the integrated product quantizer expansion, that is

∫̃ .

0
Wsds :=

∫ .

0
Ŵ
√
λ⊗x

s ds = 2

√
2
T

∑

`≥1

λ` ξ̂
` sin2

(
t

2
√
λ`

)
(5.44)

since, by stationarity of the quantizer x(`) of ξ`, E|ξ̂`| ≤ E|ξ`| for every ` ≥ 1 (note that the P-a.s.

convergence is trivial since ξ̂ = 0 for ` large enough). One has to be aware that ˜∫ .
0 Wsds is neither

a product nor a Voronoi quantization since it is defined on the Voronoi tessellation of the Brownian
motion. For this very reason it is easy to compute and furthermore it satisfies a kind of stationary

equation: one checks that σ( ˜
∫ .

0 Wsds) = σ(Ŵ ) = σ(ξ`, ` ≥ 1) so that, h 7→ ∫ .
0 h(s)ds being continuous

and linear on L2
T

,

E
(∫ .

0
Wsds |

∫̃ .

0
Wsds

)
= E

(∫ .

0
Wsds | Ŵ

)
=

∫̃ .

0
Wsds.

Proposition 5 Let xN ∈ Opq(N), N ≥ 1. Set ˜∫ .
0Wsds

N

:= ˜∫ .
0Wsds

√
λ⊗xN

.
(a) The quadratic quantization error is given by

∥∥∥∥∥∥

∫ .

0
Wsds−

∫̃ .

0
Wsds

N
∥∥∥∥∥∥

2

2

= 3
∑

`≥1

λ2
`

(
1− (−1)`−1 4

√
λ`

3T

)
min
RN`

DN (0;1)
N`

. (5.45)

If (
√
λ⊗ xN )N≥1 is rate optimal for W then it is rate optimal for its antiderivative in the sense that

∥∥∥∥∥∥

∫ .

0
Wsds−

˜∫ .

0
Wsds

N
∥∥∥∥∥∥

2

2

= O((logN)−
3
2 ).

(b) The L1(P)-mean ‖ . ‖sup-quantization error satisfies

E


 sup
t∈[0,T ]

∣∣∣∣∣∣

∫ t

0
Wsds−

˜∫ t

0
Wsds

N
∣∣∣∣∣∣


 ≤ 2

√
2
T

∑

`≥1

λ` min
RN`

√
D
N (0;1)
N`

. (5.46)

Proof: (a) Temporarily set E`(t) = 1− cos
(

t√
λ`

)
. Then |E`|2

L2
T

= T
(

3
2 − 2(−1)`−1

√
λ`
T

)

and

∣∣∣∣∣∣

∫ .

0
Wsds−

∫̃ .

0
Wsds

N
∣∣∣∣∣∣

2

L2
T

=
2
T

∑

`,m≥1

λ`λmE(ξ` − ξ̂`)(ξm − ξ̂m) (E` |Em)L2
T

so that

∥∥∥∥∥∥

∫ .

0
Wsds−

∫̃ .

0
Wsds

N
∥∥∥∥∥∥

2

2

=
2
T

∑

`≥1

λ2
` E(ξ` − ξ̂`)2|E`|2

L2
T

.

This follows from the fact that the random variables ξ`− ξ̂`, ` ≥ 1, are independent and centered since
E(ξ` − ξ̂`) = E(E(ξ`|ξ̂`) − ξ̂`) = 0. The rate of decay follows from the optimal size allocation in the
right hand side of Inequality (5.46) which is standard (see [11]).
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(b) easily follows from

sup
t∈[0,T ]

∣∣∣∣∣∣

∫ t

0
Wsds−

˜∫ t

0
Wsds

N
∣∣∣∣∣∣

= 2

√
2
T

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

`≥1

λ`(ξ` − ξ̂`) sin2

(
t

2
√
λ`

)∣∣∣∣∣∣
≤ 2

√
2
T

∑

`≥1

λ` |ξ` − ξ̂`|. ♦

Remarks. • One derives similarly from item (b) that the lowest L1(P)-mean L∞(dt)-quantization
error goes to zero at a O

(
(log(N))−1

)
-rate.

• Some rates can be obtained for higher iterated integrals (and the Brownian bridge too).

6 The Romberg log-extrapolation

The aim of this paragraph is to propose a Romberg like extrapolation method to speed up the con-
vergence of the quantization method. What follows is partially heuristic in that it relies on some
claims on functional quantization which are still conjectures. For these reasons, we will focus on the
Brownian motion and will not look for optimal assumptions.

Let Ψ : (L2
T
, | . |

L2
T

) → R be a three times differentiable functional such that D2Ψ and D3Ψ are

bounded. Let (χN )N≥1 denote a sequence of stationary rate optimal quantizers of the Brownian
motion W (e.g. χN =

√
λ⊗ xNopt in the K-L basis) and let ŴN denote their related quantizations.

It follows from the Taylor formula and Proposition 4 (stationarity property of ŴN ) that one can
easily find ζ ∈ L2

T
such that

E(Ψ(W )) = E(Ψ(ŴN )) +
1
2
E(D2Ψ(ŴN ).(W − ŴN )⊗2) +

1
6
E(D3Ψ(ζ).(W − ŴN )⊗3)

since E(DΨ(ŴN ).(W −ŴN )) = E(DΨ(ŴN ).(W −E(W | ŴN ))) = 0. Then, D2Ψ being bounded and
χN -rate optimal,

E(D2Ψ(ŴN ).(W − ŴN )⊗2) = O
(
(logN)−1

)
,

but recent (finite dimensional) results (see [1], Theorem 6) suggest that, more precisely,

E(D2Ψ(ŴN ).(W − ŴN )⊗2) = 2κ(logN)−1 + o((logN)−1) as N →∞

where κ>0 is real constant. Moreover, still relying on [1] (Proposition 1), one shows that

E|W − ŴN |3
L2
T

= O((logN)−
3
2

+η), ∀ η > 0.

Then, a Romberg like speeding up procedure can be implemented as follows: one computes E(Ψ(ŴM ))
and E(Ψ(ŴN )), M < N , M ³ N r, r∈ (0, 1). Solving the linear system

E(Ψ(W )) = E(Ψ(ŴM))+
κ

logM
+O((logM)−

3
2

+η), E(Ψ(W )) = E(Ψ(ŴN))+
κ

logN
+O((logN)−

3
2

+η)

yields the announced log-extrapolation formula

E(Ψ(W )) =
logN×E(Ψ(ŴN ))− logM×E(Ψ(ŴM ))

logN − logM
+O

(
(logN)−

3
2

+η
)
, ∀ η > 0. (6.47)

So we passed from a O((logN)−1)-rate to an (at least) O
(

(logN)−
3
2

+η
)

-rate.
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7 Pricing derivatives using functional quantization

7.1 Pricing Asian options in a Black-Scholes model

One considers a Black-Scholes dynamics with maturity T ,

dSt = St (rdt+ σ dWt), S0 = s0 > 0 (r > 0).

The premium of an Asian (European) Call option with strike price K is given by

Cas(s0,K) := e−rTE
((

1
T

∫ T

0
Stdt−K

)

+

)
= e−rTE

((
s0

1
T

∫ T

0
eσWt+(r−σ2/2)tdt−K

)

+

)

where x := max(x, 0) denotes the nonnegative part of the real number x. We want to approximate
Cas(s0,K) using quadratic functional quantization.

(a) “Crude” functional quantization method: One simply computes

Ĉas(s0,K, χ
N ) := e−rTE

((
s0

1
T

∫ T

0
eσ

cWN
t +(r−σ2/2)tdt−K

)

+

)

where the process (Ŵ
N

t )t∈[0,T ] denotes the quantization of the Brownian motion W by the product
quantizer χN :=

√
λ ⊗ xNrec which induces the lowest quantization error among all (Karhunen-Loève)

product quantizers having at most N -components. The functional

ω 7→
(
s0

T

∫ T

0
eσω(t)+(r−σ2/2)tdt−K

)

+

is convex, consequently combining (4.16) and the stationarity of (Ŵt)t∈[0,T ]

Ĉas(s0,K, χ
N ) ≤ Cas(s0,K). (7.48)

This bound can be improved by considering any
√
λ-scaled product quantizer

√
λ ⊗ x of W , with

x∈ Opq(N). Then, with obvious notations

sup
x∈Opq(N)

Ĉas(s0,K,
√
λ⊗x) ≤ Cas(s0,K).

Furthermore, it follows from (4.13) and (4.18) that, for any x∈ Opq(N),

0 ≤ Cas(s0,K)− Ĉas(s0,K,
√
λ⊗x) ≤ 2 s0σe

−rT+(r−σ2

2
)+T E(| exp (σW )|

L2
T

) ‖W − Ŵ
√
λ⊗x‖2

≤ 2 s0e
−(r∧σ2

2
)T (eσ

2T − 1)
1
2 ‖W − Ŵ

√
λ⊗x‖2 .

In particular

0 ≤ Cas(s0,K)− Ĉas(s0,K, χ
N ) ≤ 2 s0e

−(r∧σ2

2
)T (eσ

2T − 1)
1
2 min
x∈Opq(N)

‖W − Ŵ
√
λ⊗x‖2 = O((logN)−

1
2 )

as N →∞. One also has, using (4.17), that

|E ŜχN
T
− EST | = o((logN)−

1−ε
2 ) as N → +∞ for every ε > 0.

(b) Functional quantization and geometric control variate variable: The standard
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Kemna-Vorst control variate variable for Asian options is “suggested” by Jensen Inequality
(
s0

1
T

∫ T

0
eσWt+(r−σ2/2)tdt−K

)

+

≥
(
s0e

1
T

R T
0 (σWt+(r−σ2/2)t)dt −K

)
+

=
(
s0e

(r−σ2

2
)T

2
+ σ
T

R T
0 Wtdt −K

)

+

.

The contingent claim on the right hand side of the inequality is called a geometric Asian Call since it is
a geometric mean (see also [8]). Using that 1

T

∫ T
0 Wtdt ∼ N

(
0;T 2/3

)
, one shows that the Black-Scholes

premium Cgeo(s0,K) for the geometric Asian Call is given by

Cgeo(s0,K) = CBS

(
s0 e
−(σ

2

12
+ r

2
)T ,K, r, σ/

√
3, t

)

where CBS(x, y, r, σ, θ) stands for the usual Black & Scholes formula for the Call option where x
denotes the spot, y the strike, r the interest rate, σ the constant volatility and θ the distance to
maturity. Let us note that the former price can be computed by quantization by

Ĉgeo(s0,K, χ
N ) = e−rTE

((
s0 e

(r−σ2

2
)T

2
+ σ
T

˜R T
0 Wtdt

N

−K
)

+

)

where ˜∫ T
0 Wtdt

N

is given by (5.44). So, one can set (with cv for Control Variate)

Ĉcvas(s0,K, χ
N ) = e−rTE

((
s0

T

∫ T

0
eσ

cWN

t +(r−σ2/2)tdt−K
)

+

−
(
s0e

(r−σ2

2
)T

2
+ σ
T

˜R T
0 Wtdt

N

−K
)

+

)
+Cgeo(s0,K).

Let us note that we use here the term “control variate” in reference to the variance reduction in a Monte
Carlo method. The geometric Asian is not used here in a Monte Carlo framework and the expectation
of the previous equation is computed by quantization. However, we will see on the numerical results

that it seems to play the same rôle as a control variate. Note also that the computation of ˜∫ T
0 Wtdt

N

is based on (5.44) and needs no time discretization of the integral. One defines similarly a geometric
Asian Put which can be used as a control variate for the Asian Put (note that it is an upper-bound
of the regular Asian put).

(c) Functional quantization and parity: It is also possible to use the following Call-Put parity

Cas(s0,K)− Pas(s0,K) = e−rT s0
1
T

∫ T

0
E(eσWt+(r−σ2/2)t)dt−Ke−rT = s0

1− e−rT
rT

−Ke−rT

to compute the Call premium by parity (par) i.e.

Ĉparas (s0,K, χ
N ) = s0

1− e−rT
rT

−Ke−rT + P̂as(s0,K, χ
N ). (7.49)

(Note that the Put contingent claim is not a convex functional of the generic Brownian path so that
no inequality such as (7.48) holds for Ĉparas (s0,K, χ

N )). The main interest is that P̂as(s0,K, χ
N ) is

often lower than Ĉas(s0,K, χ
N ) so that the same relative error on the Put has less impact.

Numerical experiments and results: As a first step, four time discretization methods have been
tested to compute the integral

∫ T
0 s0 exp (σŴt − σ2t

2 ) dt. Two are second order methods: the trapezoid
method, the midpoint method (corresponding to the optimal quantization of the uniform distribution
over the interval [0, T ]) i.e.

∫ T

0
g(t)dt ≈ 1

n

n∑

k=1

g(tk), tk =
(2k − 1)

2n
T, k = 1, . . . , n.
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and two are fourth order methods: the fourth-order Runge-Kuta method and the fourth order midpoint
method, based on the introduction of the (weighted) derivatives of g at points tk.

We specified numerical values for the parameters following the tests carried out in [10], i.e.

s0 = K = 100, T = 1, r = 10%, σ = 20%.

The reference values for the Asian Call and Put are, still following [10]

Asian Call Premium = 7.041 Theoretical Asian Put Premium = 2.362

The best compromise between complexity and efficiency is the second order midpoint method (see
Figure 4). To reach this conclusion we let n become large for two values of N (using the crude
functional quantization method (FQ) for the Asian Call). Let us note that the “limiting value” (when
the time discretization step 1/n goes to 0) looks far the true value (≈ 7.041) with all the four methods.
This comes from the scale specification since our aim in this first experiment is exclusively to compare
the different time integration methods. In fact, it will be seen below that, for a given couple (n,N) of
time-space discretization parameters, best prices are usually obtained using the Call-Put parity.

Now, we come to testing the FQ method itself. Asian option premia are computed using N = 96
(Table 3), N = 966 (Table 4) and N = 9 984 (Table 5). Time integration is performed by the midpoint
scheme with n = 20. For each values of N , the second row displays 2× StdN where StdN denotes the
relative standard deviation of the corresponding Monte Carlo N -estimator which defines its 95.5%-
confidence interval. This estimator is based on the simulation of the K-L expansion (5.36) of the
Brownian motion (truncated at ` = 100). The third row shows the decomposition producing the
lowest distortion and its value. Then, the successive rows give the results for different factorizations
of N . The third (resp. fourth) column gives the Call premium Ĉas by “crude” FQ (resp. Ĉcvas with
the Kemna-Vorst control variate). The fifth (resp. sixth) one displays the Put premium P̂as obtained
by “crude” FQ (resp. P̂ cvas with the control variate). The seventh (resp. eighth) one displays the Call
premium obtained using the Call-Put parity relation (7.49) and the fifth column (resp. using (7.49)
and the sixth column).

The results in Tables 3, 4, 5 are in a descending order with respect to the Call premia obtained by
crude FQ (column 3). This is justified by the fact that this method always produces a lower bound
for the premium (although this sorting is unrealistic in practice).

For both the decomposition with the lowest distortion (?) – the one of interest for applications –
and the one with the highest premium Ĉas for the Call (fourth row of every table), the relative error
is added between brackets.

At this stage, the tables suggest that the most performing method to compute the Call (at-the-
money) is the computation by parity, from the Put computed by “crude” FQ using the “record” scaled
product quantizer χN (decomposition ?, see column 7 in Tables 3, 4, 5): the relative error is always
less than 0.2% (but one loses the lower bound property). as N ≥ 1 000. Within this range of values of
N (N ≤ 10 000) the computation is instantaneous. Let us note that the Kemna-Vorst control variate
variable (columns 4, 6, 8) seems globally less efficient than in the Monte Carlo method but give errors
which are of the same order than the relative standart deviations of the Monte-Carlo estimators based
on K-L expansion (second line) at least for N = 96 and N = 966. This tell us that this control variate
variable seems to play the same rôle both in the functional quantization and Monte Carlo method
when N is small. When N becomes larger, this control variate method seems more efficient in the
Monte Carlo method (based on the K-L expansion (5.36)).
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N = 96 n bCas bCcvas bPas bP cvas bCparas
bCpar&cvas Decomposition

2× Std96 20 (24.49%) (1.14%) (37.11%) (1.33%) (12.45%) (0.47%) -

96 20 Best decomp(?): 96 = 12 × 4× 2, Distor? = 0.051276

96 20 6.957 6.971 2.387 2.396 7.066 7.075 24 – 4
(1.2%) (1.0%) (1.1%) (1.4%) (0.3%) (0.5%)

96 20 6.957 6.981 2.377 2.393 7.056 7.071 16 – 3 – 2
96 20 6.953 6.983 2.372 2.390 7.051 7.069 12 – 4 – 2 ?

(1.3%) (0.8%) (0.4%) (1.2%) (0.1%) (0.4%)
96 20 6.952 6.969 2.386 2.399 7.0651 7.078 32 – 3
96 20 6.951 6.975 2.379 2.396 7.0582 7.074 16 – 6
96 20 6.950 6.972 2.381 2.396 7.0595 7.075 24 – 2 – 2
96 · · · · · · · · · etc · · · · · · · · · · · ·

Table 3. Asian Call approximations for N = 96

N = 966 n bCas bCcvas bPas bP cvas bCparas
bCpar&cvas Decomposition

2× Std966 20 (7.72%) (0.36%) (11.70%) (0.42%) (3.93%) (0.14%) -

966 20 Best decomp(?): 966 = 23 × 7 × 3 × 2, Distor? = 0.035195

966 20 6.988 6.999 2.377 2.383 7.055 7.062 23 – 7 – 3 – 2 ?
(0.7%) (0.5%) (0.3%) (0.3%) (0.2%) (0.3%)

966 20 6.987 6.992 2.382 2.386 7.061 7.065 46 – 7 – 3
966 20 6.984 6.995 2.378 2.385 7.057 7.064 23 – 7 – 6
966 20 6.984 6.989 2.384 2.388 7.063 7.067 69 – 7 – 2
966 20 6.983 6.994 2.379 2.386 7.058 7.065 23 – 14 – 3
966 20 6.980 6.990 2.380 2.387 7.059 7.066 23 – 21 – 2
966 20 6.971 6.977 2.388 2.393 7.067 7.072 69 – 14
966 20 6.970 6.978 2.388 2.393 7.066 7.072 46 – 21
966 20 6.970 6.978 2.387 2.393 7.066 7.072 42 – 23

Table 4. Asian Call approximations for N = 966

N n bCas bCcvas bPas bP cvas bCparas
bCpar&cvas Decomposition

2× Std9984 20 (2.40%) (0.11%) (3.64%) (0.13%) (1.22%) (0.04%) -

9 984 20 Best decomp.(?): 9 984 = 26×8×4×3×2×2, Distor? = 0.026435

9 984 20 7.004 7.007 2.377 2.380 7.056 7.058 52 – 8 – 4 – 3 – 2
(0.5%) (0.4%) (0.6%) (0.7%) (0.2%) (0.2%)

9 984 20 7.003 7.008 2.376 2.379 7.055 7.058 39 – 8 – 4 – 2 – 2 – 2
9 984 20 7.003 7.008 2.376 2.379 7.055 7.058 39 – 8 – 4 – 4 – 2
9 984 20 7.003 7.006 2.378 2.380 7.057 7.059 52 – 12 – 4 – 2 – 2
9 984 20 7.003 7.007 2.377 2.380 7.056 7.059 52 – 8 – 6 – 2 – 2
9 984 20 7.003 7.006 2.378 2.380 7.056 7.059 48 – 13 – 4 – 2 – 2
9 984 · · · · · · · · · etc · · · · · · · · · · · ·
9 984 20 7.002 7.005 2.378 2.380 7.057 7.059 52 – 16 – 3 – 2 – 2
9 984 20 7.002 7.010 2.373 2.378 7.052 7.057 26 – 8 – 4 – 3 – 2 – 2 ?

(0.5%) (0.5%) (0.4%) (0.3%) (0.1%) (0.3%)
9 984 · · · · · · · · · etc · · · · · · · · · · · ·

Table 5. Asian Call approximations for N = 9 984

Further values reported in Table 6 below were obtained using the N` given by (5.27) (in fact their
upper truncation) so they are a priori not even optimal among all the decompositions of their product
N = N1 · · ·Nm

N
. This confirms that the convergence as N grows is slow. The quite good results
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N n bCas bCcvas bPas bP cvas bCparas
bCpar&cvas Decomposition

13 500 20 7.002 7.010 2.373 2.378 7.052 7.057 25 – 9 – 5 – 4 – 3
(0.5%) (0.4%) (0.5%) (0.7%) (0.06%) (0.2%)

40 500 20 7.005 7.013 2.372 2.377 7.050 7.055 25 – 9 – 5 – 4 – 3 – 3
(0.5%) (0.4%) (0.5%) (0.7%) (0.03%) (0.2%)

104 400 20 7.009 7.015 2.372 2.376 7.051 7.055 29 – 10 – 6 – 5 – 4 – 3
(0.5%) (0.4%) (0.5%) (0.7%) (0.04%) (0.2%)

313 200 20 7.012 7.018 2.371 2.375 7.050 7.054 29 – 10 – 6 – 5 – 4 – 3 – 3
(0.4%) (0.3%) (0.4%) (0.5%) (0.03%) (0.2%)

Table 6. Asian Call approximations for larger values of N

obtained for small values of N is an important asset of functional quantization.
The Romberg log-extrapolation. Although the regularity assumptions are clearly not fulfilled
by the Asian payoff, we tested the Romberg log-extrapolation (6.47) and reported in Table 7 below
the results obtained with N = 966 and M = 9 984 by using the record product quantizers. It turns
out that this drastically improves all the approaches in such a way which seems not to depend on the
approach itself (“crude” Functional Quantization, control variate variable, by parity, and so on). This
suggests that a functional quantization approach including a Romberg log-extrapolation provides an
extremently efficient numerical method for this problem.

Romberg[966-9984] n bCas bCcvas bPas bP cvas bCparas
bCpar&cvas

20 7.041 7.041 2.364 2.364 7.042 7.042
(0.00%) (0.00%) (0.08%) (0.08%) (0.01%) (0.01%)

Table 7. Romberg[966-9984] log-extrapolation using record product quantizers

7.2 Pricing vanilla options in a Heston model

In this paragraph, we consider a Heston stochastic volatility model for the dynamics of an asset price
process:

dSt = St(r dt+
√
vt)dW 1

t , S0 = s0 > 0, (7.50)

dvt = k(a− vt)dt+ ϑ
√
vtdW

2
t v0 > 0, with <W 1,W 2>t= ρ t, ρ∈ [−1, 1],

where r denotes the (constant) interest rate and (vt) denotes the square stochastic volatility process
and a, k, ϑ are non-negative real parameters. This model was introduced by Heston in 1993 (see [6]).
The equation for the (vt) has a unique (strong) pathwise continuous solution living in R+ (see e.g. [9]
and [7], p.235). Thereis a semi-closed form for vanilla European Call and Put options based on some
integrals of the characteristic function for which a closed form is available (see [9]). We will use it as
a reference for our experiments. Our aim is to price by functional quantization (at time 0) European
Calls (and Puts) on the underlying asset (St) with strike price K and maturity T > 0, i.e.

CallHest(S0,K, r) = e−rTE((ST −K)+) and PutHest(S0,K, r) = e−rTE((K − ST )+).

As a first step, we follow an approach which works for more general dynamics of the stochastic
volatility. First we project W 1 onto W 2 so that

W 1
t = ρW 2

t +
√

1− ρ2 W̃ 1
t ,

with W̃ 1 a standard Brownian motion independent of W 2. Itô calculus shows that

St = s0 exp
(
−ρ

2

2
v̄t t+ ρ

∫ t

0

√
vsdW

2
s

)
exp

(
(r − 1− ρ2

2
v̄t)t+

√
1− ρ2

∫ t

0

√
vsdW̃

1
s

)
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with v̄t = 1
t

∫ t
0vsds. Consequently, using the independence of W̃ 1 and W 2, one derives that

CallHest(S0,K, T, v0, r) = E
(
e−rTE

(
(ST −K)+ | FW 2

T

))
= E

(
CallBS

(
S

(v)
0 ,K, T,

(
(1− ρ2)v̄T

) 1
2 , r

))

with S
(v)
0 = s0 exp

(
−ρ

2

2
v̄T T + ρ

∫ T

0

√
vsdW

2
s

)

where CallBS(s0,K, T, σ, r) denotes the regular (r, σ, T )-Black-Scholes model premium function. Then
the specific dynamics of (vt) yields(1)

∫ t

0

√
vsdW

2
s =

vt − v0 − kat+ k
∫ t

0 vsds

ϑ

so that finally

CallHest(S0,K, T, v0, r) = EΦc(ρ(vT − v0), v̄T ) (7.51)

with Φc(v, v̄) = CallBS

(
s0 exp

(
−ρ

(
ka

ϑ
− (

k

ϑ
− ρ

2
)v̄

)
T +

v

ϑ

)
,K, T,

(
(1− ρ2)v̄

) 1
2 , r

)
.

An analogous formula holds for PutHest(S0,K, T, v0, r) by replacing mutatis mutandis CallBS by PutBS
in (7.51). Note that when ρ = 0, (7.51) only depends on the L2-continuous linear functional v̄T .

7.2.1 The quantization procedure

A first way to numerically quantize (vt) is to follow – at least formally – the approach developed
in [13] to quantize Brownian diffusions with Lipschitz continuous coefficients. One considers again the
sequence χN :=

√
λ ⊗ xNrec, N ≥ 1, of record product quantizers of the standard Brownian motion

(which are explicit C∞ functions). For convenience, we will consider now the “record” subsequence
i.e. assume that N=Nrec.

Assume for a while that (vt) is a generic Brownian diffusion

dvt = b(vt)dt+ ϑ(vt)dW 2
t (ϑ ≥ 0)

Some quantizers for (vt) can be designed from the sequence (χN ) as follows: one introduces the
Lamperti transform of the diffusion defined by L(v) :=

∫ v
0

dv
ϑ(v) (assumed to be real-valued and in-

creasing). Then, Ut := L(vt) satisfies is solution of the SDE

dUt = β(Ut)dt+ dWt

with a linear Brownian perturbation term. Then, one defines, a N -quantizer of (vt) by setting

yNi (t) = L−1(uNi (t)) where uNi (t) = L(v0) +
∫ t

0
β(uNi (t))dt+ χNi (t), i = 1, . . . , N.

Elementary computations show that yN = (yNi )1≤i≤N is solution of the system of integral equations

yNi (t) = v0 +
∫ t

0
[b(yNi (s))− 1

2
ϑϑ′(yNi (s))]ds+

∫ t

0
ϑ(yNi (s))dχNi (s), i = 1, . . . , N. (7.52)

1The key point in what follows is to express the stochastic integral
R t

0

√
vsdW

2
s as a functional of vt, v0 and an integral

functional of (vs). If the variance process follows a general diffusion process dvt = b(vt)dt + ϑ(vt)dW
2
t then one may

apply under appropriate regularity assumption, Itô’s formula to the function ϕ(v) :=
√
v/ϑ(v) to get such an expression.
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When b and ϑ are Lipschitz continuous, it is established in [13] (Theorem 1 and the following Ap-
plication) that if the sequence (χN )N≥1 is rate optimal in L2

L2
T

(Ω,P) for the Wiener measure, then

(yN )N≥1 is rate optimal in Lp
L2
T

(Ω,P) for every p∈ [1, 2). More precisely, it is established in [13] that

the sequence of non-Voronoi N -quantizations

ṽNt =
∑

1≤i≤N
yNi (t)1Ci(χN )(W

2), N ≥ 1,

satisfies ‖ |v − ṽN |
L2
T

‖p = O((logN)−1/2), p∈ [1, 2). When p = 2 a straightforward adaptation of the

proof yields a O((logN)−
1
2

+ε)-rate in Lp
L2
T

(Ω,P) for every ε > 0. The quantization ṽNt is not Voronoi

since it is defined on the Voronoi tessellation of W 2, but its distribution is given by the PW -weights
of the cells Ci(χN ) which are known by (5.38). In our non-Lipschitz setting (b(v) = −k(v − a),
ϑ(v) = ϑ

√
v), yN satisfies

yNi (t) = v0 + k

∫ t

0

(
a− ϑ2

4k
− yNi (s)

)
ds+ ϑ

∫ t

0

√
yNi (s)dχNi (s), i = 1, . . . , N. (7.53)

If a > ϑ2/(4k), any solution of (7.53) is positive and, once again a simple adaptation of the proof of
Theorem 1 in [13] shows that ‖ |v − ṽN |

L2
T

‖2 = O((logN)−
1
2

+ε). Numerical implementation of this

functional quantization method simply needs to use a discretization scheme of (7.53) like the Euler,
the midpoint or the Runge-Kuta schemes.

However, in view of investigating the efficiency of functional quantization, this approach suffers
from mixing two kinds of error: one due to the discretization scheme of the integral equation system
and one due to functional quantization. So, to be more illustrative of the numerical performances of
functional quantization, we will consider the Heston model in the case a = ϑ2

4k since, as noticed by
Rogers in [19], one may assume without loss of generality that the process (vt) is the square of a scalar
Ornstein-Uhlenbeck process

dXt = −k
2
Xtdt+

ϑ

2
dW 2

t , X0 =
√
v0. (7.54)

Having in mind that the N -quantizers χN given by (5.37) read

χNi (t) =

√
2
T

∑

`≥1

x
(N`)
i`

T

π(`− 1/2)
sin

(
π(`− 1/2)

t

T

)
, i = (i1, . . . , i`, . . .)∈

∏

`≥1

{1, . . . , N`},

where x =
∏
`≥1 x

(`)∈ Opq the solutions of the integral system (7.52) associated to X

xi(t) =
√
v0 − k

2

∫ t

0
xi(s) ds+

ϑ

2
χNi (t), i = 1, . . . , N (7.55)

are given for every i = (i1, . . . , i`, . . .)∈
∏
`≥1{1, . . . , N`} by

xNi (t) = e−kt/2
√
v0 +

ϑ

2

∑

`≥1

x
(`)
i`
c̃` ϕ`(t) with c̃` :=

T 2

(π(`− 1/2))2 + (kT/2)2

and ϕ`(t) :=

√
2
T

(
π

T
(`− 1/2) sin

(
π(`− 1/2)

t

T

)
+
k

2

(
cos

(
π(`− 1/2)

t

T

)
− e−kt/2

))
.

This time, still following [13], we have for every p∈ [1, 2),

‖X̃N −X‖p ≤ Cp,k,ϑ,T ‖Ŵ 2
χN −W 2‖2 = O

(
(logN)−

1
2

)
(7.56)
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where X̃N is the non-Voronoi quantization defined by

X̃N
t =

N∑

i=1

xNi (t)1Ci(χN )(W
2) = e−kt/2

√
v0 +

ϑ

2

∑

`≥1

ξ̂x
(`)

` c̃` ϕ`(t), t∈ [0, T ].

One designs a (non-Voronoi) N -quantization for the process (vt) by setting

ṽNt = (X̃N
t )2 =

∑

i

(xNi (t))21Ci(χN )(W
2). (7.57)

Then, one derives from (7.56) that, for every p∈ [1, 2],

‖ |ṽN − v|
L2
T

‖p = O
(

(logN)−( 1
2
−ε)

)
for every ε > 0. (7.58)

Finally, in practice, one computes CallHest(S0,K, T, r) by

CallHest(s0,K, T, v0, r) = E(Φc(ρ(vT − v0), v̄T )) (7.59)

≈ E(Φc(ρ(ṽT − v0), ṽT ))

=
∑

i

Φc

(
ρ

(
(xNi )2(T )− v0

)
, (xNi )2(T )

)
P(Ŵ 2 = χNi ) (7.60)

where the probability distribution (P(Ŵ 2 = χNi ))i is given by (5.38). When ρ 6= 0, no simple error
bound is available since we do not know the rate of pointwise quantization of vT by quadratic functional
quantizers.

When ρ = 0, v̄ 7→ Φc(0, v0, v̄) is clearly Lipschitz, so a O
(

(logN)−( 1
2
−ε)

)
-rate holds in (7.60).

Furthermore, functions σ 7→ PutBS(s0,K, T, σ, r) and its Call counterpart are infinitely differentiable
on (0,+∞) and u 7→ ūT := 1

T

∫ T
0 u(s)ds is an L2

T
-continuous linear functional. On the other hand,

the solution of the integral equation x(t) = x(0)− k
2

∫ t
0 x(s)ds+ ϑ

2 ξ(t) is also an L2
T

-continuous linear
functional functional of ξ. Consequently, one may write (7.59)

PutHest(s0,K, T, r) = E(Ψp(W 2)) and CallHest(s0,K, T, r) = E(Ψc(W 2))

where Ψp and Ψc are infinitely differentiable and Ψp is bounded with all its differentials .

7.2.2 Numerical experiments and results

All the formulæ for the Call can be straightforwardly adapted to the Put. Furthermore, the Call-Put
parity holds which is a second way to compute the Call premium which has a lower variance. We used
as a reference price the closed form available for the Heston model (approximate accuracy 10−2).

Following the results of the experiments carried out with the Asian option we compute time
integrals by the midpoint method with n = 20, i.e.

(xNi )2 =
1
T

∫ T

0
(xNi (s))2ds ≈ 1

n

n∑

k=1

(xNi (tk))2 with tk =
(2k − 1)T

2n
.

with the lowest quadratic quantization error as theywere computed The parameters of the Heston
model are specified as follows

s0 = 50, r = 0.05, T = 1, ρ = 0.5, v0 = a = 0.01, ϑ = 0.1, k = 0.25
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so that ϑ2 = 4 k a (and E vt = a, t∈ [0, T ]). In this section, we carried out our numerical experiments on
a whole vector of strike prices, K running from 44 up to 56 (with step 1) to evaluate the performances
of the method for in-the-money, at-the-money and out-of-the-money options. The premia of these
Heston Call options were computed using:

– formula (7.51) (“crude” FQ integration),
– the Call-Put parity equation combined with Formula (7.51) for Put options.

We implemented (using MATLAB on a G4 (800 Mhz) Apple computer):
– five sizes of N -quantizations of (vt), computed by (7.57) from optimal scaled product quantizers

of the Brownian Motion, namely N = 96, 966, 9 984 (which are “record values”), 40 500, 104 400
(which are “close” to “record values”). Note that we no longer tried optimizing over Opq(N) as we
did for Asian Call.

– one Romberg log-extrapolation from the results obtained with N = 966 and M = 9984. Note
that we do not provide theoretical justification for this Romberg extrapolation when ρ 6= 0 so this is
just a numerical experiment.

– a “crude” Monte Carlo N -estimator

CallMC
Hest(s0,K, T, r) :=

1
N

∑

1≤i≤N
Ψc(W 500,(i))

where W 500,(i) are N independent copies of the K-L expansion of the Brownian motion (truncated at
` = 500). (Its relative Standard Deviation StdN is estimated from that of Ψc(W 500,(1))).

The results are reported in Figures 5, 6, 8 and in Table 7. In the first two figures are depicted
the absolute and relative errors obtained when pricing Heston Calls by functional quantization (FQ)
either directly (in Figure 5) or through the Call-Put parity equation (in Figure 6). First we do observe
a convergence behaviour as N grows. This convergence is slow as expected when N grows but fast for
small values of N , so that with N ≈ 10 000, the resulting error is less than 4 cents by the “crude” FQ
method and less than 2 cents by the parity-FQ method. Higher values of N seems of little numerical
interest, given that the computational complexity grows linearly with N .

As concerns the comparison with the “crude” Monte Carlo method, we reported in Table 8 below
(third row) 2×StdN , where StdN denotes the (relative) standard deviation of the above MC estimator
(for N = 10 000). This quantity defines its 95.5%-confidence interval. One verifies that 2× Std10 000

is slightly higher (say 10 to 30%) than the relative error induced by “crude” FQ-integration with
N = 9984 (fourth row). When N = 966 for “crude” FQ and a 1 000-Monte Carlo estimator the
relative error of the pure FQ is this time lower than Std1 000 itself (these results are not reproduced
here). A similar phenomenon occurs when using the C-P parity approach (not reproduced here) at
much lower error level (row 5). In all cases, the relative error increases when the strike price K of the
Call goes deeper out-of-the-money (although the absolute error is in fact decreasing).

In fact, the most striking fact provided by these experiments is the confirmation of the outstanding
performances of the “Romberg[966-9984]” log-extrapolation method which provides in all cases the
whole premium vector within one cent (sixth and seventh row). In fact this accuracy level holds as
long as the option is not too deeply out-of-the-money (K ≤ 58). Beyond, all methods (MC or FQ)
become deteriorate their accuracy level.

In terms of velocity, computing the whole premium vector (13 strike prices) by functional quanti-
zation for N = 966 and 9 984 including the Romberg log-extrapolation takes less than 3 seconds.

In Figure 8, the ratios Black&Scholes-Call(s0,K,
√
a)/HestonCall, FQ9984-HestonCall/HestonCall

and FQ-Romberg[966-9984]/HestonCall are depicted to emphasize on the one hand that the two
models significantly differ at the strikes where the experiments are carried out and on the other hand
to confirm that functional quantization always produces more accurate proxies of Heston Calls than
the regular Black-Scholes formula (with volatility

√
a).
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(ρ = 0.5) K 44 45 46 47 48 49 50

Heston Call(Ref) 8.18 7.26 6.36 5.49 4.68 3.93 3.26

“crude” Monte Carlo (2× Std10 000) (0.64%) (0.72%) (0.82%) (0.94%) (1.08%) (1.26%) (1.44%)

“crude” FQ 8.14 7.21 6.31 5.45 4.64 3.89 3.22
N = 9 984 (0.50%) (0.57%) (0.67%) (0.79%) (0.94%) (1.11%) (1.31%)

FQ with C-P parity 8.18 7.25 6.35 5.49 4.68 3.93 3.26
(0.01%) (0.01%) (0.04%) (0.06%) (0.08%) (0.09%) (0.08%)

log-Romberg on “crude” FQ 8.18 7.25 6.36 5.49 4.68 3.93 3.26
(966-9984) (0.01%) (0.01%) (0.01%) (0.02%) (0.03%) (0.03%) (0.04%)

log-Romberg on FQ with C-P parity 8.18 7.26 6.36 5.49 4.68 3.93 3.26
(0.01%) (0.01%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

(ρ = 0.5) K 51 52 53 54 55 56

Heston Call(Ref) 2.68 2.18 1.77 1.42 1.14 0.91

“crude” Monte Carlo (2× Std10 000) (1.66%) (1.90%) (2.14%) (2.42%) (2.70%) (3.02%)

“crude” FQ 2.64 2.14 1.73 1.39 1.11 0.89
N = 9 984 (1.53%) (1.77%) (2.01%) (2.21%) (2.38%) (2.61%)

FQ with C-P parity 2.68 2.18 1.77 1.43 1.15 0.93
(0.04%) (0.07%) (0.26%) (0.61%) (1.14%) (1.78%)

log-Romberg on “crude” FQ 2.68 2.18 1.76 1.42 1.14 0.91
(966-9984) (0.05%) (0.06%) (0.07%) (0.03%) (0.06%) (0.08)

log-Romberg on FQ with C-P parity 2.68 2.18 1.77 1.42 1.14 0.91
(0.01%) (0.01%) (0.00%) (0.05%) (0.15%) (0.20%)

Table 8. Relative Standard deviation of the 10 000 Monte Carlo estimator, Heston Call by Functional quantization
with N = 9 984, Romberg[966-9984] extrapolation and their relative error, without and with Call-Put parity.

Concerning the behaviour of the method with other sets of parameters, we can say that the smaller
the correlation ρ is (in absolute value), the more efficient functional quantization is. This is emphasized
by Figure 7 where all the parameters are unchanged except for the correlation ρ set at 0. The “record”
scaled product 9 984-quantizer produces results with an error always less than 0.5% (and 0.5 cent).
The Romberg extrapolation is stuck at the true premium – within one cent – for all strike prices. The
comparison with Monte Carlo simulations confirm the results of the correlated setting.

Other experiments not reproduced here show that, as expected, the error increases (for both FQ
and MC) as the volatility ϑ of the volatility grows, but remains quite satisfactory for N = 10 000 until
ϑ = 30 % (when a = 0.01).

Finally, note that although we focused on the stochastic volatility Heston model, what have been
proposed straightforwardly applies to the C.I.R. interest rate model.

8 FQ as a control variate variable: toward a FQ-MC method?

Numerical integration on the L2
T

-space by functional quantization performs surprisingly well on the
above first two examples. It provides quite satisfactory deterministic proxies for medium values of N ,
say N ≈ 10 000. But for less regular functional it could be interesting is to use numerical functional
quantization for small values of N , say N ≈ 100, as a control variate random variable. We outline
this approach now. Let us consider the case of a functional F (W ) of the Brownian motion W (but
what follows formally applies too any Gaussian process with an explicit K-L expansion). In order to
compute E(F (W )), one writes

E(F (W )) = E(F (ŴN )) + E
(
F (W )− F (ŴN )

)
(8.61)

28



= E(F (ŴN ))︸ ︷︷ ︸
(a)

+
1
M

M∑

m=1

F (W (m))− F (Ŵ (m)
N

)

︸ ︷︷ ︸
(b)

+RN,MF (W (m))− F (Ŵ (m)
N

)(8.62)

where (W (m))m=1,...,M are M independent copies of the standard Brownian motion and RN,M is a
remainder term defined by (8.62). Term (a) is computed by quantization and Term (b) is computed
by a Monte Carlo simulation of the K-L expansion of the Brownian motion. Then,

E|RN,M |2L2
T
≤ E|F (W )− F (ŴN )|2

M
and

√
M RN,M

L−→ N (0; ‖F (W )− F (ŴN )‖2)

as M → +∞ so that if F is simply a Lipschitz functional (like the payoff of the Asian Call) and if
ŴN , N ≥ 1, is a rate optimal sequence of scaled product quantization, then

‖F (W )− F (ŴN )‖2 ≤
[F ]LipCW

(logN)
1
2

and ‖ |RN,M |L2
T

‖2 ≤
[F ]LipCW

(M logN)
1
2

.

The simulation of ŴN from W =
∑

`≥1

√
λ` ξ

`eW` amounts to solving for every ` = 1, . . . ,mN , the clos-

est neighbour problem for the simulated Gaussian variable ξ` into the N`-quantizer set {x(`)
1 , . . . , x

(`)
N`
}.

9 Provisional remarks

To improve the efficiency of the quadratic quantization one may think to implement an infinite dimen-
sional version of the CLV Q algorithm to produce (non-product) quantizers with a lower quantization
error. The CLV Q procedure is the stochastic gradient descent derived in d-dimension from the in-
tegral representation of the distortion gradient function (see (3.3) and [15] and [18]). It is used in
d-dimension to compute good quantizers when d ≥ 2. significant and, as far as CLV Q is (see [15])
will remain at least some partial However, the bounds obtained in (5.41) show that the gain to be
expected from such a stochastic optimization remains limited.

Finally, let us mention that the Karhunen-Loève expansion of the Brownian motion W is in fact
a.s. converging in (C([0, T ]), ‖ . ‖sup). This follows from the Kolmogorov criterion and the Lévy-Ito-
Nisio Theorem (see e.g. [20] p. 104 and p.431 respectively). A.s. uniform convergence holds for the
Schauder basis as well. It suggests to evaluate the performances of scaled product quantizers for the
‖ . ‖sup-norm (theoretically but also numerically): the family of PW -a.s. ‖ . ‖sup-continuous functional
is much wider that for the ‖ . ‖2-norm and contains many usual functionals (supremum, Brownian
hitting times, stopped functionals, etc) including path-dependent options (barriers, down-and-out,
etc).
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Annex: proof of the quadrature formulæ

(a) This error bounds readily follows from |F (X)− F (X̂x)| ≤ [F ]Lip|X − X̂x|.
(b) Formula (4.13) can be derived as follows:

|F (X)− F (X̂x)| ≤ [F ]Liploc|X − X̂x|(θ(X) + θ(X̂x)).

Hence by the Schwarz inquality

E|F (X)− F (X̂x)| ≤ [F ]Liploc‖X − X̂x‖2(‖θ(X)‖2 + ‖θ(X̂x)‖2).

Now θ2 is convex since θ is and u 7→ u2 is increasing and convex on R+. Consequently

E θ2(X̂x) = E θ2(E(X|X̂x)) ≤ E(E(θ2(X)|X̂x)) = E(θ2(X))
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which completes the proof. Concerning (4.14), one starts from a Taylor expansion, where DF denotes the
differential of F and ‖ . ‖ the operator norm on L(H),

|F (X)− F (X̂x)− (DF (X̂x), X − X̂x)| ≤ sup
z∈(X, bXx)

‖DF (z)−DF (X̂x)‖|X − X̂x|

≤ [DF ]
α
|X − X̂x|1+α.

Consequently
∣∣∣EF (X)−EF (X̂x)−E

(
(DF (X̂x) |X − X̂x)

)∣∣∣ ≤ [DF ]
α
E |X−X̂x|1+α.

Now
E

(
(DF (X̂x) |X − X̂x)

)
= E

((
DF (X̂x) |E(X − X̂x|X̂x)

))
= E

((
DF (X̂x) | 0

H

))
= 0.

To establish the last quadrature formula, one notes, using the convexity of θ that

sup
z∈(X, bXx)

‖DF (z)−DF (X̂x)‖ ≤ [DF ]Liploc|X − X̂x|(θ(X̂x) + sup
z∈(X, bXx)

θ(z))

≤ [DF ]Liploc|X − X̂x|(θ(X̂x) + max(θ(X), θ(X̂x)))

≤ [DF ]Liploc|X − X̂x|(2θ(X̂x) + θ(X)).

and one concludes as above by combining Jensen and Schwarz Inequalities. ♦
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Figure 1: The Nrec-quantizer
√
λ ⊗ x for N = 10 (Nrec = 2× 5 = 10), N = 50 (Nrec = 12 × 4 = 48)

and N = 100 (Nrec = 12× 4× 2 = 96).
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Figure 5: Heston Call priced by “pure” Functional Quantization (absolute and relative er-
rors): T = 1, s0 = 50, a = 0.01, ρ = 0.5, ϑ = 0.1, k = 0.250. Strike prices
K ∈ {44, 56}. N = 96, 966, 9 984, 40 500, 104 400 and Romberg log-extrapolation[966-9984].
−−◦−−: Quantized price, −−+−−: Romberg log-extrapolated price.
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Figure 6: Heston Call priced by Functional Quantization based on Call-Put Parity equation (absolute
and relative errors): T = 1, s0 = 50, a = 0.01, ρ = 0.5, ϑ = 0.1, k = 0.250. Strike prices K∈ {44, 56},
N = 96, 966, 9 984, 40 500, 104 400 and Romberg log-extrapolation[966-9984]. −−◦−−: Quantized price,
−−+−−: Romberg log-extrapolated price.
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Figure 7: Heston Call priced by regular Functional Quantization (absolute and relative errors) in the
uncorrelated case: T = 1, s0 = 50, a = 0.01, ρ = 0, ϑ = 0.1, k = 0.250. Strike prices K ∈ {44, 56}.
N = 96, 966, 9 984, 40 500, 104 400 and Romberg log-extrapolation[966-9984]. −−◦−−: Quantized price,
−−+−−: Romberg log-extrapolated price.
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Figure 8: Is pricing a Heston Call using functional quantization (with
Romberg log-extrapolation) more performing than using Black-Scholes formula?
−−∗−−: (BS price)/(Heston price), −−◦−−: (FQ9984 Price)/(Heston price), −−+−−: (FQ
Romberg log-extrapolated price)/(Heston price).
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