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CONVERGENCE RATES FOR POINTWISE CURVE ESTIMATION
WITH A DEGENERATE DESIGN

STEPHANE GAIFFAS

Laboratoire de Probabilités et Modeles Aléatoires, U.M.R. CNRS 7599
and Université Paris 7, 175 rue du Chevaleret, 75013 Paris
email: gaiffas@math.jussieu.fr

ABsTRACT. The nonparametric regression with a random design model is considered. We
want to recover the regression function at a point xg where the design density is vanishing
or exploding. Depending on assumptions on the regression function local regularity and on
the design local behaviour, we find several minimax rates. These rates lie in a wide range,
from slow £(n) rates where ¢ is slowly varying (for instance (logn)™!) to fast n~'/24(n)
rates. If the continuity modulus of the regression function at z¢ can be bounded from
above by a s-regularly varying function, and if the design density is S-regularly varying,
we prove that the minimax convergence rate at zo is nfs/(HQSH’)E(n).

1. INTRODUCTION

1.1. The model. Suppose that we have n independent and identically distributed observa-
tions (X;,Y;) € R x R from the regression model

Y = f(Xi) + &, (L.1)

where f : R — R, where the variables (&;) are centered Gaussian of variance ¢ and inde-
pendent of X1,..., X, (the design) and the X; are distributed with respect to a density p.
We want to recover f at a chosen xg.

For instance, if we take the variables (X;) distributed with respect to the density

B B+1
26+ (1 - 20)P

for zyp € [0,1] and 8 > —1, then clearly when § > 0 this density models a lack of information

at zg and conversely an exploding quantity of information if —1 < § < 0. We want to

understand the influence of the parameter 3 on the quantity of information at xy in the
minimax setup.

w() |z — 330|ﬁ1[0,1] (),

1.2. Motivations. The regression function pointwise estimation is a well-known problem
which has been intensively studied by many authors. The first authors who computed
the minimax rate over a nonparametric class of Holderian functions are Ibragimov and
Hasminski [10] and Stone [17]. Over a Holder functions class with smoothness s, the local
polynomial estimator converges with the rate n=5/(1425) (see [17]) and this rate is optimal
in the minimax sense. Many authors have worked on related problems: see for instance
Korostelev and Tsybakov [11], Nemirovski [12], Tsybakov [19].
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Nevertheless, these results require the design density to be non-vanishing and finite at
the estimation point. This assumption roughly means that the information is spatially
homogeneous. The next logical step is to look for the minimax risk at a point where the
design density p is vanishing or exploding. To achieve such a result, it seems natural to
consider several design density behaviours at xg and to compute the corresponding minimax
rate. Such results would improve the statistical description of models (here in the minimax
setup) with very inhomogeneous information.

When f has a Holder type smoothness of order 2 and if u(z) ~ z” near 0 where 3 > 0,
Hall et al. [9] show that a local linear procedure converges with the rate n~=%©®+% when
estimating f at 0. This rate is also proved to be optimal. In a more general setup for the
design and if the regression function is Lipschitz, Guerre [8] extends the result of Hall et al.
for § > —1. Here, we intend to develop the regression function estimation when the design
is degenerate in a systematic way.

1.3. Organisation of the paper. In section 2 we present two theorems giving the pointwise
minimax convergence rate in the model (1.1) for different design behaviours (theorem 1 and
2). In section 3 we construct an estimator and we give upper bounds for this estimator in
section 4 (propositions 4 and 5). In section 5 we discuss some technical points. The proofs
are delayed until section 6 and well known facts about the regular and I'-variation are given
in appendix.

2. MAIN RESULTS

All along this study we are in the minimax setup. We define the pointwise minimax risk
over a class X by

RS, 1) 2 (inf sup B2, {Tu(wo) — fao)P}) 1)
(Tn f c ) fou )

where inf7, stands for any estimator T,, based on the observations (1.1), where x¢ is the
estimation point and p > 0. The expectation E?u in (2.1) is taken with respect to the joint
probability IP’;%# of the random variable pairs (X;,Y;)i=1,...n-

2.1. Regular variation. The regular variation definition and main properties are due to
Karamata (1930). Main references on regular variation are Bingham et al. [1], Geluk and
de Haan [5], Resnick [13] and Senata [14].

Definition 1 (Regular variation). A continuous function v : RT™ — R™ is regularly varying
at 0 if there is a real number 3 € R such that:

Vy>0, |l h)/v(h) =y°. 2.2
y>0, lim v(yh)/v(h) =y (2.2)

We denote by RV(3) the set of all the functions satisfying (2.2). A function in RV(0) is
slowly varying.

Remark. Roughly, a regularly varying function behaves as a power function times a slower
term. Typical examples of such functions are z”, 2%(log(1/z))" for v € R, and more
generally any power function times a log or compositions of log to some power. For other
examples, see in the references cited above.
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2.2. The functions class.

Definition 2. If § > 0 and w € RV(s) with s > 0 we define the class Fs(xg,w) of functions
f:[0,1] — R such that
Vh<s, inf sup |f(x)— Pla—x0)| < w(h),
PePy, |z—zo|<h
where k = | s] (the largest integer smaller than s) and Py is the set of all the real polynomials
with degree k. We define £, (h) = w(h)h ™%, the slow variation term of w. If a > 0 we define

U(e) 2 {f:]0,1] — R such that |||l < a}.

Finally, we define
Y020, w) = Fs(zo,w) NU().

Remark. If we take w(h) = rh® for some r > 0 then we find back the classical Holder
regularity with radius r. In this sense, the class Fs(xp,w) is a slight Holder regularity
generalisation.

Assumption M. In all the following, we assume that there exists a neighbourhood W of
xo and a continuous function v : Rt — RT such that:

Vo e W, pula) = vz — o). (2.3)

This assumption roughly means that close to x( there are as many observations on the
left of xp than on the right. All the following results can be extended easily to the non
symmetrical case, see section 5.1.

2.3. Regularly varying design density. The theorem 1 gives the minimax rate over the
class ¥ (see definition 2) for the estimation problem of f at zyp when the design is regularly
varying at this point.

We denote by R(xo, 3) the set of all the densities p such that (2.3) holds with v € RV(53)
for a fixed neighbourhood W.

Theorem 1. If
* (5,0) € (0,400) x (=1,400) or (s, ) € (0,1] x {1},
o X =Y, an(®o,w) with w € RV(s), a, = O(nY) for some v > 0 and hy, given by
(2.5),
® 11 € R(zo, ),

then we have
R(3, p) = o2/ (1H248) =s/A+2548) g (n=1) as n — +o0, (2.4)

where £, , is slowly varying and where < stands for the equality in order, up to constants
depending on s, B and p (see (2.1)) but not on o. Moreover, the minimaz rate is equal to
w(hy,) where hy, is the smallest solution to

o

w(h) = —— (2.5)
\/2n [, v(t)dt

Ezample. The simplest example is the non-degenerate design case (0 < p(zg) < +00) with
the class ¥ equal to a Holder ball (w(h) = rh®, see definition 2). This is the common case
found in the literature. In this case, the design is in particular slowly varying (8 = 0 with the
slow term constant and equal to lim,_,,, p(z)). Solving (2.5) leads to the classical minimax

rate
O_2s/(1+2s)Tl/(1+25)nfs/(1+25) )
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Ezample. Let § > —1. We consider v such that foh v(t)dt = h% 1 (log(1/h))® and w(h) =
rh®(log(1/h))Y where o, are any real numbers. In this case, we find that the minimax rate
(see section 6.5 for the details) is

25/ (14254) L (B1)/ (1425+) (1 (10g )= Y(1+B)/5) =5/ (142545)

We note that this rate has the form given by theorem 1 with the slow term £, ,(h) =
(log(1/h))0(F+D)=sa)/(1+25+6) When ~(1+ ) — s = 0 there is no slow term in the minimax
rate, although there are slow terms in v and w. Again, if 8 = 0 and v = sa, we find back
the first example minimax rate, although the terms v and w do not have the classical forms.

Ezample. Let 8 = —1, a > 1 and v(h) = h~'(log(1/h))~®. Let w be the same as in the
previous example with 0 < s < 1. Then the minimax convergence rate is

on~?(logn)@=1/2,

This rate is barely the parametric estimation rate, up to the slow log factor. This result is
natural since the design is very "exploding": we have a lot of information at xzy thus we can
estimate f(xg) very fast. Also, we note that the regression function regularity parameters
(r, s and ) have (asymptotically) disappeared from the minimax rate.

2.4. I-varying design density. The regular variation framework includes any design den-
sity behaving close to the estimation point as a polynomial times a slow term. It does not
include for instance a design with a behaviour similar to exp(—1/|z — z¢|) prolonged at xg
by 0, since this function goes to 0 at x( faster than any power function.

Such a local behaviour can modelize a very big lack of information. This example naturally
leads us to the framework of I'-variation. In fact, such a function belongs to the following
class introduced by de Haan (1970):

Definition 3 (I-variation). A non-decreasing and continuous function v : Rt — R* is
I-varying if there exists a continuous function p : RT™ — R™ such that

vy eR, lim v(h+yp(h))/v(h) = exp(y). (2.6)

We denote by I'V(p) the class of all such functions. The function p is called the auziliary
function of v.

Remark. A function behaving like exp(—1/|x — z¢]|) close to z( satisfies assumption M with
v(h) = exp(—1/h) where v € T'V(p) with p(h) = h2.
Theorem 2. If

oY = 3, a.(x0,w) where w € RV(s) with 0 < s < 1, hy is given by (2.5) and

an = O(ry") for some v > 0 where r, = w(hy,),

e [ satisfies assumption M with v € T'V(p),

then
Rn(Z, 1) < £y (n™1) as n — 400, (2.7)

where £,,, is slowly varying. Moreover, as in the theorem 1, the minimaz rate is equal to
w(hy) where hy, is the smallest solution to (2.5).

Ezxample. Let p satisfy assumption M with v(h) = exp(—1/h%) for @ > 0 and w(h) = rh*
for 0 < s < 1. Tt is an easy computation to see that v belongs to the class I'V(p) for the
auxiliary function p(h) = a~th®T!. In this case, we find that the minimax rate (see section
6.5 for the details) is

7s/a‘

r(logn)
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As told by theorem 2, we find a very slow minimax rate in this example. We note that the
parameters s and « are on the same scale.

3. LOCAL POLYNOMIAL ESTIMATION

3.1. Introduction. For the upper bound proof in theorem 1 we use a local polynomial
estimator. The local polynomial estimator is well-known and has been intensively studied
(see Stone [17]|, Fan and Gijbels [4], Spokoiny [15], Tsybakov [19], among many others). If f
is a smooth function at o then it is close to its Taylor polynomial. A function f € C*(x)
(the space of k times differentiable functions at xp with a continuous k-th derivative) is such
that for any x close to xg

/ (k) (2
ﬂw%f@w+fu@u—%yhn+i7%2

Let h > 0 (the bandwidth) and k € N. We define ¢; ,(z) = (x;}f(’)j and the space
Vieh = Span{(¢;n) j=o,...k}-

For a fixed non-negative function K (the kernel) we define the weighted pseudo-scalar prod-
uct

(z — o). (3.1)

(F o 2 D0 F(Xg(X) K (F5-0),
=1

(3.2)
and || - |nx £ \/{-, Jnx the corresponding pseudo-norm (K > 0). In view of (3.1) it is
natural to consider the estimator defined as the closest polynomial with degree k to the
observations (Y;) in the least square sense, that is:

fn = argmin |lg — Y% «. (3.3)
9€ Vin

Then fh(xo) is the local polynomial estimator of f at xg. A necessary condition for fh to be
the minimiser of (3.3) is to be solution of the linear problem:

o~

find f € Vi, such that Vo € Vin,  (f, &nk = Y, dnk- (3.4)

The estimator fh is then given by

fn = B, (3.5)
where
Py = 0opon + 01010 + - .. + OkPr (3.6)
with é\h the solution, whenever it makes sense, of the linear system:
XKg=vK, (3.7)
where XhK is the symmetrical matrix with entries, for 0 < 7,1 < k:
(XE)j0 = (D GLudn, (3.8)

and Y,If is the vector defined by:
Y5 =Y, ¢jnnki0<i<k).

We assume that the kernel K satisfies the following assumptions:
Assumption K. Let K be the rectangular kernel K%(z) = %1|I|<1 or a non-negative

function such that:
e Supp K C [—1,1]

)
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e K is symmetrical,
e K, =sup, K(v) <1,
e There is some p > 0 and « > 0 such that Va,y, |K(z) — K(y)| < plz — y|".

The assumption K is satisfied by all the classical kernels used in nonparametric curve
smoothing. Let us define:

Nn,h = #{Xz such that X; € [xo — h,xo + h]}, (39)
the number of observations in the interval [xg — h, 2o + k], and we define the random matrix
xFENTIXE

Let us denote

X, 20(X1,...,X,),
the o-algebra generated by the design. Note that X,f( is measurable with respect to X,,.
The matrix Xf{( is a "renormalisation" of XhK. We show in lemma 6 that this matrix is
asymptotically non-degenerate with a large probability when the design is regular varying.

For technical reasons, we introduce a slightly different version of the local polynomial
estimator. We introduce a "correction" term in the matrix XhK.

Definition 4. Given some h > 0, we consider fh defined by (3.5) with §h the solution when
it makes sense (if N, » = 0 we take f, = 0) of the linear system

XEKo =Yk, (3.10)

where: /

vK & vK 1/2
with A(M) standing for the smallest eigenvalue of a matrix M and Iy denoting the identity
matrix in RFFL,

Remark. One can understand )NChK definition as follows: in the "good" case, that is when
Xf{( is non-degenerate in the sense that its smallest eigenvalue is not too small, we solve the
system (3.7), while in the "bad" case we still have a control on the smallest eigenvalue of

ihK, since we always have A(f(hK) > Ni/}?

3.2. Bias-variance equilibrium. A main result on the local polynomial estimator is the
bias-variance decomposition. This is a classical result, many times presented in different
forms: see Cleveland [2], Goldenshluger and Nemirovski [6], Korostelev and Tsybakov [11],
Spokoiny [15], Stone [16], Tsybakov [18, 19]. The version in [15] is close to the one presented
here. Mainly, the differences are linked with the fact that the design is random and that
we consider a modified version of the local polynomial estimator (see definition 4). We
introduce the event

OF 2 {X),..., X, are such that A(X/) > N /* and N,,, > 0}. (3.11)
Note that on QhK the matrix X,f( is invertible.

Proposition 1 (Bias-variance decomposition). Under assumption K and if f € Fp(xo,w)
then the following inequality holds on the event QhK:

[Fa(x0) — f(@o)l < X HAI)WE T LKoo (w(h) + o N,y 2 |al), (3.12)

where vy, is, conditional on X, centered Gaussian such that E?yu{fy,%]%n} < L
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Remark. The inequality (3.12) holds conditionally on the design, on the event Q. We will
see that this event has a large probability in the regular variation framework.

3.3. Choice of the bandwidth. Now the problem is, like with any linear estimation pro-
cedure, to answer the following question: how to choose the bandwidth h? In view of
inequality (3.12) a natural bandwidth choice is

H,, = argmin {w(h) > 2 } (3.13)
" o VN n

Such a bandwidth choice is well known, see for instance |7]. This bandwidth choice stabilises

the procedure since it is sensitive to the design, which represents in the model (1.1) the local

quantity of information. The estimator is then defined by

Fal20) 2 fa, (x0),

where fh is given by the definition 4 and H,, is defined by (3.13). The random bandwidth
H,, is close in probability to the theoretical deterministic bandwidth h,, defined by (2.5) in
view of the following proposition.

Proposition 2. Under assumption M and if w € RV(s) for any s > 0 then for any 0 < € <
1/2 there ezists 0 < n < € such that

Pﬁ{y%f-1(>e}:<4exp<-1_?2/3nﬁ;0m/m),

where F,(h) = foh v(t)dt.

When nF,(h,/2) — +o0o as n — 4oo (this is the case when v is regularly varying) this
inequality entails
H, = (1 + OP?’M(l))hn7

where op(1) stands for a sequence going to 0 in probability under a probability P.

The proposition 3 motivates the regularly varying design choice. It makes a link between
the behaviour of the counting process N, (that appears in the variance term of (3.12))
and the behaviour of u close to xy. Actually, the regular variation property (see definition
1) naturally appears under assumptions on the asymptotic behaviour of N,, . Let us denote
by P, the joint probability of the variables (X;).

Proposition 3. If assumption M holds with v monotone then following properties are equiv-
alent:

(1) v is reqularly varying of index 5 > —1,

(2) There exist sequences of positive numbers (\,) and (), such that limy,~y, = 0,
liminf, nA,; ! > 0, Yp41 ~ Yo as 0 — +oo and a continuous function ¢ : Rt — RT
such that for any C > 0:

EZ{Nn,C%} ~ ¢(C) A as n — 400,

(3) There exist (\n), (yn) and ¢ as previously such that for any C > 0 and € > 0:
Nn,C"yn

M{M@M_

The proof is delayed until section 6. Mainly, it is a consequence of the sequence charac-
terisation of regular variation (see in the appendix).

n

lim
n—-+oo )\n

1| >} =0
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4. UPPER BOUNDS FOR an(xo)

4.1. Conditional on the design upper bound. When no assumption on the design
density behaviour is made, we can work conditionally on the design. For A > 0 we define
the event

Ey = {)\n > )\},
where A, £ M\(X}] ). Note that E5 € X,,. We also define the constant m(p) £ \/2/m [, (1+
)P exp(—t2/2)dt.
Proposition 4. Under assumption K, if n > k+ 1 and X is such that )\2Nn7Hn > 1, we
have on Ejy:

sup E?,ﬂ{’fn(xo) — f(zo)P| X} < m(p)APKL (k + 1)P/*RP,
[ € Fu,(xo,w)

where R, = w(H,).

4.2. When the design is regularly varying. The proposition 5 below gives an upper
bound for the estimator an (zo) when the design density is regularly varying. This propo-
sition can be viewed as a deterministic counterpart to proposition 4.

Let Ag x be the smallest eigenvalue of the symmetrical and positive matrix with entries,
for 0 < 4,1 < k:

_B+1 +1 ' j+1+3
(Ao = g (107 [ K )y (4.1)

Note that in view of lemma 6 we have A\g x> 0.

Proposition 5. Let ¢ > 1 and h,, be defined by (2.5). Let («,) be a positive numbers
sequence such that o, = O(nY) for some v > 0. If p € R(xo, ) with § > —1 and w € RV(s)
we have for any p > 0O:
lim sup sup EY | Fa(@o) — f(zo)lP} < OGN, (4.2)
" f € Ethyan(x07w)

where v, 2 w(hy) satisfies

- 0_23/(1+23+ﬁ)nfs/(1+2s+ﬁ)gw,y(1/n) as n — +oo,

where £, is slowly varying and where C = 45/(F25408) (k1 1)P/2m(p) KX,

Remark. In Holder regularity with radius r we have
Ty ~ 028/(1+28+ﬁ)T(ﬁ+1)/(1+28+5)n—S/(1+28+6)gsyy(1/n) as n — ~+00.

5. DISCUSSION

5.1. About assumption M. As told previously, the assumption M means that the design
distribution is symmetrical around xzg close to this point. When it is not the case, and if
there are two functions v~ € RV(87), v+ € RV(3*) for 5,37 > —1 and n~,n" > 0 such
that for any x € [xg —n~, 2o + nT]:

() = v
we can easily prove that the minimax convergence rate is the fastest among the two possible
ones, which is (2.4) for the choice of 8 = 3~ A %. To prove the upper bound we can use
the same estimator as in section 3 with a non symmetrical choice of the bandwidth, or more
roughly we can "throw away" the observations on the side of xg corresponding to the largest
index of regular variation (when p is known).

T — $0)1x0<x<10+n+ + 1/_(3:0 - x)lxofn_ Lr<zos
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5.2. On theorem 1 and propositions 4, 5. Since we are interested in the estimation of
f at xp, we need only a regularity assumption in some neighbourhood of this point. Note
that the minimax risks are computed over a class where the regularity assumption holds in
a decreasing interval as n increases.

It appears that a natural choice of this interval size is the theoretical bandwidth of es-
timation h,,, since it is the minimum we need for the proof of the upper bounds. To state
an upper bound with the "design-adaptive" estimator an(xo) — in the sense that it does
not depend on the design density behaviour close to xg (via the parameter (3 for instance)
— we need a smoothness control in a slightly larger neighbourhood size than h,, (see the
parameter ¢ in proposition 5).

More precisely, to prove in proposition 5 that r, is an upper bound, we use in particular
the proposition 2 with ¢ = 9 —1 in order to control the random bandwidth H,, by h,,. Thus,
the parameter p is indispensable for the proof of proposition 5. Note that we do not need
such a parameter in theorem 1 since we use the estimator with the deterministic bandwidth
hn to prove the upper bound part of the theorem. Of course, this estimator in unfeasible
from a practical point of view since h, heavily depends on pu, which is hardly known in
practice. This is reason why we state the proposition 5 which tells us that the estimator
with the data-driven bandwidth H,, converges with the same rate.

5.3. On theorem 2. In the I'-variation framework, for the proof of the upper bound part of
theorem 2 we use an estimator depending on p. Again, such an estimator is unfeasible from a
practical point of view. Anyway, this framework is considered only for theoretical purposes,
since from a practical point of view nothing can be done in this case: there is no observations
at the point of estimation. This is precisely what theorem 2 and the corresponding example
tell us, in the sense that the minimax rate is very slow.

5.4. About the I'-varying design case. For the proof of the upper bound part in theorem
2 we can consider another estimator than the classical regressogram (see the proof of the
theorem). If K is a kernel satisfying assumption K we define

Xifhn* Xz“l’hn*
Folzo) 2 i Ya(K ( p(hn)xo) + K ( p(hn)mo))
n = Xi—hn— Xithn— ’
>y K (Foge57) + K (F:55570)

where h,, is defined by (2.5). The point is that since Supp K C [—1,1], this estimator
makes a local average of the observations Y; such that X; € [zg — h — p(h),z9 — h + p(h)] U
[zo +h — p(h),z0 + h + p(h)], which does not contain the point of estimation xq for n large
enough, since limy, o+ p(h)/h = 0 (see appendix). In spite of this, we can prove that f,(zo)
converges with the rate r,. We can understand this as follows: since there is no information
at zg the procedure actually "catches" the information "far" from xy. This fact shows that
again, the I'-varying design is an extreme case.

5.5. More technical remarks.

e About assumption K, the first assumption is used to make the kernel K localise the
information around the point of estimation xg (see (3.2)). The last one is technical
and used in the proof of lemma 6. The two other ones are used for the sake of
simplicity, since we only really need the kernel to be bounded from above.

e When § = —1 theorem 1 holds only for small regularities 0 < s < 1. For technical
reasons, we were not able to prove the upper bound when s > 1 and § = —1. More
precisely, in this case we have k = 0 and in view of (3.4) it is clear that the local
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polynomial estimator is a Nadaraya-Watson estimator, defined by

- i ViR ()
0 S K )

When s > 1 we have to use a local polynomial estimator. The problem is then in
the asymptotic control of the smallest eigenvalue of XhKn (see lemma 6) and to do
so we use an average (Abelian) transform property of regularly varying functions,
which is (see appendix):

a1 en «
/yO‘K(y)E,,(yh)d—; - {fy K(y)dy when a > 0,

li !
im
h —ot £, (h)

+00 when o = 0.

Thus the only way to have a limit for both cases is to assume K(y) = O(|y|") for
some 77 > 0, but the obtained upper bound rate in this case would is slower than the
lower bound.

6. PROOFS

6.1. Proof of the main results.

Proof of theorem 1. We first prove the upper bound part of equation (2.4) when g8 > —1.
We consider the estimator f,(z9) = fn,(xo) where fj is given by definition 4, where h,, is
given by equation (2.5) and we define 7, = w(h,). Let 0 < ¢ < 2. We introduce the event

Nn,hn

Since lim,, nF), (hy) = 400 (see for instance lemma 4) we have for n large enough B, . C QhKn
(see (3.11)) and in particular on the event B, . the matrix XhKn is invertible. Then using
proposition 1 and since f € Fy,, (zo,w) we get:

| fa(@0) — f(@0) |15, < Ngx — &)V + 1Ko (w(hn) +

(2 —e)nk,(hy) Y |)

< (Mgx — 5)71 Vk + 1Koow(hn) (1 + [vn,1),
where we last used the definition of h,. Since 7, is conditional on X,, centered Gaussian
such that E?ﬂ{’yzn]%n} < 1, we get for any p > 0:
sup B u(zo) = f(@o)lP1s, X0} < (\ax — &) P (k + 12 KEm(p),
J€Fn, (xo.w)

where m(p) is defined in section 4. Now we work on the complementary By, .. We use the
lemmas 2 and 6 to control the probability of B, . and we recall that a,, = O(n?) for some
v > 0. When N, ;,, = 0 we have f,(z9) = 0 by definition and then

S )E Faudra? | Fa(@o) = f(x0)Plag  } < (anry ' VPPY L AB; ) = oa(1).

Then we assume N, , > 0. Using the lemma 3 we get:

S B {rtlateo) - Fle0) s, ) < zpr;pwm,ﬂ{\ﬁl(xo)r?p} +ab)\/Pr{Bs.}
eU(an
< 2P (o, )P (V/1PCo ke p + 1) /PRABE .} = 0n(1),
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and then we have proved that 7, is an upper bound of the minimax risk (2.4) when 5 > —1.
When = —1and 0 < s <1 we have kK = 0 and the matrix X,fi is 1 x 1 sized and equal to

Ky 0 (see equation (6.5)). The bias variance equation (3.12) becomes in this case:

| Fu(@o) = F(20)] < Knin0) Koo (w(hn) + N, 3 yn, |).
We consider the event

Npn K h,0
Do) ¢y f] Kata
{ onE, (hy) © onF, (hn)

and we note that the probability of C, . is controlled by lemma 2 and equation (6.8) in
lemma 5. Then we can proceed as previously to prove that 7, is an upper bound when
B = —1 and we have proved that 7, is an upper bound for the left side of (2.4). Using the
proposition 6 we also have that r, is a lower bound for the left part of (2.4). The conclusion
follows from lemma 4. O

Cna:

)

~ K(O)‘ < g},

Proof of theorem 2. The proof is similar to the proof of theorem 1. For the proof of the
upper bound part in (2.7) we use the regressogram estimator defined by

n
Yo Yilix, —aol<hn

—~ if IV, > 0,
fn(xO) £ Nn,hn i
0 if N, 5, = 0.
Let 0 < e < 1/2. On the event
Non
D, .2 { _ o 1‘ < }
" = \U2nF, (hy) °p

we clearly have Ny, 5, > 0 and since f € F, (z9,w), we have

[fu(@o) = F(20)] < w(hn) + oN, 1/ [vn] < w(ha) (1 — ) 72(1 + Jva]),

N 1 n ) . oy .
where v, = Vo Yoy &il|X,—wo|<h, 18, conditional on X, standard Gaussian. Then we
st

get

sup B}, {|fulz0) = fl@0)[P1p, .} < 7h(1— )P/ *m(p).
fefhn(.’ro,u})

Now we work on Dj, .. If N, =0 we get using lemma 2 and since a, = O(r,”):

2 2

~ g0
sup E% {|fn(zo)—f(z0)|Plpe } < EPIA{D; .} = O(r,")exp ( — rn?) = on(1),
up B {Ifu(ao) = f@o)"pg } < ofP{DE L = O ) exp (=15 7gm?) = oall)

since oy, = O(ry, 7). If Ny p,,, > 0 since | Fn(20)] < o + olvp| we get

o B {1Faao) = o) 1o, ) < 2081+ Vg [BE{Pr) = onl1),
fEU(an

where Cy ), is the same as in the proof of theorem 1. Then we have proved that r, is an
upper bound. The lower bound is given by the proposition 6, and the conclusion follows
from lemma, 4 0

In all the following, (-, -) denotes the Euclidean scalar product on R¥*! e; = (1,0,...,0) €

RFL || - ||oo stands for the sup norm in R*¥*! and || - || stands for the Euclidean norm in
RF+1
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Proof of proposition 1. On QhK we have in view of definition 4 that ihK = XhK and XhK is
invertible. Let 0 < ¢ < 1/2, and n > 1. We can find a polynomial P]’?’e of order k such that

9
sup_|f(z) = P(o)| < jnf  sup |f(z) = Pz — o)l + —=
|lx—x0|<h f PePy |x—x0|<h \/ﬁ

In particular with h = 0 we get [f(zo) — P (20)| < - Defining 6, € RF*1 such that
P = Py, (see (3.6)) we get

~ £
| fr(z0) — f(2o)] < \/, 7
Then we have for j € {0,...,k} by (3.4) and (1.1):
(XK@ —01)); = (fn — PYe, dinhng =Y = P, dindn i
=(f- P}m? Gining Y = f, djnink
=(f =P/, djnni + (€, djnnk
= Bhj + Vij,

+ (O — O, e1)] = —= + ((XE) ' XE (O — 1), e1)].

thus XhK(é\h —60p) = B, + V. In view of assumption K and since f € Fj(zg,w) we have:

13
1 Bhjl = [{f = P, dgnhnrc| < If = PP lln gl g,nlln,re < NopKoo(w(h) + %),

thus || Bplcc < Ny pKoo(w(h) + %) Moreover, since A~ (X},) < Ni/h? < n'/2 on Qp k., we
have:

(X5 ™ B,y en) < X5 HIIBl < 1K) ™M IVE + 1Bl
<A HXE)WE + 1K ow(h) + VE + 1K ¢,

where we last used the fact that |[M || = A=}(M) for a positive symmetrical matrix. The
variance term V}, is clearly conditional on X,, a centered Gaussian vector, and its covariance
matrix is equal to JQXhKQ. Thus the random variable ((X#)~'V}, | e;)p  is, conditional on
X, centered Gaussian of variance:

v} = % {er, (XF) XS (XE) Ter) < oFer, (X)X (X)) )
=o*(er, (X5)ter)
(X)) = o® Ny A (&),
since K < 1. Then

)‘(Xh)_nlﬂlf (z, X2y < [|[Afer]| < VE+1,

since X,f( is symmetrical and its entries are smaller than 1 in absolute value. Thus:

N AT <o N g (k + DA,
and the proposition follows. O
Proof of proposition 2. The proposition is a direct consequence of the lemmas 1 and 2. [

Proof of proposition 3. (2 ) = (1): In view of assumption M one has for n large enough
E{Nycr} = 2n [y " v(z)de = 2nF,(Cy,) thus (2) entails 20X, F, (Cry,) ~ ¢(C) as
n — +o0o and then F), € RV( ) in view of the characterisation (A.8) of regular variation.
Since F,(0) = 0 we have more precisely F,, € RV(«a) for a > 0 and since v is monotone we
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have v € RV(a — 1) (see appendix).
(3) = (2): Let € > 0. We define the event

Ap( {¢HCW”—1‘<5}.
Then:

A B Nn ey} = A B N, (L o) + 1ac (00) } < (146)0(C) + 0, 'PR{AS(CLe) },
and then limsup,, A, "E:{Np,c+, } < (1 +€)¢(C). On the other side:

M B N 0y} = A Bl N0y La, o)} = (1= )(C)PR{ AL (Ce)},

and then liminf, A\ 'E{ Np v, } = (1 —)9(0).

(1) = (3): Let v € RV(#) and 0 < ¢ < 1/2. If 8 > —1 we have F, € RV(8 + 1) (see in
the appendix) thus we can write F,(h) = h?*10p(h) where £ is slowly varying. We define
Y = n~V/CB+D)) when f > —1and v, = n~'if 3= —1. When # = —1 we have F, € RV(0)
(see appendix). We note that in both cases we have lim,, v, = 0 and v, 1 ~ 7, as n — +oo.
In view of lemma 2 we get for n large enough

Py
where we used the fact that £z is slowly varying and where we defined )\, £ 2nF,(v,) and
#(C) £ CP*1. Then we clearly have lim, nA ! = 400 and proposition follows. O

Nn 7C'Yn 2

SO 1‘ > 5} < 2exp(—1 f€/3¢(C)An),

6.2. Proof of the upper bounds for [y, (z).

Proof of proposition 4. Since E, C QKn, (3.13) and proposition 1 entail that uniformly for
any f € Fu, (zo,w) we have

[fa(x0) = f (o)l S AT'VE+ 1Ko Ra(1 + [y, ).

where vy, is conditional on X,, centered Gaussian such that E}‘ﬂ{vHJ.'{n} < 1. The result
follows by integration with respect to P} (-[X;). O

Proof of the proposition 5. Let us define € £ p—1. We can assume without loss of generality
that € < % N Ag, k- We consider the event A, . from lemma 6. In view of this lemma we
have Ay C Ey; e N{(1 —€)hn < Hy < (1 +€)hy} and then Fp, (20, w) C Fa, (20, w).
Thus using proposition 4 we get

up B} | fa(@o) = f(@0)[P1a, | X0} < m(p)(Nsx — ) PEE (k+1)P/? R,
fefghn x0,w

<m(p) Ak — ) PRE (k+ )PP (14 )Pt
where we used equation (6.1) in the same way as in the proof of lemma 1 to obtain on A, .

that w(H,) < (1 +¢)*"w(h,). On the complementary A¢ _ using inequality (6.11) and
lemma 3 and since a;, = O(n”) for some v > 0 we get

sup B {r,”| fulwo) = f(20)PLag . } < 2 (anry )P (VPO + 1)y Pa{ A5 .} = 0n(1),

feu(an)

n,e

and (4.2) follows. The equivalent of r, is given by lemma 4. O
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6.3. Lemmas for the proof of the upper bounds.

Lemma 1. If w € RV(s) for any s > 0 then for any 0 < e < % there exists 0 < n < € such
that

{lrmmes 2 1l <o {2 ~ 1l < b < {172 -1 <}

Proof. In view of (3.13) we have
{Hy < (1+8)hn} = Ny, qsepn, = 0°w (1 +)hn)}.

Let define e; = 1 — (1 — 2)72(1 + £)~2%. For € small enough, it is clear that e; > 0. We
recall that ¢, stands for the slowly varying term of w (see definition 2). Since (A.1) holds

uniformly on each compact set in (0, +00), we have for n large enough that for any y € [2, g]
(1- 52)&0(}%) <lo(yhn) < (1 +¢ )gw(hn)7 (6.1)
so using (6.1) with y = 1+¢ (¢ < ), we obtain in view of (2.5):
2(1 — e1)nF, (1 +€)hy) = (1 — )21 4+ &) 0w 2(hy)
= 02 ((1+e)hn) (1 = £2)72052(hn)
> o%((1+ €)hn) 2,
and then
{Nn(14e)h, = 2(1 —e)nFL (1 +e)hy)} C{H, < (1+€)hy}
Using again (6.1) with y = 1 — € we get in the same way
{Nn,(—o)h, <20 +e1)nF (1 —€)hn)} C {Hy > (1 —€)hn},
and then:
szt =5 V<ot {lmmii g - <o < {lae -1 <<}
and the result follows for the choice n = ¢ A e;. U

Lemma 2. Under assumption M, we have for any €, h > 0:
2

N, h 9
P”{L—l( } <2ex(- ().
s Uzng,my 17 ey S 2o - pniv()
Proof. It suffices to use the Bernstein inequality to the sum of independent random variables
Zi:]-\Xifxo\gh_PZ{’Xl_xO‘ gh} fOI‘iZl,...,TL. O

Lemma 3. For any p > 0 and h > 0 the estimator fh (see definition 4) satisfies

sup B {|fa(@0)P|Xn} < Copplav/n)?,
felU(a)

where Cy i p = (k+ 1)P/12\/2/7 S+ (1 + ot)P exp(—t2/2)dt.

Proof. When N,, ;, = 0 we have by definition fh = 0 and the result is obvious, so we assume
Ny > 0. Using the fact that A\(A + B) > A(A) + A\(B) when A and B are symmetrical

and non-negative matrices we get )\()Nif) > Ni/,? > 0 thus )NChK is invertible. Equation
(3.10) entails | fy(z0)| = [(XE)1XEB), , e1)] = [(XE)"1Y},, e1)]. In view of (1.1) we can
decompose for j € {0,..., k}:

(Yn); =Y, djnnk = (s djndni + (€, dinln i = Bhj+ Vi
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Since f € U(a)) we have under assumption K that | By, ;| < alN,, p, thus || Byllco < Ny, . As
in the proof of proposition 1 we have that ((XX)~1V},, e;) is, conditional on X,,, centered
Gaussian with variance
2 2 Y E\-1x K? (x K\—1 2 YEK\-1x K (x K\—1
v, = o (er, (X)) Xy (X ) er) < o{en, (X )T X (X)) er)
20 (K112 K

< o (X)X -

Assumption K entails that all the elements of the matrix XhK are smaller than N, 5, thus
IXE|| < (k+1)Npp. Since XX is symmetrical we get [|(X5)~1| = A1(XK) < N, /%, and

then v? < 02(k + 1). Finally, we have
[Fulo)l < {XE) ' Ba, en)l + {XE) Vi, en)l < )M Ball + ov/E + Tl
<

vk + 1(av/n + ofyl),
where vy, is, conditional on X,, centered Gaussian with variance smaller than 1. The result
follows by integrating with respect to P’ (:|X5). O

Lemma 4. If v € RV(§), w € RV(s) for s > 0 and the sequence (hy) is defined by (2.5)
then the rate v, = w(hy,) satisfies

Ty ~ 68760,23/(1+2s+5)nfs/(1+2s+5)gw7y(1/n) as n — 400, (6_2)

where €, is slowly varying and c, g = 45/0+2540)  When w(h) = rh® (Holder regularity)
for r > 0, we have more precisely:

P~ Cs,ﬁUZS/(1+28+6)7’(6+1)/(1+28+6)n_s/(1+28+6)€5,y(1/n) as n — 400, (63)
where Ly, is slowly varying. It is noteworthy that when 3 = —1 the result becomes:

o~ 20 Y20, ,(1/n) as n — 4oc.

When v € T'V(p) we have
Tn ~ Ew,u(l/n)a (64)

where £, is slowly varying.

Proof. Let us denote F, (h) £ foh v(t)dt and let G(h) = w?(h)F,(h). When 3 > —1 we have
F, € RV(5+1) (see the appendix) and when 8 = —1, F), is slowly varying. Thus G € RV(1+
2s + () for any § > —1. The function G is continuous and such that lim,_,o+ G(h) = 0 in
view of (A.2) since 14+2s+3 > 0. Then, for n large enough h,, is given by h,, = G~ (02 /(4n)),
where G (h) = inf{y > 0|G(y) > h} is the generalised inverse of G. Then in view of (A.8)
we have G~ € RV(1/(1 4+ 2s+ (3)) and then w o G~ € RV(s/(1 + 2s + (3)) (see appendix).
Thus we can write w o G (h) = h¥/(0+25H0)¢, (h) where £, is a slowly varying function.

Thus:
2

_ W(GH (Z_n)) _ 057,60'28/(1+28+B)ns/(1+2s+ﬁ)€w,u<%)

28/(1+28+ﬁ)n—S/(1+25+6)€w7y(1/n) as n — +007

~ Cs,p0

since £ is slowly varying. When w(h) = rh® we can write more precisely h,, = G~ (0% /(4r%n))
where G(h) = h*F,(h) so (6.2) and (6.3) follow.

Let y € R. Using (A.9) and the uniformity in (A.1) we get limj, o+ £, (h+yp(h)) /L, (h) =
1, thus limy_ g+ w(h + yp(h))/w(h) = 1. Moreover, since I'V(p) is stable under integration
(see appendix) we have F,, € T'V(p), thus lim;,_,o+ G(h + yp(y))/G(h) = exp(y) and then
G € I'V(p). For n large enough, h, is well defined and given by h, = G~ (c?/(4n)).
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Since G— € IIV(¢) for £ = pov™ € RV(0) (see appendix), G~ belongs in particular to
RV(0) in view of (A.11) and then r, = w o G~ (0%/(4n)) where w o G— € RV(0). Thus
Tn ~wo G~ (n7l) as n — 400 and (6.4) follows with £, = w o G—. O

Study of the terms )\(X}fi) and A(X} ). We recall that the matrix X}, x is defined as

the symmetrical and non-negative matrix with entries for 0 < j,1 <k, (X4 k)1 = Kn h,jt+i
where:

— 1 —/Xi—z\@. /Xi—x
Kopa 2 < i 0) K< i 0) 6.5
n,h,a Nn,h; h h ) ( )

for o € N. Let us define K, j, o = n,hfn,h,oz and:

1
Kop= (1+ (—1)“)/0 y* K (y)dy. (6.6)

We define for any € > 0 the event

K ha
= {‘nFyf(Lh)

Dn,h,a,K,a =
Lemma 5. Let o € N and € > 0. Under assumption K and if p € R(xg,3) with 8 > —1
then for any positive sequence () going to 0 we have for n large enough:
2

— B+ 1)Kaﬂ‘ < s}.

€
n (& < - . .
Pu{Dn,'yn,oc,K,e} X 2€Xp( 8(2 + 8/3) nFI/(V”)) (6 7)
When 8 = —1 we have:
P"{M 2K(0)‘> }<2 ( LF( )) (6.8)
U nE, () RN R |
Proof. First we prove (6.7). We define Q;no = (X"W:Lx“)af((x'%x“), Zina £ Qina —
E{Qin,a}. Since u € R(zg,B) one has fori=1,... n:
1 v (1n) 1+ (1) /1 5
———E{Qina} = Yy K (y)l (yym)dy,
nFy (vn) ﬂ{ J Fy(vm)  bo(vm) 0 ®)6(ym)

where we used assumption K and the fact that for n large enough [zg — v, 20 + 7] C W.
Then equations (A.3) and (A.4) entail:

1
lim ————=E} in,af — 1Ka )
i B Quna} = (4 1K

and for n large enough:

n

1
D¢ c (7 Z; ‘> 29 6.9
n,Yn,o, K { nFy(’Yn) ZZ:; 1,M,Q 5/ } ( )

We have in view of assumption K: EZ{ZMQ} =0, |Zinal <2and
n
b?z é ZEZ{ZZQJL,Q’} g nEz{Q%,n,a} < QHFV('.Y”)
i=1

Since the Z;,, are independent we can apply Bernstein inequality. If 7, £ SnE, ()
equation (6.9) and Bernstein inequality entail:

2 2

9
Py {Ds <2exp( =g ) <2 <_7 F, )
idDn st < 2exp <2(b% + 27, /3)) gy o)
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thus (6.7) follows. The proof of equation (6.8) is similar. When 8 = —1 we have v(t) =
~14,(t). We define Zin = Qino— E?“{Qi n,0}. We have in view of equation (A.5):

. n
HLWF( SEHQuuo) = fim / K(t/h)0, (t)dt/t = 2K (0) > 0.
Then for n large enough one has
{‘M—QK(O)‘>6}C{‘ sz > ¢/2}.
nF,(vn) nky,( i:

The Z;, are independent and centered and |Z;,| < 2. Moreover, in view of assumption
K we have as previously b2 = > En{ Z,n} < 2nF,(v,) and using again the Bernstein
inequality we get (6.8). O

Lemma 6. Let assumption K holds and w € RV(s) with s > 0, u € R(xg,3) with § > —1

and \g g be defined by equation (4.1). We have Ag x > 0 and we can find for any 0 < e < %

an event A, . such that for n large enough

Hy,
Ane ©INEE) = Naic] < b {NEE ) = dal <ebn{[72 -1 <<} (6.10)

and
Pn{A a} (k + 2) exXp ( - Cﬁ,a,a"ﬂ;z), (611)
where cg 5 > 0.

Proof. Since Ag  is the smallest eigenvalue of XBK we have A\g g > 0 otherwise defining
p(y) = (1,y,...,4"*) and since Xé( is symmetrical we should have

1

0= N = inf (@, Xfa) = (s, Xfan) = / (2op(y)) 4 K (4)dy,
-1

where xg # 0 is the normalised eigenvector associated to the eigenvalue A\g x and where we
used the fact that
AM) = ”iﬂlf (x, Mz), (6.12)
z||=1
for any symmetrical matrix M. Then Vy € Supp K we have ‘zop(y) = 0 which leads to a
contradiction since y — ‘zop(y) is a polynomial. For any h,e > 0 we introduce the events:

B+1

An,h@ = {|>‘(le() - )‘67K| < 5}a Bmh,a,a = {‘Kn,h,oz - —2 Kaﬂ‘ < 6}- (6.13)

Using the characterisation (6.12) we can prove easily that

2k
ﬂ B"vhvofvf/(’fﬂLl)2 C Anhe- (6.14)
a=0
Since
K 7 > N, H, H \«
Kn7Hn7Oé o Kn’hn’a = Kannva (1 a #Jln <h_:) >

n

o () (f (57 -k (55),
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we have when K is the rectangular kernel K%

§7d 573 H 1/H N,
| K n Hyao — Kool < ‘n—m(—">a—1‘ +_<_”\/1>a‘"_an _1‘7
’ ) n, h 2 hn

n hn n,hp
and otherwise under assumption K
— — Npu (H m, (Hy\e | H K h K
I e <#<_") _1‘ #(J) U ‘_"_1‘.
’ n,Hn,a n,hn,a‘ X b hn n B hn p hn p Hn
Let us introduce for € > 0 the event
Ny.1
e & {2t | <),
n,e thn ~
Then for a good choice of e < € we have |Fn7Hma — Fn,hnd < m on the event
Cne;NFy o, and since K < 1 we have K, g < % and noting that Dy, j o k= ., {|2nF,,(h
1‘ < 61} we have for any o € N
D € D g B € .
n’}LO’[(R7m N n,h,a,K,m nvhvavm
. 2 )
Using (6.14) we get for n = m
2k
Dn,hn,O,KR,n m ﬂ Dn,hn,a,K,n C An,hn,e- (615)
a=0

We take 0 < g9 < €1 such that M

increasing we have

<1+ ¢ (for g1 small enough). Since h — N, j, is

Cres C{Nn,(1—ex)hn S NnH, < Ny (14e2)h0 )
<

and in view of lemma 1 we can take 0 < e3 < &9 such that

Dn,(lfeg)hn,O,KR,E'g, N Dn,(1+€2)hn,0,KR,z-:3 C Cn,€2'

A

Using (A.1) with the slowly varying function £x(h) 2 F,(h)h~(B+D) we have for n large
enough that uniformly for y € [, 3]

(1 —e1)lp(hyp) < Lp(yhy) < (1 +e1)lp(hy), (6.16)
and in particular for y = 1 —¢; and y = 1 4+ ; we get by the definition of e5 and since
€3 < €2 L €18

Dy (1—e0)hn 0,5 R,e5 NV D (1462)00,0,KRie5 N Doy 0,k Ries C Frer

A €
Then we define for ¢4 = e3 A F Sy the event
2k
A
An,E = Dn,(l—sg)hn,O,KR,€4 N Dn,(1+62)hn,0,KR,€4 N Dn,hn,O,KR,a4 N ﬂ Dn,hn,C‘hK,€47
a=0

which satisfies (6.10) in view of the previous embeddings. Using inequality (6.7) in lemma
5 and since €4 < e9 < €1 < % we get

ny gc 2 (5+3)€ o2
PrfAs, .} < 4(k+2)exp ( _ 74) 2>’

8(2+¢4/3
where we used (6.16) and (2.5). O
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6.4. Proof of the lower bounds.

Lemma 7. If there are 2 elements fo and f1 of a class X such that the Kullback-Leibler
distance between the corresponding probabilities Py and Py satisfies K(Pp,P1) < @ < +0o0

with |fo(xo) — fi(zo)| = 2cry for some constant ¢ > 0 then the pointwise minimaz risk
Rn(X, 1) over the class ¥ defined by (2.1) in the model (1.1) satisfies:

Rn(za M) = C(C, Q, p)rna

/5751 1
where C(c,Q,p) £ =& (e‘Q v V@R 2Q/2> /p.

21/p

This result is classical. It can be found in Tsybakov [19] with a proof based on a two
hypothesis reduction scheme and inequalities between the Kullback-Leibler distance and
others probability distances.

Proposition 6. Let h,, be defined by (2.5), (an,) be a positive numbers sequence going to
+o0 and rp, = w(hy). If ¥ =Xy, o, (x0,w) is the class given by definition 2 we have

liminf r,, "R, (2, 1) = Cs (6.17)

Proof. We use the lemma 7. All we have to do is to find two functions fo, and f;, such
that:

1) There is some 0 < @ < +o0 such that (Pf,P}) < @,

(
(2) fons fin € Bhnan (@0, w),
(3) |fon(xo) — fin(xo)| = 2¢ry, for some constant ¢ > 0.

We choose the 2 following hypothesis:
fon(z) = w(hn)jzsg|<hn fin(@) = w(lz — 20]) L1z zo|<hn-
(1): Since the &; are centered Gaussian of variance o and independent of X,, we have:

1 n
KRG, PX,) = 55 > (fon(X:) = fra(X2)®)
=1
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then in view of (2.5): K(Pf,P}) = 32| fon — f17n||%2(u) < nw?(hy)Fy(hy) /0% = 1/2.

(2): For h € |0, hy], taking P as the constant polynomial equal to w(h,) we have that the
continuity modulus of fy, is 0, and taking P = 0 we obtain that the continuity modulus of
fi,n is bounded by w(h). Moreover for n large enough, we clearly have fo,, fi., € U(ay)
since oy, — +00.

(3): If we take ¢ = 1/2 we have |f1 ,(x0) — fon(z0)| = w(hy) = 2¢ry,. O

6.5. Computations of the examples. For a given design density, we compute the mini-
max convergence rate r, by first giving an equivalent as n — o0 of the smallest solution
h,, of
o
wh) = ———,
nky,(h)

and then and equivalent of r,, = w(hy,).
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6.5.1. Regularly varying design erxample. In the regularly varying design case we find the
equivalent of h,, using the following proposition.

Proposition 7. Let v > 0 and o € R. If G(h) = hY(log(1/h))®, then we have:
G (h) ~~* Y7 (log(1/h) /7 as h — OF.

Proof. When « = 0, the result is obvious then assume o € R — {0}. We look for h such that
hY(log(1/h))* = z, when x > 0 is small. If @ > 0 we define ¢t = log(h?/®), so this equation
becomes

texp(t) = —yz/*/a, (6.18)

where ¢t < 0. The equation (6.18) has two solutions for x small enough, but they cannot
be written in an explicit way. Then let us consider the Lambert function W defined as
the function satisfying W(z)e"(*) = z for any 2z € C. See for instance Corless et al. 3]
about this function. We are only interested here by its real branches. This function has
two branches Wy and W_; in R. We denote by Wy the one such that Wy(0) = 0 and
W_1 the one such that lim;_,o- W_1(h) = —oo. The two solutions of (6.18) are then
to = W_i(—yx'/*/a) and t; = Wy(—vz/*/a) and hy £ exp(on,l(—vxl/o‘/a)/v) is
the smallest solution. By the definition of W we have for —1/e < z < 0 and a € R:
eW-1(@) = (—g)(—=W_y(x))~® and since W_; satisfies W_;(—z) ~ log(z) as z — 0%
we have hg = (yz'/® /)Y (=W _1(—yx/®/a)) =7 ~ v/ Yzl (log(1/2))~/7 as x — OF.
When a < 0 we proceed similarly. We have ¢ > 0 and (6.18) has a single solution ¢ =
Wo(=vz/*/a), thus h £ exp(—aWy(—yx'/*/a)/v). By the definition of Wy we have
Vo >0 and a € R: ¢™o(@) = z2W;%(z) and since Wy satisfies Wy(z) ~ log(x) as x — ~+oo
we find again h ~ v/ z1/*(log(1/x))~*/7 as x — 0F. O

For the second example of regularly varying design, using the proposition 7, we find that
an equivalent to the sequence h,, defined by (2.5) is

a+2’y)—1/(1+25+ﬁ)

(1+2s+ ,8) (a+27)/(1+2s+p3) (g (n(log n)

2/(1+2s+0)
’)

and since w(h) = rh*(log(1/h))” we find that an equivalent of r,, (up to a constant depending
on 87 ﬂ? ,77 a) iS

25/ (142548) L(BD)/ (1254) (1 (10g )oY+ B)/5) =5/ (142545)

The computation for the third example (8 = —1) is similar to the second example, since
Fy(h) = (log(1/h))' .

6.5.2. T-varying design example. For the I'-varying design example v(h) = exp(—1/h%), we
first use the fact that when v € T'V(p) we have F,(h) ~ p(h)v(h) as h — 01 (see appendix).
Recalling that p(h) = Rt we solve

RIT25T oxp(—1/h%) = Yy, (6.19)

where y,, £ o%a/(r?n). Defining t £ h~%, equation (6.19) becomes t~(125T)/@ exp(—t) =

Yn, that we rewrite zexp(z) = a/(1+2s+ a)y;a/(HzHa) for x £ /(14 25+ )t. Then we

have z = W)y (04/(1 +2s+ a)y;a/(1+25+a))’ where W) is defined in the proof of proposition

7. Using the fact that Wy(x) ~ log(z) as  — 400, we get z ~ logn as n — 400,
thus h, ~ (logn)~'/® and the result holds since r, = rh$.

o
14+2s+a
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APPENDIX A. SOME FACTS ON REGULAR AND I'-VARIATION

We recall here some results about regularly and I'-varying functions. The results stated
in this section can be found in Bingham et al. [1], Geluk and de Haan [5] and Senata [14].

A.1. Regular variation. Let ¢ be a slowly varying function in all the following. An im-
portant result is that the property

i £(yh)/e(h) = 1, (A1)

holds uniformly for y in any compact set in (0, +00). Now if R} € RV(«;) and Ry € RV(aw)
one has

(1) Ry x Ry € RV(a; + as),
(2) RioRy € RV(Oél X 042).

If R e RV(y) for v € R — {0} then as h — 0T we have

0 if v >0,

A2
+oo if vy < 0. (4-2)

R(h) — {

The asymptotic behaviour of regularly varying functions integrals, usually called Abelian
theorems, plays a key role in the proofs.

e If v > —1 we have
h
/ t70(t)dt ~ (1 +~) " htT7e(h) as h — 0T, (A.3)
0

and in particular h — foh t74(t)dt € RV(y+1). This result is known as the Karamata
theorem.

e When v = —1 and if [J/4(1)% < +oo for some 7 > 0 then h — [ £(t)% € RV(0)
and we have

1o dt
lim — Lt)— = .
o+ 0(h) /0 ()5 =+
e If R is some positive monotone function such that h — foh R(t)dt belongs to RV(7)

for some v > 0 then R € RV(y —1).
e If K is a function such that fol t=0K (t)dt < +oo for some § > 0 then

1 1
/ K(t)((th)dt ~ B(h)/ K(t)dt as h — 0%, (A.4)
0 0

Moreover, when ["((t)dt/t < +oo for some n > 0, and K is such that V¢ > 0,
|K(t) — K(0)| < p|t|® for some p > 0 and x > 0 one has

1 1
| st~ x00) [ adesas h— ot (A5)
0 0
If R is defined and bounded on [0, +00) one can define the generalised inverse as
R~ (y) = inf{h > 0 such that R(h) > y}. (A.6)
If R € RV(y) for some v > 0, then there exists R~ € RV(1/) such that
R(R™(h)) ~R (R(h)) ~hash— 0", (A7)

and R~ is unique up to an asymptotic equivalence. Moreover, one version of R~ is R™.
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If (65 )n>0 and (Ap)n>0 are sequences of positive numbers such that 6,41 ~ J,, as n — 400,
lim,, §,, = 0, and if there is a positive and continuous function ¢ such that for any y > 0:

lim A, R(y5,) = 6(s). (A.8)
then R varies regularly.

A.2. I'-variation. We describe now the properties of I'-varying functions and Il-varying
functions. The results are due to de Haan. The references are the same as for regular
variation. All the following results can be found there in.

A first result tells that if v is a function such that (2.6) holds for all y € R, then (2.6)
holds uniformly on each compact set in R. If p is such that (2.6) holds, then:

hliré1+ p(h)/h = 0. (A.9)

The auxiliary function p in definition (2.6) is unique up to within an asymptotic equivalence
and can be taken as h — foh v(t)dt/v(h).

The class I'V(p) is stable under integration. If v € I'V(p) then F, (h) = foh v(t)dt € T'V(p)
and we have
F,(h) ~ p(h)v(h) as h — 0T,
We have seen that under the operation of functional inversion, the class of regularly
varying functions RV is stable. In the case of I'-variation, the inversion maps the class 'V
in another class of functions, namely the de Haan class IIV.

Definition 5 (II-Variation). A function v is in the de Haan class ITV if there exists a slowly
varying function ¢ and a positive real number ¢ such that:

vy >0, lim (v(yh) —v(h))/E(y) = clog(y). (A.10)
The class of functions v satisfying (A.10) is denoted by IIV(¢).

o If v € T'V(p) then £ = po v is slowly varying and v~ € IIV(¥).
o If v € TIV(Y) for some ¢ € RV(0) then v~ € T'V(p) with p=£Lov.

In both senses the inverses and their auxiliary functions are asymptotically unique. The
following inclusion tells that Il-variation can be viewed as a refinement of slow variation.
Actually, any II-varying function is slowly varying: for any ¢ € RV(0) we have

IV (£) € RV(0). (A.11)
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