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CONVERGENCE RATES FOR POINTWISE CURVE ESTIMATIONWITH A DEGENERATE DESIGNSTÉPHANE GAÏFFASLaboratoire de Probabilités et Modèles Aléatoires, U.M.R. CNRS 7599and Université Paris 7, 175 rue du Chevaleret, 75013 Parisemail: gaiffas�math.jussieu.frAbstrat. The nonparametri regression with a random design model is onsidered. Wewant to reover the regression funtion at a point x0 where the design density is vanishingor exploding. Depending on assumptions on the regression funtion loal regularity and onthe design loal behaviour, we �nd several minimax rates. These rates lie in a wide range,from slow ℓ(n) rates where ℓ is slowly varying (for instane (log n)−1) to fast n−1/2ℓ(n)rates. If the ontinuity modulus of the regression funtion at x0 an be bounded fromabove by a s-regularly varying funtion, and if the design density is β-regularly varying,we prove that the minimax onvergene rate at x0 is n−s/(1+2s+β)ℓ(n).1. Introdution1.1. The model. Suppose that we have n independent and identially distributed observa-tions (Xi, Yi) ∈ R × R from the regression model
Yi = f(Xi) + ξi, (1.1)where f : R → R, where the variables (ξi) are entered Gaussian of variane σ2 and inde-pendent of X1, . . . ,Xn (the design) and the Xi are distributed with respet to a density µ.We want to reover f at a hosen x0.For instane, if we take the variables (Xi) distributed with respet to the density

µ(x) =
β + 1

xβ+1
0 + (1 − x0)β+1

|x − x0|β1[0,1](x),for x0 ∈ [0, 1] and β > −1, then learly when β > 0 this density models a lak of informationat x0 and onversely an exploding quantity of information if −1 < β < 0. We want tounderstand the in�uene of the parameter β on the quantity of information at x0 in theminimax setup.1.2. Motivations. The regression funtion pointwise estimation is a well-known problemwhih has been intensively studied by many authors. The �rst authors who omputedthe minimax rate over a nonparametri lass of Hölderian funtions are Ibragimov andHasminski [10℄ and Stone [17℄. Over a Hölder funtions lass with smoothness s, the loalpolynomial estimator onverges with the rate n−s/(1+2s) (see [17℄) and this rate is optimalin the minimax sense. Many authors have worked on related problems: see for instaneKorostelev and Tsybakov [11℄, Nemirovski [12℄, Tsybakov [19℄.Date: 30th Marh 2005.2000 Mathematis Subjet Classi�ation. 62G05, 62G08.Key words and phrases. degenerate design, minimax, nonparametri regression, random design.I wish to thank my adviser Mar Ho�mann for helpful suggestions and enouragements.1



2 STÉPHANE GAÏFFASNevertheless, these results require the design density to be non-vanishing and �nite atthe estimation point. This assumption roughly means that the information is spatiallyhomogeneous. The next logial step is to look for the minimax risk at a point where thedesign density µ is vanishing or exploding. To ahieve suh a result, it seems natural toonsider several design density behaviours at x0 and to ompute the orresponding minimaxrate. Suh results would improve the statistial desription of models (here in the minimaxsetup) with very inhomogeneous information.When f has a Hölder type smoothness of order 2 and if µ(x) ∼ xβ near 0 where β > 0,Hall et al. [9℄ show that a loal linear proedure onverges with the rate n−4/(5+β) whenestimating f at 0. This rate is also proved to be optimal. In a more general setup for thedesign and if the regression funtion is Lipshitz, Guerre [8℄ extends the result of Hall et al.for β > −1. Here, we intend to develop the regression funtion estimation when the designis degenerate in a systemati way.1.3. Organisation of the paper. In setion 2 we present two theorems giving the pointwiseminimax onvergene rate in the model (1.1) for di�erent design behaviours (theorem 1 and2). In setion 3 we onstrut an estimator and we give upper bounds for this estimator insetion 4 (propositions 4 and 5). In setion 5 we disuss some tehnial points. The proofsare delayed until setion 6 and well known fats about the regular and Γ-variation are givenin appendix. 2. Main resultsAll along this study we are in the minimax setup. We de�ne the pointwise minimax riskover a lass Σ by
Rn(Σ, µ) ,

(
inf
Tn

sup
f ∈ Σ

E
n
f,µ{|Tn(x0) − f(x0)|p}

)1/p
, (2.1)where infTn stands for any estimator Tn based on the observations (1.1), where x0 is theestimation point and p > 0. The expetation E

n
f,µ in (2.1) is taken with respet to the jointprobability P

n
f,µ of the random variable pairs (Xi, Yi)i=1,...,n.2.1. Regular variation. The regular variation de�nition and main properties are due toKaramata (1930). Main referenes on regular variation are Bingham et al. [1℄, Geluk andde Haan [5℄, Resnik [13℄ and Senata [14℄.De�nition 1 (Regular variation). A ontinuous funtion ν : R

+ → R
+ is regularly varyingat 0 if there is a real number β ∈ R suh that:

∀y > 0, lim
h→0+

ν(yh)/ν(h) = yβ. (2.2)We denote by RV(β) the set of all the funtions satisfying (2.2). A funtion in RV(0) isslowly varying.Remark. Roughly, a regularly varying funtion behaves as a power funtion times a slowerterm. Typial examples of suh funtions are xβ, xβ(log(1/x))γ for γ ∈ R, and moregenerally any power funtion times a log or ompositions of log to some power. For otherexamples, see in the referenes ited above.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 32.2. The funtions lass.De�nition 2. If δ > 0 and ω ∈ RV(s) with s > 0 we de�ne the lass Fδ(x0, ω) of funtions
f : [0, 1] → R suh that

∀h 6 δ, inf
P∈Pk

sup
|x−x0|6h

|f(x) − P (x − x0)| 6 ω(h),where k = ⌊s⌋ (the largest integer smaller than s) and Pk is the set of all the real polynomialswith degree k. We de�ne ℓω(h) , ω(h)h−s, the slow variation term of ω. If α > 0 we de�ne
U(α) ,

{
f : [0, 1] → R suh that ‖f‖∞ 6 α

}
.Finally, we de�ne

Σδ,α(x0, ω) , Fδ(x0, ω) ∩ U(α).Remark. If we take ω(h) = rhs for some r > 0 then we �nd bak the lassial Hölderregularity with radius r. In this sense, the lass Fδ(x0, ω) is a slight Hölder regularitygeneralisation.Assumption M. In all the following, we assume that there exists a neighbourhood W of
x0 and a ontinuous funtion ν : R

+ → R
+ suh that:

∀x ∈ W, µ(x) = ν(|x − x0|). (2.3)This assumption roughly means that lose to x0 there are as many observations on theleft of x0 than on the right. All the following results an be extended easily to the nonsymmetrial ase, see setion 5.1.2.3. Regularly varying design density. The theorem 1 gives the minimax rate over thelass Σ (see de�nition 2) for the estimation problem of f at x0 when the design is regularlyvarying at this point.We denote by R(x0, β) the set of all the densities µ suh that (2.3) holds with ν ∈ RV(β)for a �xed neighbourhood W .Theorem 1. If
• (s, β) ∈ (0,+∞) × (−1,+∞) or (s, β) ∈ (0, 1] × {−1},
• Σ = Σhn,αn(x0, ω) with ω ∈ RV(s), αn = O(nγ) for some γ > 0 and hn given by(2.5),
• µ ∈ R(x0, β),then we have

Rn(Σ, µ) ≍ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(n
−1) as n → +∞, (2.4)where ℓω,ν is slowly varying and where ≍ stands for the equality in order, up to onstantsdepending on s, β and p (see (2.1)) but not on σ. Moreover, the minimax rate is equal to

ω(hn) where hn is the smallest solution to
ω(h) =

σ√
2n

∫ h
0 ν(t)dt

. (2.5)Example. The simplest example is the non-degenerate design ase (0 < µ(x0) < +∞) withthe lass Σ equal to a Hölder ball (ω(h) = rhs, see de�nition 2). This is the ommon asefound in the literature. In this ase, the design is in partiular slowly varying (β = 0 with theslow term onstant and equal to limx→x0 µ(x)). Solving (2.5) leads to the lassial minimaxrate
σ2s/(1+2s)r1/(1+2s)n−s/(1+2s).



4 STÉPHANE GAÏFFASExample. Let β > −1. We onsider ν suh that ∫ h
0 ν(t)dt = hβ+1(log(1/h))α and ω(h) =

rhs(log(1/h))γ where α, γ are any real numbers. In this ase, we �nd that the minimax rate(see setion 6.5 for the details) is
σ2s/(1+2s+β)r(β+1)/(1+2s+β)(n(log n)α−γ(1+β)/s)−s/(1+2s+β).We note that this rate has the form given by theorem 1 with the slow term ℓω,ν(h) =

(log(1/h))(γ(β+1)−sα)/(1+2s+β) . When γ(1+β)−sα = 0 there is no slow term in the minimaxrate, although there are slow terms in ν and ω. Again, if β = 0 and γ = sα, we �nd bakthe �rst example minimax rate, although the terms ν and ω do not have the lassial forms.Example. Let β = −1, α > 1 and ν(h) = h−1(log(1/h))−α. Let ω be the same as in theprevious example with 0 < s 6 1. Then the minimax onvergene rate is
σn−1/2(log n)(α−1)/2.This rate is barely the parametri estimation rate, up to the slow log fator. This result isnatural sine the design is very "exploding": we have a lot of information at x0 thus we anestimate f(x0) very fast. Also, we note that the regression funtion regularity parameters(r, s and γ) have (asymptotially) disappeared from the minimax rate.2.4. Γ-varying design density. The regular variation framework inludes any design den-sity behaving lose to the estimation point as a polynomial times a slow term. It does notinlude for instane a design with a behaviour similar to exp(−1/|x − x0|) prolonged at x0by 0, sine this funtion goes to 0 at x0 faster than any power funtion.Suh a loal behaviour an modelize a very big lak of information. This example naturallyleads us to the framework of Γ-variation. In fat, suh a funtion belongs to the followinglass introdued by de Haan (1970):De�nition 3 (Γ-variation). A non-dereasing and ontinuous funtion ν : R

+ → R
+ is

Γ-varying if there exists a ontinuous funtion ρ : R
+ → R

+ suh that
∀y ∈ R, lim

h→0+
ν(h + yρ(h))/ν(h) = exp(y). (2.6)We denote by ΓV(ρ) the lass of all suh funtions. The funtion ρ is alled the auxiliaryfuntion of ν.Remark. A funtion behaving like exp(−1/|x− x0|) lose to x0 satis�es assumption M with

ν(h) = exp(−1/h) where ν ∈ ΓV(ρ) with ρ(h) = h2.Theorem 2. If
• Σ = Σhn,αn(x0, ω) where ω ∈ RV(s) with 0 < s 6 1, hn is given by (2.5) and

αn = O(r−γ
n ) for some γ > 0 where rn , ω(hn),

• µ satis�es assumption M with ν ∈ ΓV(ρ),then
Rn(Σ, µ) ≍ ℓω,ν(n

−1) as n → +∞, (2.7)where ℓω,ν is slowly varying. Moreover, as in the theorem 1, the minimax rate is equal to
ω(hn) where hn is the smallest solution to (2.5).Example. Let µ satisfy assumption M with ν(h) = exp(−1/hα) for α > 0 and ω(h) = rhsfor 0 < s 6 1. It is an easy omputation to see that ν belongs to the lass ΓV(ρ) for theauxiliary funtion ρ(h) = α−1hα+1. In this ase, we �nd that the minimax rate (see setion6.5 for the details) is

r(log n)−s/α.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 5As told by theorem 2, we �nd a very slow minimax rate in this example. We note that theparameters s and α are on the same sale.3. Loal polynomial estimation3.1. Introdution. For the upper bound proof in theorem 1 we use a loal polynomialestimator. The loal polynomial estimator is well-known and has been intensively studied(see Stone [17℄, Fan and Gijbels [4℄, Spokoiny [15℄, Tsybakov [19℄, among many others). If fis a smooth funtion at x0 then it is lose to its Taylor polynomial. A funtion f ∈ Ck(x0)(the spae of k times di�erentiable funtions at x0 with a ontinuous k-th derivative) is suhthat for any x lose to x0

f(x) ≈ f(x0) + f
′

(x0)(x − x0) + . . . +
f (k)(x0)

k!
(x − x0)

k. (3.1)Let h > 0 (the bandwidth) and k ∈ N. We de�ne φj,h(x) ,
(

x−x0
h

)j and the spae
Vk,h , Span{(φj,h)j=0,...,k}.For a �xed non-negative funtion K (the kernel) we de�ne the weighted pseudo-salar prod-ut

〈f , g〉h,K ,

n∑

i=1

f(Xi)g(Xi)K
(Xi − x0

h

)
, (3.2)and ‖ · ‖h,K ,

√
〈· , ·〉h,K the orresponding pseudo-norm (K > 0). In view of (3.1) it isnatural to onsider the estimator de�ned as the losest polynomial with degree k to theobservations (Yi) in the least square sense, that is:

f̂h = argmin
g ∈ Vk,h

‖g − Y ‖2
h,K . (3.3)Then f̂h(x0) is the loal polynomial estimator of f at x0. A neessary ondition for f̂h to bethe minimiser of (3.3) is to be solution of the linear problem:�nd f̂ ∈ Vk,h suh that ∀φ ∈ Vk,h, 〈f̂ , φ〉h,K = 〈Y , φ〉h,K . (3.4)The estimator f̂h is then given by

f̂h = P
θ̂h

, (3.5)where
Pθ = θ0φ0,h + θ1φ1,h + . . . + θkφk,h, (3.6)with θ̂h the solution, whenever it makes sense, of the linear system:

XK
h θ = YK

h , (3.7)where XK
h is the symmetrial matrix with entries, for 0 6 j, l 6 k:

(XK
h )j,l = 〈φj,h , φl,h〉h,K , (3.8)and YK

h is the vetor de�ned by:
YK

h = (〈Y , φj,h〉h,K ; 0 6 j 6 k).We assume that the kernel K satis�es the following assumptions:Assumption K. Let K be the retangular kernel KR(x) = 1
21|x|61 or a non-negativefuntion suh that:

• SuppK ⊂ [−1, 1],



6 STÉPHANE GAÏFFAS
• K is symmetrial,
• K∞ , supx K(x) 6 1,
• There is some ρ > 0 and κ > 0 suh that ∀x, y, |K(x) − K(y)| 6 ρ|x − y|κ.The assumption K is satis�ed by all the lassial kernels used in nonparametri urvesmoothing. Let us de�ne:

Nn,h = #{Xi suh that Xi ∈ [x0 − h, x0 + h]}, (3.9)the number of observations in the interval [x0 −h, x0 +h], and we de�ne the random matrix
XK

h , N−1
n,hX

K
h .Let us denote

Xn , σ(X1, . . . ,Xn),the σ-algebra generated by the design. Note that XK
h is measurable with respet to Xn.The matrix XK

h is a "renormalisation" of XK
h . We show in lemma 6 that this matrix isasymptotially non-degenerate with a large probability when the design is regular varying.For tehnial reasons, we introdue a slightly di�erent version of the loal polynomialestimator. We introdue a "orretion" term in the matrix XK

h .De�nition 4. Given some h > 0, we onsider f̂h de�ned by (3.5) with θ̂h the solution whenit makes sense (if Nn,h = 0 we take f̂h = 0) of the linear system
X̃K

h θ = YK
h , (3.10)where:

X̃K
h , XK

h + N
1/2
n,h Ik+11λ(XK

h )6N
1/2
n,h

,with λ(M) standing for the smallest eigenvalue of a matrix M and Ik+1 denoting the identitymatrix in R
k+1.Remark. One an understand X̃K

h de�nition as follows: in the "good" ase, that is when
XK

h is non-degenerate in the sense that its smallest eigenvalue is not too small, we solve thesystem (3.7), while in the "bad" ase we still have a ontrol on the smallest eigenvalue of
X̃K

h , sine we always have λ(X̃K
h ) > N

1/2
n,h .3.2. Bias-variane equilibrium. A main result on the loal polynomial estimator is thebias-variane deomposition. This is a lassial result, many times presented in di�erentforms: see Cleveland [2℄, Goldenshluger and Nemirovski [6℄, Korostelev and Tsybakov [11℄,Spokoiny [15℄, Stone [16℄, Tsybakov [18, 19℄. The version in [15℄ is lose to the one presentedhere. Mainly, the di�erenes are linked with the fat that the design is random and thatwe onsider a modi�ed version of the loal polynomial estimator (see de�nition 4). Weintrodue the event

ΩK
h , {X1, . . . ,Xn are suh that λ(XK

h ) > N
−1/2
n,h and Nn,h > 0}. (3.11)Note that on ΩK

h the matrix XK
h is invertible.Proposition 1 (Bias-variane deomposition). Under assumption K and if f ∈ Fh(x0, ω)then the following inequality holds on the event ΩK

h :
|f̂h(x0) − f(x0)| 6 λ−1(XK

h )
√

k + 1K∞
(
ω(h) + σN

−1/2
n,h |γh|

)
, (3.12)where γh is, onditional on Xn, entered Gaussian suh that E

n
f,µ{γ2

h|Xn} 6 1.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 7Remark. The inequality (3.12) holds onditionally on the design, on the event ΩK
h . We willsee that this event has a large probability in the regular variation framework.3.3. Choie of the bandwidth. Now the problem is, like with any linear estimation pro-edure, to answer the following question: how to hoose the bandwidth h? In view ofinequality (3.12) a natural bandwidth hoie is

Hn , argmin
h∈[0,1]

{
ω(h) >

σ√
Nn,h

}
. (3.13)Suh a bandwidth hoie is well known, see for instane [7℄. This bandwidth hoie stabilisesthe proedure sine it is sensitive to the design, whih represents in the model (1.1) the loalquantity of information. The estimator is then de�ned by

f̂n(x0) , f̂Hn(x0),where f̂h is given by the de�nition 4 and Hn is de�ned by (3.13). The random bandwidth
Hn is lose in probability to the theoretial deterministi bandwidth hn de�ned by (2.5) inview of the following proposition.Proposition 2. Under assumption M and if ω ∈ RV(s) for any s > 0 then for any 0 < ε 6
1/2 there exists 0 < η 6 ε suh that

P
n
µ

{∣∣∣
Hn

hn
− 1

∣∣∣ > ε
}

6 4 exp
(
− η2

1 + η/3
nFν(hn/2)

)
,where Fν(h) ,

∫ h
0 ν(t)dt.When nFν(hn/2) → +∞ as n → +∞ (this is the ase when ν is regularly varying) thisinequality entails

Hn = (1 + oPn
f,µ

(1))hn,where oP(1) stands for a sequene going to 0 in probability under a probability P.The proposition 3 motivates the regularly varying design hoie. It makes a link betweenthe behaviour of the ounting proess Nn,h (that appears in the variane term of (3.12))and the behaviour of µ lose to x0. Atually, the regular variation property (see de�nition1) naturally appears under assumptions on the asymptoti behaviour of Nn,h. Let us denoteby P
n
µ the joint probability of the variables (Xi).Proposition 3. If assumption M holds with ν monotone then following properties are equiv-alent:(1) ν is regularly varying of index β > −1,(2) There exist sequenes of positive numbers (λn) and (γn), suh that limn γn = 0,

lim infn nλ−1
n > 0, γn+1 ∼ γn as n → +∞ and a ontinuous funtion φ : R

+ → R
+suh that for any C > 0:

E
n
µ{Nn,Cγn} ∼ φ(C)λn as n → +∞,(3) There exist (λn), (γn) and φ as previously suh that for any C > 0 and ε > 0:

lim
n→+∞

n

λn
P

n
µ

{∣∣∣
Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

= 0.The proof is delayed until setion 6. Mainly, it is a onsequene of the sequene hara-terisation of regular variation (see in the appendix).



8 STÉPHANE GAÏFFAS4. Upper bounds for f̂Hn(x0)4.1. Conditional on the design upper bound. When no assumption on the designdensity behaviour is made, we an work onditionally on the design. For λ > 0 we de�nethe event
Eλ , {λn > λ},where λn , λ(XK

Hn
). Note that Eλ ∈ Xn. We also de�ne the onstant m(p) ,

√
2/π

∫
R+(1+

t)p exp(−t2/2)dt.Proposition 4. Under assumption K, if n > k + 1 and λ is suh that λ2Nn,Hn > 1, wehave on Eλ:
sup

f ∈ FHn(x0, ω)
E

n
f,µ

{
|f̂n(x0) − f(x0)|p|Xn

}
6 m(p)λ−pKp

∞(k + 1)p/2Rp
n,where Rn , ω(Hn).4.2. When the design is regularly varying. The proposition 5 below gives an upperbound for the estimator f̂Hn(x0) when the design density is regularly varying. This propo-sition an be viewed as a deterministi ounterpart to proposition 4.Let λβ,K be the smallest eigenvalue of the symmetrial and positive matrix with entries,for 0 6 j, l 6 k:

(Xβ,K)j,l =
β + 1

2

(
1 + (−1)j+l

) ∫ 1

0
yj+l+βK(y)dy. (4.1)Note that in view of lemma 6 we have λβ,K > 0.Proposition 5. Let ̺ > 1 and hn be de�ned by (2.5). Let (αn) be a positive numberssequene suh that αn = O(nγ) for some γ > 0. If µ ∈ R(x0, β) with β > −1 and ω ∈ RV(s)we have for any p > 0:

lim sup
n

sup
f ∈ Σ̺hn,αn(x0, ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p} 6 Cλ−p
β,K, (4.2)where rn , ω(hn) satis�es

rn ∼ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞,where ℓω,ν is slowly varying and where C = 4s/(1+2s+β)(k + 1)p/2m(p)Kp
∞.Remark. In Hölder regularity with radius r we have

rn ∼ σ2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n → +∞.5. Disussion5.1. About assumption M. As told previously, the assumption M means that the designdistribution is symmetrial around x0 lose to this point. When it is not the ase, and ifthere are two funtions ν− ∈ RV(β−), ν+ ∈ RV(β+) for β−, β+ > −1 and η−, η+ > 0 suhthat for any x ∈ [x0 − η−, x0 + η+]:
µ(x) = ν+(x − x0)1x06x6x0+η+ + ν−(x0 − x)1x0−η−6x<x0

,we an easily prove that the minimax onvergene rate is the fastest among the two possibleones, whih is (2.4) for the hoie of β = β− ∧ β+. To prove the upper bound we an usethe same estimator as in setion 3 with a non symmetrial hoie of the bandwidth, or moreroughly we an "throw away" the observations on the side of x0 orresponding to the largestindex of regular variation (when µ is known).



CONVERGENCE RATES WITH A DEGENERATE DESIGN 95.2. On theorem 1 and propositions 4, 5. Sine we are interested in the estimation of
f at x0, we need only a regularity assumption in some neighbourhood of this point. Notethat the minimax risks are omputed over a lass where the regularity assumption holds ina dereasing interval as n inreases.It appears that a natural hoie of this interval size is the theoretial bandwidth of es-timation hn, sine it is the minimum we need for the proof of the upper bounds. To statean upper bound with the "design-adaptive" estimator f̂Hn(x0) � in the sense that it doesnot depend on the design density behaviour lose to x0 (via the parameter β for instane)� we need a smoothness ontrol in a slightly larger neighbourhood size than hn (see theparameter ̺ in proposition 5).More preisely, to prove in proposition 5 that rn is an upper bound, we use in partiularthe proposition 2 with ε = ̺−1 in order to ontrol the random bandwidth Hn by hn. Thus,the parameter ̺ is indispensable for the proof of proposition 5. Note that we do not needsuh a parameter in theorem 1 sine we use the estimator with the deterministi bandwidth
hn to prove the upper bound part of the theorem. Of ourse, this estimator in unfeasiblefrom a pratial point of view sine hn heavily depends on µ, whih is hardly known inpratie. This is reason why we state the proposition 5 whih tells us that the estimatorwith the data-driven bandwidth Hn onverges with the same rate.5.3. On theorem 2. In the Γ-variation framework, for the proof of the upper bound part oftheorem 2 we use an estimator depending on µ. Again, suh an estimator is unfeasible from apratial point of view. Anyway, this framework is onsidered only for theoretial purposes,sine from a pratial point of view nothing an be done in this ase: there is no observationsat the point of estimation. This is preisely what theorem 2 and the orresponding exampletell us, in the sense that the minimax rate is very slow.5.4. About the Γ-varying design ase. For the proof of the upper bound part in theorem2 we an onsider another estimator than the lassial regressogram (see the proof of thetheorem). If K is a kernel satisfying assumption K we de�ne

f̃n(x0) ,

∑n
i=1 Yi

(
K

(
Xi−hn−x0

ρ(hn)

)
+ K

(
Xi+hn−x0

ρ(hn)

))

∑n
i=1 K

(
Xi−hn−x0

ρ(hn)

)
+ K

(
Xi+hn−x0

ρ(hn)

) ,where hn is de�ned by (2.5). The point is that sine SuppK ⊂ [−1, 1], this estimatormakes a loal average of the observations Yi suh that Xi ∈ [x0 − h− ρ(h), x0 − h + ρ(h)] ∪
[x0 + h− ρ(h), x0 + h + ρ(h)], whih does not ontain the point of estimation x0 for n largeenough, sine limh→0+ ρ(h)/h = 0 (see appendix). In spite of this, we an prove that f̃n(x0)onverges with the rate rn. We an understand this as follows: sine there is no informationat x0 the proedure atually "athes" the information "far" from x0. This fat shows thatagain, the Γ-varying design is an extreme ase.5.5. More tehnial remarks.

• About assumption K, the �rst assumption is used to make the kernel K loalise theinformation around the point of estimation x0 (see (3.2)). The last one is tehnialand used in the proof of lemma 6. The two other ones are used for the sake ofsimpliity, sine we only really need the kernel to be bounded from above.
• When β = −1 theorem 1 holds only for small regularities 0 < s 6 1. For tehnialreasons, we were not able to prove the upper bound when s > 1 and β = −1. Morepreisely, in this ase we have k = 0 and in view of (3.4) it is lear that the loal



10 STÉPHANE GAÏFFASpolynomial estimator is a Nadaraya-Watson estimator, de�ned by
f̂n(x0) =

∑n
i=1 YiK

(
Xi−x0

hn

)
∑n

i=1 K
(

Xi−x0
hn

) .When s > 1 we have to use a loal polynomial estimator. The problem is then inthe asymptoti ontrol of the smallest eigenvalue of XK
hn

(see lemma 6) and to doso we use an average (Abelian) transform property of regularly varying funtions,whih is (see appendix):
lim

h →0+

1

ℓν(h)

∫
yαK(y)ℓν(yh)

dy

y
=

{∫
yα−1K(y)dy when α > 0,

+∞ when α = 0.Thus the only way to have a limit for both ases is to assume K(y) = O(|y|η) forsome η > 0, but the obtained upper bound rate in this ase would is slower than thelower bound. 6. Proofs6.1. Proof of the main results.Proof of theorem 1. We �rst prove the upper bound part of equation (2.4) when β > −1.We onsider the estimator f̂n(x0) = f̂hn(x0) where f̂h is given by de�nition 4, where hn isgiven by equation (2.5) and we de�ne rn = ω(hn). Let 0 < ε 6 1
2 . We introdue the event

Bn,ε ,
{
|λ(XK

hn
) − λβ,K | 6 ε

}
∩

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}

.Sine limn nFν(hn) = +∞ (see for instane lemma 4) we have for n large enough Bn,ε ⊂ ΩK
hn(see (3.11)) and in partiular on the event Bn,ε the matrix XK

hn
is invertible. Then usingproposition 1 and sine f ∈ Fhn(x0, ω) we get:

|f̂n(x0) − f(x0)|1Bn,ε 6 (λβ,K − ε)−1
√

k + 1K∞
(
ω(hn) +

σ√
(2 − ε)nFν(hn)

|γhn |
)

6 (λβ,K − ε)−1
√

k + 1K∞ω(hn)(1 + |γhn |),where we last used the de�nition of hn. Sine γhn is onditional on Xn entered Gaussiansuh that E
n
f,µ{γ2

hn
|Xn} 6 1, we get for any p > 0:

sup
f∈Fhn (x0,ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bn,ε |Xn} 6 (λβ,K − ε)−p(k + 1)p/2Kp
∞m(p),where m(p) is de�ned in setion 4. Now we work on the omplementary Bc

n,ε. We use thelemmas 2 and 6 to ontrol the probability of Bn,ε and we reall that αn = O(nγ) for some
γ > 0. When Nn,hn = 0 we have f̂n(x0) = 0 by de�nition and then

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bc
n,ε

} 6 (αnr−1
n )pP

n
f,µ{Bc

n,ε} = on(1).Then we assume Nn,hn > 0. Using the lemma 3 we get:
sup

f∈U(αn)
E

n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bc
n,ε

} 6 2pr−p
n

(√
E n

f,µ{|f̂n(x0)|2p} + αp
n

)√
Pn

µ{Bc
n,ε}

6 2p(αnr−1
n )p(

√
npCσ,k,2p + 1)

√
Pn

µ{Bc
n,ε} = on(1),



CONVERGENCE RATES WITH A DEGENERATE DESIGN 11and then we have proved that rn is an upper bound of the minimax risk (2.4) when β > −1.When β = −1 and 0 < s 6 1 we have k = 0 and the matrix XK
hn

is 1 × 1 sized and equal to
Kn,hn,0 (see equation (6.5)). The bias variane equation (3.12) beomes in this ase:

|f̂n(x0) − f(x0)| 6 (Kn,hn,0)
−1K∞(ω(hn) + σN

−1/2
n,hn

|γhn |).We onsider the event
Cn,ε =

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}
∩

{∣∣∣
Kn,hn,0

2nFν(hn)
− K(0)

∣∣∣ 6 ε
}

,and we note that the probability of Cn,ε is ontrolled by lemma 2 and equation (6.8) inlemma 5. Then we an proeed as previously to prove that rn is an upper bound when
β = −1 and we have proved that rn is an upper bound for the left side of (2.4). Using theproposition 6 we also have that rn is a lower bound for the left part of (2.4). The onlusionfollows from lemma 4. �Proof of theorem 2. The proof is similar to the proof of theorem 1. For the proof of theupper bound part in (2.7) we use the regressogram estimator de�ned by

f̂n(x0) ,





∑n
i=1 Yi1|Xi−x0|6hn

Nn,hn

if Nn,hn > 0,

0 if Nn,hn = 0.Let 0 < ε 6 1/2. On the event
Dn,ε ,

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}

,we learly have Nn,hn > 0 and sine f ∈ Fhn(x0, ω), we have
|f̂n(x0) − f(x0)| 6 ω(hn) + σN

−1/2
n,hn

|vn| 6 ω(hn)(1 − ε)−1/2(1 + |vn|),where vn , 1
σ
√

Nn,hn

∑n
i=1 ξi1|Xi−x0|6hn

is, onditional on Xn, standard Gaussian. Then weget
sup

f∈Fhn (x0,ω)
E

n
f,µ{|f̂n(x0) − f(x0)|p1Dn,ε} 6 rp

n(1 − ε)−p/2m(p).Now we work on Dc
n,ε. If Nn,hn = 0 we get using lemma 2 and sine αn = O(r−γ

n ):
sup

f∈U(αn)
E

n
f,µ{|f̂n(x0)−f(x0)|p1Dc

n,ε
} 6 αp

nP
n
µ{Dc

n,ε} = O(r−γp
n ) exp

(
− ε2σ2

1 + ε/3
r−2
n

)
= on(1),sine αn = O(r−γ

n ). If Nn,hn > 0 sine |f̂n(x0)| 6 αn + σ|vn| we get
sup

f∈U(αn)
E

n
f,µ{|f̂n(x0) − f(x0)|p1Dc

n,ε
} 6 2pαp

n(1 +
√

Cσ,0,p)
√

Pn
µ{Dc

n,ε} = on(1),where Cσ,0,p is the same as in the proof of theorem 1. Then we have proved that rn is anupper bound. The lower bound is given by the proposition 6, and the onlusion followsfrom lemma 4 �In all the following, 〈· , ·〉 denotes the Eulidean salar produt on R
k+1, e1 = (1, 0, . . . , 0) ∈

R
k+1, ‖ · ‖∞ stands for the sup norm in R

k+1 and ‖ · ‖ stands for the Eulidean norm in
R

k+1.



12 STÉPHANE GAÏFFASProof of proposition 1. On ΩK
h we have in view of de�nition 4 that X̃K

h = XK
h and XK

h isinvertible. Let 0 < ε 6 1/2, and n > 1. We an �nd a polynomial Pn,ε
f of order k suh that

sup
|x−x0|6h

|f(x) − Pn,ε
f (x)| 6 inf

P∈Pk

sup
|x−x0|6h

|f(x) − P (x − x0)| +
ε√
n

.In partiular with h = 0 we get |f(x0) − Pn,ε
f (x0)| 6 ε√

n
. De�ning θh ∈ R

k+1 suh that
Pn,ε

f = Pθh
(see (3.6)) we get

|f̂h(x0) − f(x0)| 6
ε√
n

+ |〈θ̂h − θh , e1〉| =
ε√
n

+ |〈(XK
h )−1XK

h (θ̂h − θh) , e1〉|.Then we have for j ∈ {0, . . . , k} by (3.4) and (1.1):
(XK

h (θ̂h − θh))j = 〈f̂h − Pn,ε
f , φj,h〉h,K = 〈Y − Pn,ε

f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈Y − f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈ξ , φj,h〉h,K

, Bh,j + Vh,j,thus XK
h (θ̂h − θh) = Bh + Vh. In view of assumption K and sine f ∈ Fh(x0, ω) we have:

|Bh,j| = |〈f − Pn,ε
f , φj,h〉h,K | 6 ‖f − Pn,ε

f ‖h,K‖φj,h‖h,K 6 Nn,hK∞(ω(h) +
ε√
n

),thus ‖Bh‖∞ 6 Nn,hK∞(ω(h) + ε√
n
). Moreover, sine λ−1(Xh) 6 N

1/2
n,h 6 n1/2 on Ωh,K , wehave:

|〈(XK
h )−1Bh , e1〉| 6 ‖(XK

h )−1‖‖Bh‖ 6 ‖(XK
h )−1‖

√
k + 1‖Bh‖∞

6 λ−1(XK
h )

√
k + 1K∞ω(h) +

√
k + 1K∞ε,where we last used the fat that ‖M−1‖ = λ−1(M) for a positive symmetrial matrix. Thevariane term Vh is learly onditional on Xn a entered Gaussian vetor, and its ovarianematrix is equal to σ2XK2

h . Thus the random variable 〈(XK
h )−1Vh , e1〉h,K is, onditional on

Xn, entered Gaussian of variane:
v2
h = σ2〈e1 , (XK

h )−1XK2

h (XK
h )−1e1〉 6 σ2〈e1 , (XK

h )−1XK
h (XK

h )−1e1〉
= σ2〈e1 , (XK

h )−1e1〉
6 σ2‖(XK

h )−1‖ = σ2N−1
n,hλ−1(XK

h ),sine K 6 1. Then
λ(XK

h ) = inf
‖x‖=1

〈x , XK
h x〉 6 ‖XK

h e1‖ 6
√

k + 1,sine XK
h is symmetrial and its entries are smaller than 1 in absolute value. Thus:

v2
h 6 σ2N−1

n,hλ−1(XK
h ) 6 σ2N−1

n,h(k + 1)λ−2(XK
h ),and the proposition follows. �Proof of proposition 2. The proposition is a diret onsequene of the lemmas 1 and 2. �Proof of proposition 3. (2) ⇒ (1): In view of assumption M one has for n large enough

E
n
µ{Nn,Cγn} = 2n

∫ Cγn

0 ν(x)dx = 2nFν(Cγn) thus (2) entails 2nλ−1
n Fν(Cγn) ∼ φ(C) as

n → +∞ and then Fν ∈ RV(α) in view of the haraterisation (A.8) of regular variation.Sine Fν(0) = 0 we have more preisely Fν ∈ RV(α) for α > 0 and sine ν is monotone we
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(3) ⇒ (2): Let ε > 0. We de�ne the event

An(C, ε) =
{∣∣∣

Nn,Cγn

φ(C)λn
− 1

∣∣∣ 6 ε
}

.Then:
λ−1

n E
n
µ{Nn,Cγn} = λ−1

n E
n
µ

{
Nn,Cγn(1An(C,ε) +1Ac

n(C,ε))
}

6 (1+ ε)φ(C)+nλ−1
n P

n
µ

{
Ac

n(C, ε)
}
,and then lim supn λ−1

n E
n
µ{Nn,Cγn} 6 (1 + ε)φ(C). On the other side:

λ−1
n E

n
µ{Nn,Cγn} > λ−1

n E
n
µ{Nn,Cγn1An(C,ε)} > (1 − ε)φ(C)Pn

µ{An(C, ε)},and then lim infn λ−1
n E

n
µ{Nn,Cγn} > (1 − ε)φ(C).

(1) ⇒ (3): Let ν ∈ RV(β) and 0 < ε 6 1/2. If β > −1 we have Fν ∈ RV(β + 1) (see inthe appendix) thus we an write Fν(h) = hβ+1ℓF (h) where ℓF is slowly varying. We de�ne
γn = n−1/(2(β+1)) when β > −1 and γn = n−1 if β = −1. When β = −1 we have Fν ∈ RV(0)(see appendix). We note that in both ases we have limn γn = 0 and γn+1 ∼ γn as n → +∞.In view of lemma 2 we get for n large enough

P
n
µ

{∣∣∣
Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
φ(C)λn

)
,where we used the fat that ℓF is slowly varying and where we de�ned λn , 2nFν(γn) and

φ(C) , Cβ+1. Then we learly have limn nλ−1
n = +∞ and proposition follows. �6.2. Proof of the upper bounds for f̂Hn(x0).Proof of proposition 4. Sine Eλ ⊂ ΩK

Hn
, (3.13) and proposition 1 entail that uniformly forany f ∈ FHn(x0, ω) we have

|f̂n(x0) − f(x0)| 6 λ−1
√

k + 1K∞Rn(1 + |γHn |),where γHn is onditional on Xn entered Gaussian suh that E
n
f,µ{γ2

Hn
|Xn} 6 1. The resultfollows by integration with respet to P

n
f,µ(·|Xn). �Proof of the proposition 5. Let us de�ne ε , ̺−1. We an assume without loss of generalitythat ε < 1

2 ∧ λβ,K . We onsider the event An,ε from lemma 6. In view of this lemma wehave An,ε ⊂ Eλβ,K−ε ∩ {(1 − ε)hn 6 Hn 6 (1 + ε)hn} and then F̺hn(x0, ω) ⊂ FHn(x0, ω).Thus using proposition 4 we get
sup

f∈F̺hn (x0,ω)
E

n
f,µ{|f̂n(x0) − f(x0)|p1An,ε |Xn} 6 m(p)(λβ,K − ε)−pKp

∞(k + 1)p/2Rp
n

6 m(p)(λβ,K − ε)−pKp
∞(k + 1)p/2(1 + ε)p(s+1)rp

n,where we used equation (6.1) in the same way as in the proof of lemma 1 to obtain on An,εthat ω(Hn) 6 (1 + ε)s+1ω(hn). On the omplementary Ac
n,ε using inequality (6.11) andlemma 3 and sine αn = O(nγ) for some γ > 0 we get

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Ac
n,ε

} 6 2p(αnr−1
n )p(

√
npCσ,k,2p + 1)

√
Pn

µ{Ac
n,ε} = on(1),and (4.2) follows. The equivalent of rn is given by lemma 4. �



14 STÉPHANE GAÏFFAS6.3. Lemmas for the proof of the upper bounds.Lemma 1. If ω ∈ RV(s) for any s > 0 then for any 0 < ε 6 1
2 there exists 0 < η 6 ε suhthat

{∣∣∣
Nn,(1−ε)hn

2nFν((1 − ε)hn)
− 1

∣∣∣ 6 η
}
∩

{∣∣∣
Nn,(1+ε)hn

2nFν((1 + ε)hn)
− 1

∣∣∣ 6 η
}
⊂

{∣∣∣
Hn

hn
− 1

∣∣∣ 6 ε
}

.Proof. In view of (3.13) we have
{Hn 6 (1 + ε)hn} = {Nn,(1+ε)hn

> σ2ω−2((1 + ε)hn)}.Let de�ne ε1 , 1 − (1 − ε2)−2(1 + ε)−2s. For ε small enough, it is lear that ε1 > 0. Wereall that ℓω stands for the slowly varying term of ω (see de�nition 2). Sine (A.1) holdsuniformly on eah ompat set in (0,+∞), we have for n large enough that for any y ∈ [12 , 3
2 ]:

(1 − ε2)ℓω(hn) 6 ℓω(yhn) 6 (1 + ε2)ℓω(hn), (6.1)so using (6.1) with y = 1 + ε (ε 6 1
2), we obtain in view of (2.5):

2(1 − ε1)nFν((1 + ε)hn) > (1 − ε2)−2(1 + ε)−2sσ2ω−2(hn)

= σ2
(
(1 + ε)hn

)−2s
(1 − ε2)−2ℓ−2

ω (hn)

> σ2ω((1 + ε)hn)−2,and then
{Nn,(1+ε)hn

> 2(1 − ε1)nFν((1 + ε)hn)} ⊂ {Hn 6 (1 + ε)hn}.Using again (6.1) with y = 1 − ε we get in the same way
{Nn,(1−ε)hn

< 2(1 + ε1)nFν((1 − ε)hn)} ⊂ {Hn > (1 − ε)hn},and then:
{∣∣∣

Nn,(1−ε)hn

2nFν((1 − ε)hn)
− 1

∣∣∣ 6 ε1

}
∩

{∣∣∣
Nn,(1+ε)hn

2nFν((1 + ε)hn)
− 1

∣∣∣ 6 ε1

}
⊂

{∣∣∣
Hn

hn
− 1

∣∣∣ 6 ε
}

,and the result follows for the hoie η = ε ∧ ε1. �Lemma 2. Under assumption M, we have for any ε, h > 0:
P

n
µ

{∣∣∣
Nn,h

2nFν(h)
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
nFν(h)

)
.Proof. It su�es to use the Bernstein inequality to the sum of independent random variables

Zi = 1|Xi−x0|6h − P
n
µ{|X1 − x0| 6 h} for i = 1, . . . , n. �Lemma 3. For any p > 0 and h > 0 the estimator f̂h (see de�nition 4) satis�es

sup
f ∈ U(α)

E
n
f,µ{|f̂h(x0)|p|Xn} 6 Cσ,k,p(α

√
n)p,where Cσ,k,p , (k + 1)p/2

√
2/π

∫
R+(1 + σt)p exp(−t2/2)dt.Proof. When Nn,h = 0 we have by de�nition f̂h = 0 and the result is obvious, so we assume

Nn,h > 0. Using the fat that λ(A + B) > λ(A) + λ(B) when A and B are symmetrialand non-negative matries we get λ(X̃K
h ) > N

1/2
n,h > 0 thus X̃K

h is invertible. Equation(3.10) entails |f̂h(x0)| = |〈(X̃K
h )−1X̃K

h θ̂h , e1〉| = |〈(X̃K
h )−1Yh , e1〉|. In view of (1.1) we andeompose for j ∈ {0, . . . , k}:

(Yh)j = 〈Y , φj,h〉h,K = 〈f , φj,h〉h,K + 〈ξ , φj,h〉h,K , Bh,j + Vh,j.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 15Sine f ∈ U(α) we have under assumption K that |Bh,j| 6 αNn,h, thus ‖Bh‖∞ 6 αNn,h. Asin the proof of proposition 1 we have that 〈(X̃K
h )−1Vh , e1〉 is, onditional on Xn, enteredGaussian with variane

v2
h = σ2〈e1 , (X̃K

h )−1XK2

h (X̃K
h )−1e1〉 6 σ2〈e1 , (X̃K

h )−1XK
h (X̃K

h )−1e1〉
6 σ2‖(X̃K

h )−1‖2‖XK
h ‖.Assumption K entails that all the elements of the matrix XK

h are smaller than Nn,h, thus
‖XK

h ‖ 6 (k +1)Nn,h. Sine X̃K
h is symmetrial we get ‖(X̃K

h )−1‖ = λ−1(X̃K
h ) 6 N

−1/2
n,h , andthen v2

h 6 σ2(k + 1). Finally, we have
|f̂h(x0)| 6 |〈(X̃K

h )−1Bh , e1〉| + |〈(X̃K
h )−1Vh , e1〉| 6 ‖(X̃K

h )−1‖‖Bh‖ + σ
√

k + 1|γh|
6

√
k + 1(α

√
n + σ|γh|),where γh is, onditional on Xn, entered Gaussian with variane smaller than 1. The resultfollows by integrating with respet to P

n
f,µ(·|Xn). �Lemma 4. If ν ∈ RV(β), ω ∈ RV(s) for s > 0 and the sequene (hn) is de�ned by (2.5)then the rate rn = ω(hn) satis�es

rn ∼ cs,βσ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞, (6.2)where ℓω,ν is slowly varying and cs,β = 4s/(1+2s+β). When ω(h) = rhs (Hölder regularity)for r > 0, we have more preisely :
rn ∼ cs,βσ2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n → +∞, (6.3)where ℓs,ν is slowly varying. It is noteworthy that when β = −1 the result beomes:

rn ∼ 2σn−1/2ℓω,ν(1/n) as n → +∞.When ν ∈ ΓV(ρ) we have
rn ∼ ℓω,ν(1/n), (6.4)where ℓω,ν is slowly varying.Proof. Let us denote Fν(h) ,

∫ h
0 ν(t)dt and let G(h) = ω2(h)Fν(h). When β > −1 we have

Fν ∈ RV(β+1) (see the appendix) and when β = −1, Fν is slowly varying. Thus G ∈ RV(1+
2s + β) for any β > −1. The funtion G is ontinuous and suh that limh→0+ G(h) = 0 inview of (A.2) sine 1+2s+β > 0. Then, for n large enough hn is given by hn = G←(σ2/(4n)),where G←(h) , inf{y > 0|G(y) > h} is the generalised inverse of G. Then in view of (A.8)we have G← ∈ RV(1/(1 + 2s + β)) and then ω ◦ G← ∈ RV(s/(1 + 2s + β)) (see appendix).Thus we an write ω ◦ G←(h) = hs/(1+2s+β)ℓω,ν(h) where ℓω,ν is a slowly varying funtion.Thus:

rn = ω
(
G←

(σ2

4n

))
= cs,βσ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν

(σ2

4n

)

∼ cs,βσ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞,sine ℓ is slowly varying. When ω(h) = rhs we an write more preisely hn = G←(σ2/(4r2n))where G(h) = h2sFν(h) so (6.2) and (6.3) follow.Let y ∈ R. Using (A.9) and the uniformity in (A.1) we get limh→0+ ℓω(h+yρ(h))/ℓω(h) =
1, thus limh→0+ ω(h + yρ(h))/ω(h) = 1. Moreover, sine ΓV(ρ) is stable under integration(see appendix) we have Fν ∈ ΓV(ρ), thus limh→0+ G(h + yρ(y))/G(h) = exp(y) and then
G ∈ ΓV(ρ). For n large enough, hn is well de�ned and given by hn = G←(σ2/(4n)).



16 STÉPHANE GAÏFFASSine G← ∈ ΠV(ℓ) for ℓ = ρ ◦ ν← ∈ RV(0) (see appendix), G← belongs in partiular to
RV(0) in view of (A.11) and then rn = ω ◦ G←(σ2/(4n)) where ω ◦ G← ∈ RV(0). Thus
rn ∼ ω ◦ G←(n−1) as n → +∞ and (6.4) follows with ℓω,ν = ω ◦ G←. �Study of the terms λ(XK

hn
) and λ(XK

Hn
). We reall that the matrix Xh,K is de�ned asthe symmetrial and non-negative matrix with entries for 0 6 j, l 6 k, (Xh,K)j,l = Kn,h,j+lwhere:

Kn,h,α ,
1

Nn,h

n∑

i=1

(Xi − x0

h

)α
K

(Xi − x0

h

)
, (6.5)for α ∈ N. Let us de�ne Kn,h,α , Nn,hKn,h,α and:

Kα,β , (1 + (−1)α)

∫ 1

0
yα+βK(y)dy. (6.6)We de�ne for any ε > 0 the event

Dn,h,α,K,ε ,
{∣∣∣

Kn,h,α

nFν(h)
− (β + 1)Kα,β

∣∣∣ 6 ε
}

.Lemma 5. Let α ∈ N and ε > 0. Under assumption K and if µ ∈ R(x0, β) with β > −1then for any positive sequene (γn) going to 0 we have for n large enough:
P

n
µ

{
Dc

n,γn,α,K,ε

}
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (6.7)When β = −1 we have:

P
n
µ

{∣∣∣
Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}

6 2 exp
(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (6.8)Proof. First we prove (6.7). We de�ne Qi,n,α ,

(
Xi−x0

γn

)α
K

(
Xi−x0

γn

), Zi,n,α , Qi,n,α −
E

n
µ{Qi,n,α}. Sine µ ∈ R(x0, β) one has for i = 1, . . . , n:

1

nFν(γn)
E

n
µ{Qi,n,α} =

γnν(γn)

Fν(γn)

1 + (−1)α

ℓν(γn)

∫ 1

0
yα+βK(y)ℓν(yγn)dy,where we used assumption K and the fat that for n large enough [x0 − γn, x0 + γn] ⊂ W .Then equations (A.3) and (A.4) entail:

lim
n

1

nFν(γn)
E

n
µ{Qi,n,α} = (β + 1)Kα,β ,and for n large enough:

Dc
n,γn,α,K,ε ⊂

{∣∣∣
1

nFν(γn)

n∑

i=1

Zi,n,α

∣∣∣ > ε/2

}
. (6.9)We have in view of assumption K: E

n
µ{Zi,n,α} = 0, |Zi,n,α| 6 2 and

b2
n ,

n∑

i=1

E
n
µ{Z2

i,n,α} 6 nE
n
µ{Q2

1,n,α} 6 2nFν(γn).Sine the Zi,n,α are independent we an apply Bernstein inequality. If τn , ε
2nFν(γn)equation (6.9) and Bernstein inequality entail:

P
n
µ

{
Dc

n,γn,α,K,ε

}
6 2 exp

( −τ2
n

2(b2
n + 2τn/3)

)
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
,



CONVERGENCE RATES WITH A DEGENERATE DESIGN 17thus (6.7) follows. The proof of equation (6.8) is similar. When β = −1 we have ν(t) =

t−1ℓν(t). We de�ne Zi,n , Qi,n,0 − E
n
f,µ{Qi,n,0}. We have in view of equation (A.5):

lim
n→+∞

1

Fν(γn)
E

n
µ{Qi,n,0} = lim

n→+∞
2

Fν(γn)

∫ 1

0
K(t/h)ℓν(t)dt/t = 2K(0) > 0.Then for n large enough one has

{∣∣∣
Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}
⊂

{∣∣∣
1

nFν(γn)

n∑

i=1

Zi,n

∣∣∣ > ε/2
}

.The Zi,n are independent and entered and |Zi,n| 6 2. Moreover, in view of assumptionK we have as previously b2
n ,

∑n
i=1 E

n
µ{Z2

i,n} 6 2nFν(γn) and using again the Bernsteininequality we get (6.8). �Lemma 6. Let assumption K holds and ω ∈ RV(s) with s > 0, µ ∈ R(x0, β) with β > −1and λβ,K be de�ned by equation (4.1). We have λβ,K > 0 and we an �nd for any 0 < ε 6 1
2an event An,ε suh that for n large enough

An,ε ⊂ {|λ(XK
hn

) − λβ,K | 6 ε} ∩ {|λ(XK
Hn

) − λβ,K | 6 ε} ∩
{∣∣∣

Hn

hn
− 1

∣∣∣ 6 ε
}

, (6.10)and
P

n
µ{Ac

n,ε} 6 4(k + 2) exp
(
− cβ,σ,εr

−2
n

)
, (6.11)where cβ,σ,ε > 0.Proof. Sine λβ,K is the smallest eigenvalue of XK

β we have λβ,K > 0 otherwise de�ning
p(y) = (1, y, . . . , yk) and sine XK

β is symmetrial we should have
0 = λβ,K = inf

‖x‖=1
〈x , XK

β x〉 = 〈x0 , XK
β x0〉 =

∫ 1

−1

(
tx0p(y)

)2
yβK(y)dy,where x0 6= 0 is the normalised eigenvetor assoiated to the eigenvalue λβ,K and where weused the fat that

λ(M) = inf
‖x‖=1

〈x , Mx〉, (6.12)for any symmetrial matrix M . Then ∀y ∈ SuppK we have tx0p(y) = 0 whih leads to aontradition sine y 7→ tx0p(y) is a polynomial. For any h, ε > 0 we introdue the events:
An,h,ε =

{
|λ(XK

h ) − λβ,K | 6 ε
}
, Bn,h,α,ε =

{∣∣∣Kn,h,α − β + 1

2
Kα,β

∣∣∣ 6 ε
}

. (6.13)Using the haraterisation (6.12) we an prove easily that
2k⋂

α=0

Bn,h,α,ε/(k+1)2 ⊂ An,h,ε. (6.14)Sine
Kn,Hn,α − Kn,hn,α = Kn,Hn,α

(
1 − Nn,Hn

Nn,hn

(Hn

hn

)α)

+
1

Nn,hn

n∑

i=1

(Xi − x0

hn

)α(
K

(Xi − x0

Hn

)
− K

(Xi − x0

hn

))
,



18 STÉPHANE GAÏFFASwe have when K is the retangular kernel KR

|Kn,Hn,α − Kn,hn,α| 6
∣∣∣
Nn,Hn

Nn,hn

(Hn

hn

)α
− 1

∣∣∣ +
1

2

(Hn

hn
∨ 1

)α∣∣∣
Nn,Hn

Nn,hn

− 1
∣∣∣,and otherwise under assumption K

|Kn,Hn,α − Kn,hn,α| 6
∣∣∣
Nn,Hn

Nn,hn

(Hn

hn

)α
− 1

∣∣∣ +
Nn,Hn

Nn,hn

(Hn

hn

)α
ρ
∣∣∣
Hn

hn
− 1

∣∣∣
κ

+ ρ
∣∣∣
hn

Hn
− 1

∣∣∣
κ
.Let us introdue for ε > 0 the event

Fn,ε ,
{∣∣∣

Nn,Hn

Nn,hn

− 1
∣∣∣ 6 ε

}
.Then for a good hoie of ε1 6 ε we have |Kn,Hn,α − Kn,hn,α| 6 ε

2(k+1)2
on the event

Cn,ε1∩Fn,ε1 and sine K 6 1 we have Kα,β 6 2
β+1 and noting that Dn,h,0,KR,ε1

=
{∣∣ Nn,h

2nFν(h)−
1
∣∣ 6 ε1

} we have for any α ∈ N

Dn,h,0,KR, ε
3(k+1)2+ε

∩ Dn,h,α,K, ε
3(k+1)2+ε

⊂ Bn,h,α, ε
2(k+1)2

.Using (6.14) we get for η , 2ε
3(k+1)2+2ε

:
Dn,hn,0,KR,η ∩

2k⋂

α=0

Dn,hn,α,K,η ⊂ An,hn,ε. (6.15)We take 0 < ε2 6 ε1 suh that (1+ε2)β+3

1−ε2
6 1 + ε1 (for ε1 small enough). Sine h 7→ Nn,h isinreasing we have

Cn,ε2 ⊂ {Nn,(1−ε2)hn
6 Nn,Hn 6 Nn,(1+ε2)hn

},and in view of lemma 1 we an take 0 < ε3 6 ε2 suh that
Dn,(1−ε2)hn,0,KR,ε3

∩ Dn,(1+ε2)hn,0,KR,ε3
⊂ Cn,ε2.Using (A.1) with the slowly varying funtion ℓF (h) , Fν(h)h−(β+1) we have for n largeenough that uniformly for y ∈ [12 , 3

2 ]

(1 − ε1)ℓF (hn) 6 ℓF (yhn) 6 (1 + ε1)ℓF (hn), (6.16)and in partiular for y = 1 − ε1 and y = 1 + ε1 we get by the de�nition of ε2 and sine
ε3 6 ε2 6 ε1:

Dn,(1−ε2)hn,0,KR,ε3
∩ Dn,(1+ε2)hn,0,KR,ε3

∩ Dn,hn,0,KR,ε3
⊂ Fn,ε1.Then we de�ne for ε4 , ε3 ∧ ε

3(k+1)2+ε the event
An,ε , Dn,(1−ε2)hn,0,KR,ε4

∩ Dn,(1+ε2)hn,0,KR,ε4
∩ Dn,hn,0,KR,ε4

∩
2k⋂

α=0

Dn,hn,α,K,ε4,whih satis�es (6.10) in view of the previous embeddings. Using inequality (6.7) in lemma5 and sine ε4 6 ε2 6 ε1 6 1
2 we get

P
n
µ{Ac

n,ε} 6 4(k + 2) exp
(
− 2−(β+3)ε4σ

2

8(2 + ε4/3)
r−2
n

)
,where we used (6.16) and (2.5). �



CONVERGENCE RATES WITH A DEGENERATE DESIGN 196.4. Proof of the lower bounds.Lemma 7. If there are 2 elements f0 and f1 of a lass Σ suh that the Kullbak-Leiblerdistane between the orresponding probabilities P0 and P1 satis�es K(P0, P1) < Q < +∞with |f0(x0) − f1(x0)| > 2crn for some onstant c > 0 then the pointwise minimax risk
Rn(Σ, µ) over the lass Σ de�ned by (2.1) in the model (1.1) satis�es:

Rn(Σ, µ) > C(c,Q, p)rn,where C(c,Q, p) , c
21/p

(
e−Q ∨ 1−

√
Q/2

2

)1/p.This result is lassial. It an be found in Tsybakov [19℄ with a proof based on a twohypothesis redution sheme and inequalities between the Kullbak-Leibler distane andothers probability distanes.Proposition 6. Let hn be de�ned by (2.5), (αn) be a positive numbers sequene going to
+∞ and rn = ω(hn). If Σ = Σhn,αn(x0, ω) is the lass given by de�nition 2 we have

lim inf
n

r−1
n Rn(Σ, µ) > Cs,p. (6.17)Proof. We use the lemma 7. All we have to do is to �nd two funtions f0,n and f1,n suhthat:(1) There is some 0 < Q < +∞ suh that K(Pn

0 , Pn
1 ) 6 Q,(2) f0,n, f1,n ∈ Σhn,αn(x0, ω),(3) |f0,n(x0) − f1,n(x0)| > 2crn for some onstant c > 0.We hoose the 2 following hypothesis:

f0,n(x) = ω(hn)1|x−x0|6hn
, f1,n(x) = ω(|x − x0|)1|x−x0|6hn

.(1): Sine the ξi are entered Gaussian of variane σ2 and independent of Xn we have:
K(Pn

0 , Pn
1 |Xn) =

1

2σ2

n∑

i=1

(
f0,n(Xi) − f1,n(Xi)

)2
,then in view of (2.5): K(Pn

0 , Pn
1 ) = n

2σ2 ‖f0,n − f1,n‖2
L2(µ) 6 nω2(hn)Fν(hn)/σ2 = 1/2.(2): For h ∈ [0, hn], taking P as the onstant polynomial equal to ω(hn) we have that theontinuity modulus of f0,n is 0, and taking P = 0 we obtain that the ontinuity modulus of

f1,n is bounded by ω(h). Moreover for n large enough, we learly have f0,n, f1,n ∈ U(αn)sine αn → +∞.(3): If we take c = 1/2 we have |f1,n(x0) − f0,n(x0)| = ω(hn) = 2crn. �6.5. Computations of the examples. For a given design density, we ompute the mini-max onvergene rate rn by �rst giving an equivalent as n → +∞ of the smallest solution
hn of

ω(h) =
σ√

nFν(h)
,and then and equivalent of rn = ω(hn).



20 STÉPHANE GAÏFFAS6.5.1. Regularly varying design example. In the regularly varying design ase we �nd theequivalent of hn using the following proposition.Proposition 7. Let γ > 0 and α ∈ R. If G(h) = hγ(log(1/h))α, then we have:
G←(h) ∼ γα/γh1/γ(log(1/h))−α/γ as h → 0+.Proof. When α = 0, the result is obvious then assume α ∈ R−{0}. We look for h suh that

hγ(log(1/h))α = x, when x > 0 is small. If α > 0 we de�ne t = log(hγ/α), so this equationbeomes
t exp(t) = −γx1/α/α, (6.18)where t 6 0. The equation (6.18) has two solutions for x small enough, but they annotbe written in an expliit way. Then let us onsider the Lambert funtion W de�ned asthe funtion satisfying W (z)eW (z) = z for any z ∈ C. See for instane Corless et al. [3℄about this funtion. We are only interested here by its real branhes. This funtion hastwo branhes W0 and W−1 in R. We denote by W0 the one suh that W0(0) = 0 and

W−1 the one suh that limh→0− W−1(h) = −∞. The two solutions of (6.18) are then
t0 = W−1(−γx1/α/α) and t1 = W0(−γx1/α/α) and h0 , exp

(
αW−1(−γx1/α/α)/γ

) isthe smallest solution. By the de�nition of W we have for −1/e < x < 0 and a ∈ R:
eaW−1(x) = (−x)a(−W−1(x))−a and sine W−1 satis�es W−1(−x) ∼ log(x) as x → 0+we have h0 = (γx1/α/α)α/γ (−W−1(−γx1/α/α))−α/γ ∼ γα/γx1/α(log(1/x))−α/γ as x → 0+.When α < 0 we proeed similarly. We have t > 0 and (6.18) has a single solution t =

W0(−γx1/α/α), thus h , exp(−αW0(−γx1/α/α)/γ). By the de�nition of W0 we have
∀x > 0 and a ∈ R: eaW0(x) = xaW−a

0 (x) and sine W0 satis�es W0(x) ∼ log(x) as x → +∞we �nd again h ∼ γα/γx1/α(log(1/x))−α/γ as x → 0+. �For the seond example of regularly varying design, using the proposition 7, we �nd thatan equivalent to the sequene hn de�ned by (2.5) is
(1 + 2s + β)(α+2γ)/(1+2s+β)

(σ

r

)2/(1+2s+β)
(n(log n)α+2γ)−1/(1+2s+β),and sine ω(h) = rhs(log(1/h))γ we �nd that an equivalent of rn (up to a onstant dependingon s, β, γ, α) is

σ2s/(1+2s+β)r(β+1)/(1+2s+β)(n(log n)α−γ(1+β)/s)−s/(1+2s+β).The omputation for the third example (β = −1) is similar to the seond example, sine
Fν(h) = (log(1/h))1−α.6.5.2. Γ-varying design example. For the Γ-varying design example ν(h) = exp(−1/hα), we�rst use the fat that when ν ∈ ΓV(ρ) we have Fν(h) ∼ ρ(h)ν(h) as h → 0+ (see appendix).Realling that ρ(h) = hα+1

α , we solve
h1+2s+α exp(−1/hα) = yn, (6.19)where yn , σ2α/(r2n). De�ning t , h−α, equation (6.19) beomes t−(1+2s+α)/α exp(−t) =

yn that we rewrite x exp(x) = α/(1+ 2s + α)y
−α/(1+2s+α)
n for x , α/(1+ 2s + α)t. Then wehave x = W0

(
α/(1 + 2s + α)y

−α/(1+2s+α)
n

), where W0 is de�ned in the proof of proposition7. Using the fat that W0(x) ∼ log(x) as x → +∞, we get x ∼ α
1+2s+α log n as n → +∞,thus hn ∼ (log n)−1/α and the result holds sine rn , rhs

n.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 21Appendix A. Some fats on regular and Γ-variationWe reall here some results about regularly and Γ-varying funtions. The results statedin this setion an be found in Bingham et al. [1℄, Geluk and de Haan [5℄ and Senata [14℄.A.1. Regular variation. Let ℓ be a slowly varying funtion in all the following. An im-portant result is that the property
lim

h→0+
ℓ(yh)/ℓ(h) = 1, (A.1)holds uniformly for y in any ompat set in (0,+∞). Now if R1 ∈ RV(α1) and R2 ∈ RV(α2)one has(1) R1 × R2 ∈ RV(α1 + α2),(2) R1 ◦ R2 ∈ RV(α1 × α2).If R ∈ RV(γ) for γ ∈ R − {0} then as h → 0+ we have

R(h) →
{

0 if γ > 0,

+∞ if γ < 0.
(A.2)The asymptoti behaviour of regularly varying funtions integrals, usually alled Abeliantheorems, plays a key role in the proofs.

• If γ > −1 we have
∫ h

0
tγℓ(t)dt ∼ (1 + γ)−1h1+γℓ(h) as h → 0+, (A.3)and in partiular h 7→

∫ h
0 tγℓ(t)dt ∈ RV(γ+1). This result is known as the Karamatatheorem.

• When γ = −1 and if ∫ η
0 ℓ(t)dt

t < +∞ for some η > 0 then h 7→
∫ h
0 ℓ(t)dt

t ∈ RV(0)and we have
lim

h→0+

1

ℓ(h)

∫ h

0
ℓ(t)

dt

t
= +∞.

• If R is some positive monotone funtion suh that h 7→
∫ h
0 R(t)dt belongs to RV(γ)for some γ > 0 then R ∈ RV(γ − 1).

• If K is a funtion suh that ∫ 1
0 t−δK(t)dt < +∞ for some δ > 0 then

∫ 1

0
K(t)ℓ(th)dt ∼ ℓ(h)

∫ 1

0
K(t)dt as h → 0+. (A.4)Moreover, when ∫ η

0 ℓ(t)dt/t < +∞ for some η > 0, and K is suh that ∀t > 0,
|K(t) − K(0)| 6 ρ|t|κ for some ρ > 0 and κ > 0 one has

∫ 1

0
K(t/h)ℓ(t)dt/t ∼ K(0)

∫ 1

0
ℓ(t)dt/t as h → 0+. (A.5)If R is de�ned and bounded on [0,+∞) one an de�ne the generalised inverse as

R←(y) = inf{h > 0 suh that R(h) > y}. (A.6)If R ∈ RV(γ) for some γ > 0, then there exists R− ∈ RV(1/γ) suh that
R(R−(h)) ∼ R−(R(h)) ∼ h as h → 0+, (A.7)and R− is unique up to an asymptoti equivalene. Moreover, one version of R− is R←.



22 STÉPHANE GAÏFFASIf (δn)n>0 and (λn)n>0 are sequenes of positive numbers suh that δn+1 ∼ δn as n → +∞,
limn δn = 0, and if there is a positive and ontinuous funtion φ suh that for any y > 0:

lim
n

λnR(yδn) = φ(y), (A.8)then R varies regularly.A.2. Γ-variation. We desribe now the properties of Γ-varying funtions and Π-varyingfuntions. The results are due to de Haan. The referenes are the same as for regularvariation. All the following results an be found there in.A �rst result tells that if ν is a funtion suh that (2.6) holds for all y ∈ R, then (2.6)holds uniformly on eah ompat set in R. If ρ is suh that (2.6) holds, then:
lim

h→0+
ρ(h)/h = 0. (A.9)The auxiliary funtion ρ in de�nition (2.6) is unique up to within an asymptoti equivaleneand an be taken as h 7→

∫ h
0 ν(t)dt/ν(h).The lass ΓV(ρ) is stable under integration. If ν ∈ ΓV(ρ) then Fν(h) =

∫ h
0 ν(t)dt ∈ ΓV(ρ)and we have

Fν(h) ∼ ρ(h)ν(h) as h → 0+.We have seen that under the operation of funtional inversion, the lass of regularlyvarying funtions RV is stable. In the ase of Γ-variation, the inversion maps the lass ΓVin another lass of funtions, namely the de Haan lass ΠV.De�nition 5 (Π-Variation). A funtion ν is in the de Haan lass ΠV if there exists a slowlyvarying funtion ℓ and a positive real number c suh that:
∀y > 0, lim

h→0+
(ν(yh) − ν(h))/ℓ(y) = c log(y). (A.10)The lass of funtions ν satisfying (A.10) is denoted by ΠV(ℓ).

• If ν ∈ ΓV(ρ) then ℓ = ρ ◦ ν← is slowly varying and ν← ∈ ΠV(ℓ).
• If ν ∈ ΠV(ℓ) for some ℓ ∈ RV(0) then ν← ∈ ΓV(ρ) with ρ = ℓ ◦ ν←.In both senses the inverses and their auxiliary funtions are asymptotially unique. Thefollowing inlusion tells that Π-variation an be viewed as a re�nement of slow variation.Atually, any Π-varying funtion is slowly varying: for any ℓ ∈ RV(0) we have
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