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CONVERGENCE RATES FOR POINTWISE CURVE ESTIMATIONWITH A DEGENERATE DESIGNSTÉPHANE GAÏFFASLaboratoire de Probabilités et Modèles Aléatoires, U.M.R. CNRS 7599and Université Paris 7, 175 rue du Chevaleret, 75013 Parisemail: gaiffas�math.jussieu.frAbstra
t. The nonparametri
 regression with a random design model is 
onsidered. Wewant to re
over the regression fun
tion at a point x0 where the design density is vanishingor exploding. Depending on assumptions on the regression fun
tion lo
al regularity and onthe design lo
al behaviour, we �nd several minimax rates. These rates lie in a wide range,from slow ℓ(n) rates where ℓ is slowly varying (for instan
e (log n)−1) to fast n−1/2ℓ(n)rates. If the 
ontinuity modulus of the regression fun
tion at x0 
an be bounded fromabove by a s-regularly varying fun
tion, and if the design density is β-regularly varying,we prove that the minimax 
onvergen
e rate at x0 is n−s/(1+2s+β)ℓ(n).1. Introdu
tion1.1. The model. Suppose that we have n independent and identi
ally distributed observa-tions (Xi, Yi) ∈ R × R from the regression model
Yi = f(Xi) + ξi, (1.1)where f : R → R, where the variables (ξi) are 
entered Gaussian of varian
e σ2 and inde-pendent of X1, . . . ,Xn (the design) and the Xi are distributed with respe
t to a density µ.We want to re
over f at a 
hosen x0.For instan
e, if we take the variables (Xi) distributed with respe
t to the density

µ(x) =
β + 1

xβ+1
0 + (1 − x0)β+1

|x − x0|β1[0,1](x),for x0 ∈ [0, 1] and β > −1, then 
learly when β > 0 this density models a la
k of informationat x0 and 
onversely an exploding quantity of information if −1 < β < 0. We want tounderstand the in�uen
e of the parameter β on the quantity of information at x0 in theminimax setup.1.2. Motivations. The regression fun
tion pointwise estimation is a well-known problemwhi
h has been intensively studied by many authors. The �rst authors who 
omputedthe minimax rate over a nonparametri
 
lass of Hölderian fun
tions are Ibragimov andHasminski [10℄ and Stone [17℄. Over a Hölder fun
tions 
lass with smoothness s, the lo
alpolynomial estimator 
onverges with the rate n−s/(1+2s) (see [17℄) and this rate is optimalin the minimax sense. Many authors have worked on related problems: see for instan
eKorostelev and Tsybakov [11℄, Nemirovski [12℄, Tsybakov [19℄.Date: 30th Mar
h 2005.2000 Mathemati
s Subje
t Classi�
ation. 62G05, 62G08.Key words and phrases. degenerate design, minimax, nonparametri
 regression, random design.I wish to thank my adviser Mar
 Ho�mann for helpful suggestions and en
ouragements.1



2 STÉPHANE GAÏFFASNevertheless, these results require the design density to be non-vanishing and �nite atthe estimation point. This assumption roughly means that the information is spatiallyhomogeneous. The next logi
al step is to look for the minimax risk at a point where thedesign density µ is vanishing or exploding. To a
hieve su
h a result, it seems natural to
onsider several design density behaviours at x0 and to 
ompute the 
orresponding minimaxrate. Su
h results would improve the statisti
al des
ription of models (here in the minimaxsetup) with very inhomogeneous information.When f has a Hölder type smoothness of order 2 and if µ(x) ∼ xβ near 0 where β > 0,Hall et al. [9℄ show that a lo
al linear pro
edure 
onverges with the rate n−4/(5+β) whenestimating f at 0. This rate is also proved to be optimal. In a more general setup for thedesign and if the regression fun
tion is Lips
hitz, Guerre [8℄ extends the result of Hall et al.for β > −1. Here, we intend to develop the regression fun
tion estimation when the designis degenerate in a systemati
 way.1.3. Organisation of the paper. In se
tion 2 we present two theorems giving the pointwiseminimax 
onvergen
e rate in the model (1.1) for di�erent design behaviours (theorem 1 and2). In se
tion 3 we 
onstru
t an estimator and we give upper bounds for this estimator inse
tion 4 (propositions 4 and 5). In se
tion 5 we dis
uss some te
hni
al points. The proofsare delayed until se
tion 6 and well known fa
ts about the regular and Γ-variation are givenin appendix. 2. Main resultsAll along this study we are in the minimax setup. We de�ne the pointwise minimax riskover a 
lass Σ by
Rn(Σ, µ) ,

(
inf
Tn

sup
f ∈ Σ

E
n
f,µ{|Tn(x0) − f(x0)|p}

)1/p
, (2.1)where infTn stands for any estimator Tn based on the observations (1.1), where x0 is theestimation point and p > 0. The expe
tation E

n
f,µ in (2.1) is taken with respe
t to the jointprobability P

n
f,µ of the random variable pairs (Xi, Yi)i=1,...,n.2.1. Regular variation. The regular variation de�nition and main properties are due toKaramata (1930). Main referen
es on regular variation are Bingham et al. [1℄, Geluk andde Haan [5℄, Resni
k [13℄ and Senata [14℄.De�nition 1 (Regular variation). A 
ontinuous fun
tion ν : R

+ → R
+ is regularly varyingat 0 if there is a real number β ∈ R su
h that:

∀y > 0, lim
h→0+

ν(yh)/ν(h) = yβ. (2.2)We denote by RV(β) the set of all the fun
tions satisfying (2.2). A fun
tion in RV(0) isslowly varying.Remark. Roughly, a regularly varying fun
tion behaves as a power fun
tion times a slowerterm. Typi
al examples of su
h fun
tions are xβ, xβ(log(1/x))γ for γ ∈ R, and moregenerally any power fun
tion times a log or 
ompositions of log to some power. For otherexamples, see in the referen
es 
ited above.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 32.2. The fun
tions 
lass.De�nition 2. If δ > 0 and ω ∈ RV(s) with s > 0 we de�ne the 
lass Fδ(x0, ω) of fun
tions
f : [0, 1] → R su
h that

∀h 6 δ, inf
P∈Pk

sup
|x−x0|6h

|f(x) − P (x − x0)| 6 ω(h),where k = ⌊s⌋ (the largest integer smaller than s) and Pk is the set of all the real polynomialswith degree k. We de�ne ℓω(h) , ω(h)h−s, the slow variation term of ω. If α > 0 we de�ne
U(α) ,

{
f : [0, 1] → R su
h that ‖f‖∞ 6 α

}
.Finally, we de�ne

Σδ,α(x0, ω) , Fδ(x0, ω) ∩ U(α).Remark. If we take ω(h) = rhs for some r > 0 then we �nd ba
k the 
lassi
al Hölderregularity with radius r. In this sense, the 
lass Fδ(x0, ω) is a slight Hölder regularitygeneralisation.Assumption M. In all the following, we assume that there exists a neighbourhood W of
x0 and a 
ontinuous fun
tion ν : R

+ → R
+ su
h that:

∀x ∈ W, µ(x) = ν(|x − x0|). (2.3)This assumption roughly means that 
lose to x0 there are as many observations on theleft of x0 than on the right. All the following results 
an be extended easily to the nonsymmetri
al 
ase, see se
tion 5.1.2.3. Regularly varying design density. The theorem 1 gives the minimax rate over the
lass Σ (see de�nition 2) for the estimation problem of f at x0 when the design is regularlyvarying at this point.We denote by R(x0, β) the set of all the densities µ su
h that (2.3) holds with ν ∈ RV(β)for a �xed neighbourhood W .Theorem 1. If
• (s, β) ∈ (0,+∞) × (−1,+∞) or (s, β) ∈ (0, 1] × {−1},
• Σ = Σhn,αn(x0, ω) with ω ∈ RV(s), αn = O(nγ) for some γ > 0 and hn given by(2.5),
• µ ∈ R(x0, β),then we have

Rn(Σ, µ) ≍ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(n
−1) as n → +∞, (2.4)where ℓω,ν is slowly varying and where ≍ stands for the equality in order, up to 
onstantsdepending on s, β and p (see (2.1)) but not on σ. Moreover, the minimax rate is equal to

ω(hn) where hn is the smallest solution to
ω(h) =

σ√
2n

∫ h
0 ν(t)dt

. (2.5)Example. The simplest example is the non-degenerate design 
ase (0 < µ(x0) < +∞) withthe 
lass Σ equal to a Hölder ball (ω(h) = rhs, see de�nition 2). This is the 
ommon 
asefound in the literature. In this 
ase, the design is in parti
ular slowly varying (β = 0 with theslow term 
onstant and equal to limx→x0 µ(x)). Solving (2.5) leads to the 
lassi
al minimaxrate
σ2s/(1+2s)r1/(1+2s)n−s/(1+2s).



4 STÉPHANE GAÏFFASExample. Let β > −1. We 
onsider ν su
h that ∫ h
0 ν(t)dt = hβ+1(log(1/h))α and ω(h) =

rhs(log(1/h))γ where α, γ are any real numbers. In this 
ase, we �nd that the minimax rate(see se
tion 6.5 for the details) is
σ2s/(1+2s+β)r(β+1)/(1+2s+β)(n(log n)α−γ(1+β)/s)−s/(1+2s+β).We note that this rate has the form given by theorem 1 with the slow term ℓω,ν(h) =

(log(1/h))(γ(β+1)−sα)/(1+2s+β) . When γ(1+β)−sα = 0 there is no slow term in the minimaxrate, although there are slow terms in ν and ω. Again, if β = 0 and γ = sα, we �nd ba
kthe �rst example minimax rate, although the terms ν and ω do not have the 
lassi
al forms.Example. Let β = −1, α > 1 and ν(h) = h−1(log(1/h))−α. Let ω be the same as in theprevious example with 0 < s 6 1. Then the minimax 
onvergen
e rate is
σn−1/2(log n)(α−1)/2.This rate is barely the parametri
 estimation rate, up to the slow log fa
tor. This result isnatural sin
e the design is very "exploding": we have a lot of information at x0 thus we 
anestimate f(x0) very fast. Also, we note that the regression fun
tion regularity parameters(r, s and γ) have (asymptoti
ally) disappeared from the minimax rate.2.4. Γ-varying design density. The regular variation framework in
ludes any design den-sity behaving 
lose to the estimation point as a polynomial times a slow term. It does notin
lude for instan
e a design with a behaviour similar to exp(−1/|x − x0|) prolonged at x0by 0, sin
e this fun
tion goes to 0 at x0 faster than any power fun
tion.Su
h a lo
al behaviour 
an modelize a very big la
k of information. This example naturallyleads us to the framework of Γ-variation. In fa
t, su
h a fun
tion belongs to the following
lass introdu
ed by de Haan (1970):De�nition 3 (Γ-variation). A non-de
reasing and 
ontinuous fun
tion ν : R

+ → R
+ is

Γ-varying if there exists a 
ontinuous fun
tion ρ : R
+ → R

+ su
h that
∀y ∈ R, lim

h→0+
ν(h + yρ(h))/ν(h) = exp(y). (2.6)We denote by ΓV(ρ) the 
lass of all su
h fun
tions. The fun
tion ρ is 
alled the auxiliaryfun
tion of ν.Remark. A fun
tion behaving like exp(−1/|x− x0|) 
lose to x0 satis�es assumption M with

ν(h) = exp(−1/h) where ν ∈ ΓV(ρ) with ρ(h) = h2.Theorem 2. If
• Σ = Σhn,αn(x0, ω) where ω ∈ RV(s) with 0 < s 6 1, hn is given by (2.5) and

αn = O(r−γ
n ) for some γ > 0 where rn , ω(hn),

• µ satis�es assumption M with ν ∈ ΓV(ρ),then
Rn(Σ, µ) ≍ ℓω,ν(n

−1) as n → +∞, (2.7)where ℓω,ν is slowly varying. Moreover, as in the theorem 1, the minimax rate is equal to
ω(hn) where hn is the smallest solution to (2.5).Example. Let µ satisfy assumption M with ν(h) = exp(−1/hα) for α > 0 and ω(h) = rhsfor 0 < s 6 1. It is an easy 
omputation to see that ν belongs to the 
lass ΓV(ρ) for theauxiliary fun
tion ρ(h) = α−1hα+1. In this 
ase, we �nd that the minimax rate (see se
tion6.5 for the details) is

r(log n)−s/α.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 5As told by theorem 2, we �nd a very slow minimax rate in this example. We note that theparameters s and α are on the same s
ale.3. Lo
al polynomial estimation3.1. Introdu
tion. For the upper bound proof in theorem 1 we use a lo
al polynomialestimator. The lo
al polynomial estimator is well-known and has been intensively studied(see Stone [17℄, Fan and Gijbels [4℄, Spokoiny [15℄, Tsybakov [19℄, among many others). If fis a smooth fun
tion at x0 then it is 
lose to its Taylor polynomial. A fun
tion f ∈ Ck(x0)(the spa
e of k times di�erentiable fun
tions at x0 with a 
ontinuous k-th derivative) is su
hthat for any x 
lose to x0

f(x) ≈ f(x0) + f
′

(x0)(x − x0) + . . . +
f (k)(x0)

k!
(x − x0)

k. (3.1)Let h > 0 (the bandwidth) and k ∈ N. We de�ne φj,h(x) ,
(

x−x0
h

)j and the spa
e
Vk,h , Span{(φj,h)j=0,...,k}.For a �xed non-negative fun
tion K (the kernel) we de�ne the weighted pseudo-s
alar prod-u
t

〈f , g〉h,K ,

n∑

i=1

f(Xi)g(Xi)K
(Xi − x0

h

)
, (3.2)and ‖ · ‖h,K ,

√
〈· , ·〉h,K the 
orresponding pseudo-norm (K > 0). In view of (3.1) it isnatural to 
onsider the estimator de�ned as the 
losest polynomial with degree k to theobservations (Yi) in the least square sense, that is:

f̂h = argmin
g ∈ Vk,h

‖g − Y ‖2
h,K . (3.3)Then f̂h(x0) is the lo
al polynomial estimator of f at x0. A ne
essary 
ondition for f̂h to bethe minimiser of (3.3) is to be solution of the linear problem:�nd f̂ ∈ Vk,h su
h that ∀φ ∈ Vk,h, 〈f̂ , φ〉h,K = 〈Y , φ〉h,K . (3.4)The estimator f̂h is then given by

f̂h = P
θ̂h

, (3.5)where
Pθ = θ0φ0,h + θ1φ1,h + . . . + θkφk,h, (3.6)with θ̂h the solution, whenever it makes sense, of the linear system:

XK
h θ = YK

h , (3.7)where XK
h is the symmetri
al matrix with entries, for 0 6 j, l 6 k:

(XK
h )j,l = 〈φj,h , φl,h〉h,K , (3.8)and YK

h is the ve
tor de�ned by:
YK

h = (〈Y , φj,h〉h,K ; 0 6 j 6 k).We assume that the kernel K satis�es the following assumptions:Assumption K. Let K be the re
tangular kernel KR(x) = 1
21|x|61 or a non-negativefun
tion su
h that:

• SuppK ⊂ [−1, 1],



6 STÉPHANE GAÏFFAS
• K is symmetri
al,
• K∞ , supx K(x) 6 1,
• There is some ρ > 0 and κ > 0 su
h that ∀x, y, |K(x) − K(y)| 6 ρ|x − y|κ.The assumption K is satis�ed by all the 
lassi
al kernels used in nonparametri
 
urvesmoothing. Let us de�ne:

Nn,h = #{Xi su
h that Xi ∈ [x0 − h, x0 + h]}, (3.9)the number of observations in the interval [x0 −h, x0 +h], and we de�ne the random matrix
XK

h , N−1
n,hX

K
h .Let us denote

Xn , σ(X1, . . . ,Xn),the σ-algebra generated by the design. Note that XK
h is measurable with respe
t to Xn.The matrix XK

h is a "renormalisation" of XK
h . We show in lemma 6 that this matrix isasymptoti
ally non-degenerate with a large probability when the design is regular varying.For te
hni
al reasons, we introdu
e a slightly di�erent version of the lo
al polynomialestimator. We introdu
e a "
orre
tion" term in the matrix XK

h .De�nition 4. Given some h > 0, we 
onsider f̂h de�ned by (3.5) with θ̂h the solution whenit makes sense (if Nn,h = 0 we take f̂h = 0) of the linear system
X̃K

h θ = YK
h , (3.10)where:

X̃K
h , XK

h + N
1/2
n,h Ik+11λ(XK

h )6N
1/2
n,h

,with λ(M) standing for the smallest eigenvalue of a matrix M and Ik+1 denoting the identitymatrix in R
k+1.Remark. One 
an understand X̃K

h de�nition as follows: in the "good" 
ase, that is when
XK

h is non-degenerate in the sense that its smallest eigenvalue is not too small, we solve thesystem (3.7), while in the "bad" 
ase we still have a 
ontrol on the smallest eigenvalue of
X̃K

h , sin
e we always have λ(X̃K
h ) > N

1/2
n,h .3.2. Bias-varian
e equilibrium. A main result on the lo
al polynomial estimator is thebias-varian
e de
omposition. This is a 
lassi
al result, many times presented in di�erentforms: see Cleveland [2℄, Goldenshluger and Nemirovski [6℄, Korostelev and Tsybakov [11℄,Spokoiny [15℄, Stone [16℄, Tsybakov [18, 19℄. The version in [15℄ is 
lose to the one presentedhere. Mainly, the di�eren
es are linked with the fa
t that the design is random and thatwe 
onsider a modi�ed version of the lo
al polynomial estimator (see de�nition 4). Weintrodu
e the event

ΩK
h , {X1, . . . ,Xn are su
h that λ(XK

h ) > N
−1/2
n,h and Nn,h > 0}. (3.11)Note that on ΩK

h the matrix XK
h is invertible.Proposition 1 (Bias-varian
e de
omposition). Under assumption K and if f ∈ Fh(x0, ω)then the following inequality holds on the event ΩK

h :
|f̂h(x0) − f(x0)| 6 λ−1(XK

h )
√

k + 1K∞
(
ω(h) + σN

−1/2
n,h |γh|

)
, (3.12)where γh is, 
onditional on Xn, 
entered Gaussian su
h that E

n
f,µ{γ2

h|Xn} 6 1.



CONVERGENCE RATES WITH A DEGENERATE DESIGN 7Remark. The inequality (3.12) holds 
onditionally on the design, on the event ΩK
h . We willsee that this event has a large probability in the regular variation framework.3.3. Choi
e of the bandwidth. Now the problem is, like with any linear estimation pro-
edure, to answer the following question: how to 
hoose the bandwidth h? In view ofinequality (3.12) a natural bandwidth 
hoi
e is

Hn , argmin
h∈[0,1]

{
ω(h) >

σ√
Nn,h

}
. (3.13)Su
h a bandwidth 
hoi
e is well known, see for instan
e [7℄. This bandwidth 
hoi
e stabilisesthe pro
edure sin
e it is sensitive to the design, whi
h represents in the model (1.1) the lo
alquantity of information. The estimator is then de�ned by

f̂n(x0) , f̂Hn(x0),where f̂h is given by the de�nition 4 and Hn is de�ned by (3.13). The random bandwidth
Hn is 
lose in probability to the theoreti
al deterministi
 bandwidth hn de�ned by (2.5) inview of the following proposition.Proposition 2. Under assumption M and if ω ∈ RV(s) for any s > 0 then for any 0 < ε 6
1/2 there exists 0 < η 6 ε su
h that

P
n
µ

{∣∣∣
Hn

hn
− 1

∣∣∣ > ε
}

6 4 exp
(
− η2

1 + η/3
nFν(hn/2)

)
,where Fν(h) ,

∫ h
0 ν(t)dt.When nFν(hn/2) → +∞ as n → +∞ (this is the 
ase when ν is regularly varying) thisinequality entails

Hn = (1 + oPn
f,µ

(1))hn,where oP(1) stands for a sequen
e going to 0 in probability under a probability P.The proposition 3 motivates the regularly varying design 
hoi
e. It makes a link betweenthe behaviour of the 
ounting pro
ess Nn,h (that appears in the varian
e term of (3.12))and the behaviour of µ 
lose to x0. A
tually, the regular variation property (see de�nition1) naturally appears under assumptions on the asymptoti
 behaviour of Nn,h. Let us denoteby P
n
µ the joint probability of the variables (Xi).Proposition 3. If assumption M holds with ν monotone then following properties are equiv-alent:(1) ν is regularly varying of index β > −1,(2) There exist sequen
es of positive numbers (λn) and (γn), su
h that limn γn = 0,

lim infn nλ−1
n > 0, γn+1 ∼ γn as n → +∞ and a 
ontinuous fun
tion φ : R

+ → R
+su
h that for any C > 0:

E
n
µ{Nn,Cγn} ∼ φ(C)λn as n → +∞,(3) There exist (λn), (γn) and φ as previously su
h that for any C > 0 and ε > 0:

lim
n→+∞

n

λn
P

n
µ

{∣∣∣
Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

= 0.The proof is delayed until se
tion 6. Mainly, it is a 
onsequen
e of the sequen
e 
hara
-terisation of regular variation (see in the appendix).



8 STÉPHANE GAÏFFAS4. Upper bounds for f̂Hn(x0)4.1. Conditional on the design upper bound. When no assumption on the designdensity behaviour is made, we 
an work 
onditionally on the design. For λ > 0 we de�nethe event
Eλ , {λn > λ},where λn , λ(XK

Hn
). Note that Eλ ∈ Xn. We also de�ne the 
onstant m(p) ,

√
2/π

∫
R+(1+

t)p exp(−t2/2)dt.Proposition 4. Under assumption K, if n > k + 1 and λ is su
h that λ2Nn,Hn > 1, wehave on Eλ:
sup

f ∈ FHn(x0, ω)
E

n
f,µ

{
|f̂n(x0) − f(x0)|p|Xn

}
6 m(p)λ−pKp

∞(k + 1)p/2Rp
n,where Rn , ω(Hn).4.2. When the design is regularly varying. The proposition 5 below gives an upperbound for the estimator f̂Hn(x0) when the design density is regularly varying. This propo-sition 
an be viewed as a deterministi
 
ounterpart to proposition 4.Let λβ,K be the smallest eigenvalue of the symmetri
al and positive matrix with entries,for 0 6 j, l 6 k:

(Xβ,K)j,l =
β + 1

2

(
1 + (−1)j+l

) ∫ 1

0
yj+l+βK(y)dy. (4.1)Note that in view of lemma 6 we have λβ,K > 0.Proposition 5. Let ̺ > 1 and hn be de�ned by (2.5). Let (αn) be a positive numberssequen
e su
h that αn = O(nγ) for some γ > 0. If µ ∈ R(x0, β) with β > −1 and ω ∈ RV(s)we have for any p > 0:

lim sup
n

sup
f ∈ Σ̺hn,αn(x0, ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p} 6 Cλ−p
β,K, (4.2)where rn , ω(hn) satis�es

rn ∼ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞,where ℓω,ν is slowly varying and where C = 4s/(1+2s+β)(k + 1)p/2m(p)Kp
∞.Remark. In Hölder regularity with radius r we have

rn ∼ σ2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n → +∞.5. Dis
ussion5.1. About assumption M. As told previously, the assumption M means that the designdistribution is symmetri
al around x0 
lose to this point. When it is not the 
ase, and ifthere are two fun
tions ν− ∈ RV(β−), ν+ ∈ RV(β+) for β−, β+ > −1 and η−, η+ > 0 su
hthat for any x ∈ [x0 − η−, x0 + η+]:
µ(x) = ν+(x − x0)1x06x6x0+η+ + ν−(x0 − x)1x0−η−6x<x0

,we 
an easily prove that the minimax 
onvergen
e rate is the fastest among the two possibleones, whi
h is (2.4) for the 
hoi
e of β = β− ∧ β+. To prove the upper bound we 
an usethe same estimator as in se
tion 3 with a non symmetri
al 
hoi
e of the bandwidth, or moreroughly we 
an "throw away" the observations on the side of x0 
orresponding to the largestindex of regular variation (when µ is known).



CONVERGENCE RATES WITH A DEGENERATE DESIGN 95.2. On theorem 1 and propositions 4, 5. Sin
e we are interested in the estimation of
f at x0, we need only a regularity assumption in some neighbourhood of this point. Notethat the minimax risks are 
omputed over a 
lass where the regularity assumption holds ina de
reasing interval as n in
reases.It appears that a natural 
hoi
e of this interval size is the theoreti
al bandwidth of es-timation hn, sin
e it is the minimum we need for the proof of the upper bounds. To statean upper bound with the "design-adaptive" estimator f̂Hn(x0) � in the sense that it doesnot depend on the design density behaviour 
lose to x0 (via the parameter β for instan
e)� we need a smoothness 
ontrol in a slightly larger neighbourhood size than hn (see theparameter ̺ in proposition 5).More pre
isely, to prove in proposition 5 that rn is an upper bound, we use in parti
ularthe proposition 2 with ε = ̺−1 in order to 
ontrol the random bandwidth Hn by hn. Thus,the parameter ̺ is indispensable for the proof of proposition 5. Note that we do not needsu
h a parameter in theorem 1 sin
e we use the estimator with the deterministi
 bandwidth
hn to prove the upper bound part of the theorem. Of 
ourse, this estimator in unfeasiblefrom a pra
ti
al point of view sin
e hn heavily depends on µ, whi
h is hardly known inpra
ti
e. This is reason why we state the proposition 5 whi
h tells us that the estimatorwith the data-driven bandwidth Hn 
onverges with the same rate.5.3. On theorem 2. In the Γ-variation framework, for the proof of the upper bound part oftheorem 2 we use an estimator depending on µ. Again, su
h an estimator is unfeasible from apra
ti
al point of view. Anyway, this framework is 
onsidered only for theoreti
al purposes,sin
e from a pra
ti
al point of view nothing 
an be done in this 
ase: there is no observationsat the point of estimation. This is pre
isely what theorem 2 and the 
orresponding exampletell us, in the sense that the minimax rate is very slow.5.4. About the Γ-varying design 
ase. For the proof of the upper bound part in theorem2 we 
an 
onsider another estimator than the 
lassi
al regressogram (see the proof of thetheorem). If K is a kernel satisfying assumption K we de�ne

f̃n(x0) ,

∑n
i=1 Yi

(
K

(
Xi−hn−x0

ρ(hn)

)
+ K

(
Xi+hn−x0

ρ(hn)

))

∑n
i=1 K

(
Xi−hn−x0

ρ(hn)

)
+ K

(
Xi+hn−x0

ρ(hn)

) ,where hn is de�ned by (2.5). The point is that sin
e SuppK ⊂ [−1, 1], this estimatormakes a lo
al average of the observations Yi su
h that Xi ∈ [x0 − h− ρ(h), x0 − h + ρ(h)] ∪
[x0 + h− ρ(h), x0 + h + ρ(h)], whi
h does not 
ontain the point of estimation x0 for n largeenough, sin
e limh→0+ ρ(h)/h = 0 (see appendix). In spite of this, we 
an prove that f̃n(x0)
onverges with the rate rn. We 
an understand this as follows: sin
e there is no informationat x0 the pro
edure a
tually "
at
hes" the information "far" from x0. This fa
t shows thatagain, the Γ-varying design is an extreme 
ase.5.5. More te
hni
al remarks.

• About assumption K, the �rst assumption is used to make the kernel K lo
alise theinformation around the point of estimation x0 (see (3.2)). The last one is te
hni
aland used in the proof of lemma 6. The two other ones are used for the sake ofsimpli
ity, sin
e we only really need the kernel to be bounded from above.
• When β = −1 theorem 1 holds only for small regularities 0 < s 6 1. For te
hni
alreasons, we were not able to prove the upper bound when s > 1 and β = −1. Morepre
isely, in this 
ase we have k = 0 and in view of (3.4) it is 
lear that the lo
al



10 STÉPHANE GAÏFFASpolynomial estimator is a Nadaraya-Watson estimator, de�ned by
f̂n(x0) =

∑n
i=1 YiK

(
Xi−x0

hn

)
∑n

i=1 K
(

Xi−x0
hn

) .When s > 1 we have to use a lo
al polynomial estimator. The problem is then inthe asymptoti
 
ontrol of the smallest eigenvalue of XK
hn

(see lemma 6) and to doso we use an average (Abelian) transform property of regularly varying fun
tions,whi
h is (see appendix):
lim

h →0+

1

ℓν(h)

∫
yαK(y)ℓν(yh)

dy

y
=

{∫
yα−1K(y)dy when α > 0,

+∞ when α = 0.Thus the only way to have a limit for both 
ases is to assume K(y) = O(|y|η) forsome η > 0, but the obtained upper bound rate in this 
ase would is slower than thelower bound. 6. Proofs6.1. Proof of the main results.Proof of theorem 1. We �rst prove the upper bound part of equation (2.4) when β > −1.We 
onsider the estimator f̂n(x0) = f̂hn(x0) where f̂h is given by de�nition 4, where hn isgiven by equation (2.5) and we de�ne rn = ω(hn). Let 0 < ε 6 1
2 . We introdu
e the event

Bn,ε ,
{
|λ(XK

hn
) − λβ,K | 6 ε

}
∩

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}

.Sin
e limn nFν(hn) = +∞ (see for instan
e lemma 4) we have for n large enough Bn,ε ⊂ ΩK
hn(see (3.11)) and in parti
ular on the event Bn,ε the matrix XK

hn
is invertible. Then usingproposition 1 and sin
e f ∈ Fhn(x0, ω) we get:

|f̂n(x0) − f(x0)|1Bn,ε 6 (λβ,K − ε)−1
√

k + 1K∞
(
ω(hn) +

σ√
(2 − ε)nFν(hn)

|γhn |
)

6 (λβ,K − ε)−1
√

k + 1K∞ω(hn)(1 + |γhn |),where we last used the de�nition of hn. Sin
e γhn is 
onditional on Xn 
entered Gaussiansu
h that E
n
f,µ{γ2

hn
|Xn} 6 1, we get for any p > 0:

sup
f∈Fhn (x0,ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bn,ε |Xn} 6 (λβ,K − ε)−p(k + 1)p/2Kp
∞m(p),where m(p) is de�ned in se
tion 4. Now we work on the 
omplementary Bc

n,ε. We use thelemmas 2 and 6 to 
ontrol the probability of Bn,ε and we re
all that αn = O(nγ) for some
γ > 0. When Nn,hn = 0 we have f̂n(x0) = 0 by de�nition and then

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bc
n,ε

} 6 (αnr−1
n )pP

n
f,µ{Bc

n,ε} = on(1).Then we assume Nn,hn > 0. Using the lemma 3 we get:
sup

f∈U(αn)
E

n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bc
n,ε

} 6 2pr−p
n

(√
E n

f,µ{|f̂n(x0)|2p} + αp
n

)√
Pn

µ{Bc
n,ε}

6 2p(αnr−1
n )p(

√
npCσ,k,2p + 1)

√
Pn

µ{Bc
n,ε} = on(1),



CONVERGENCE RATES WITH A DEGENERATE DESIGN 11and then we have proved that rn is an upper bound of the minimax risk (2.4) when β > −1.When β = −1 and 0 < s 6 1 we have k = 0 and the matrix XK
hn

is 1 × 1 sized and equal to
Kn,hn,0 (see equation (6.5)). The bias varian
e equation (3.12) be
omes in this 
ase:

|f̂n(x0) − f(x0)| 6 (Kn,hn,0)
−1K∞(ω(hn) + σN

−1/2
n,hn

|γhn |).We 
onsider the event
Cn,ε =

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}
∩

{∣∣∣
Kn,hn,0

2nFν(hn)
− K(0)

∣∣∣ 6 ε
}

,and we note that the probability of Cn,ε is 
ontrolled by lemma 2 and equation (6.8) inlemma 5. Then we 
an pro
eed as previously to prove that rn is an upper bound when
β = −1 and we have proved that rn is an upper bound for the left side of (2.4). Using theproposition 6 we also have that rn is a lower bound for the left part of (2.4). The 
on
lusionfollows from lemma 4. �Proof of theorem 2. The proof is similar to the proof of theorem 1. For the proof of theupper bound part in (2.7) we use the regressogram estimator de�ned by

f̂n(x0) ,





∑n
i=1 Yi1|Xi−x0|6hn

Nn,hn

if Nn,hn > 0,

0 if Nn,hn = 0.Let 0 < ε 6 1/2. On the event
Dn,ε ,

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}

,we 
learly have Nn,hn > 0 and sin
e f ∈ Fhn(x0, ω), we have
|f̂n(x0) − f(x0)| 6 ω(hn) + σN

−1/2
n,hn

|vn| 6 ω(hn)(1 − ε)−1/2(1 + |vn|),where vn , 1
σ
√

Nn,hn

∑n
i=1 ξi1|Xi−x0|6hn

is, 
onditional on Xn, standard Gaussian. Then weget
sup

f∈Fhn (x0,ω)
E

n
f,µ{|f̂n(x0) − f(x0)|p1Dn,ε} 6 rp

n(1 − ε)−p/2m(p).Now we work on Dc
n,ε. If Nn,hn = 0 we get using lemma 2 and sin
e αn = O(r−γ

n ):
sup

f∈U(αn)
E

n
f,µ{|f̂n(x0)−f(x0)|p1Dc

n,ε
} 6 αp

nP
n
µ{Dc

n,ε} = O(r−γp
n ) exp

(
− ε2σ2

1 + ε/3
r−2
n

)
= on(1),sin
e αn = O(r−γ

n ). If Nn,hn > 0 sin
e |f̂n(x0)| 6 αn + σ|vn| we get
sup

f∈U(αn)
E

n
f,µ{|f̂n(x0) − f(x0)|p1Dc

n,ε
} 6 2pαp

n(1 +
√

Cσ,0,p)
√

Pn
µ{Dc

n,ε} = on(1),where Cσ,0,p is the same as in the proof of theorem 1. Then we have proved that rn is anupper bound. The lower bound is given by the proposition 6, and the 
on
lusion followsfrom lemma 4 �In all the following, 〈· , ·〉 denotes the Eu
lidean s
alar produ
t on R
k+1, e1 = (1, 0, . . . , 0) ∈

R
k+1, ‖ · ‖∞ stands for the sup norm in R

k+1 and ‖ · ‖ stands for the Eu
lidean norm in
R

k+1.



12 STÉPHANE GAÏFFASProof of proposition 1. On ΩK
h we have in view of de�nition 4 that X̃K

h = XK
h and XK

h isinvertible. Let 0 < ε 6 1/2, and n > 1. We 
an �nd a polynomial Pn,ε
f of order k su
h that

sup
|x−x0|6h

|f(x) − Pn,ε
f (x)| 6 inf

P∈Pk

sup
|x−x0|6h

|f(x) − P (x − x0)| +
ε√
n

.In parti
ular with h = 0 we get |f(x0) − Pn,ε
f (x0)| 6 ε√

n
. De�ning θh ∈ R

k+1 su
h that
Pn,ε

f = Pθh
(see (3.6)) we get

|f̂h(x0) − f(x0)| 6
ε√
n

+ |〈θ̂h − θh , e1〉| =
ε√
n

+ |〈(XK
h )−1XK

h (θ̂h − θh) , e1〉|.Then we have for j ∈ {0, . . . , k} by (3.4) and (1.1):
(XK

h (θ̂h − θh))j = 〈f̂h − Pn,ε
f , φj,h〉h,K = 〈Y − Pn,ε

f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈Y − f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈ξ , φj,h〉h,K

, Bh,j + Vh,j,thus XK
h (θ̂h − θh) = Bh + Vh. In view of assumption K and sin
e f ∈ Fh(x0, ω) we have:

|Bh,j| = |〈f − Pn,ε
f , φj,h〉h,K | 6 ‖f − Pn,ε

f ‖h,K‖φj,h‖h,K 6 Nn,hK∞(ω(h) +
ε√
n

),thus ‖Bh‖∞ 6 Nn,hK∞(ω(h) + ε√
n
). Moreover, sin
e λ−1(Xh) 6 N

1/2
n,h 6 n1/2 on Ωh,K , wehave:

|〈(XK
h )−1Bh , e1〉| 6 ‖(XK

h )−1‖‖Bh‖ 6 ‖(XK
h )−1‖

√
k + 1‖Bh‖∞

6 λ−1(XK
h )

√
k + 1K∞ω(h) +

√
k + 1K∞ε,where we last used the fa
t that ‖M−1‖ = λ−1(M) for a positive symmetri
al matrix. Thevarian
e term Vh is 
learly 
onditional on Xn a 
entered Gaussian ve
tor, and its 
ovarian
ematrix is equal to σ2XK2

h . Thus the random variable 〈(XK
h )−1Vh , e1〉h,K is, 
onditional on

Xn, 
entered Gaussian of varian
e:
v2
h = σ2〈e1 , (XK

h )−1XK2

h (XK
h )−1e1〉 6 σ2〈e1 , (XK

h )−1XK
h (XK

h )−1e1〉
= σ2〈e1 , (XK

h )−1e1〉
6 σ2‖(XK

h )−1‖ = σ2N−1
n,hλ−1(XK

h ),sin
e K 6 1. Then
λ(XK

h ) = inf
‖x‖=1

〈x , XK
h x〉 6 ‖XK

h e1‖ 6
√

k + 1,sin
e XK
h is symmetri
al and its entries are smaller than 1 in absolute value. Thus:

v2
h 6 σ2N−1

n,hλ−1(XK
h ) 6 σ2N−1

n,h(k + 1)λ−2(XK
h ),and the proposition follows. �Proof of proposition 2. The proposition is a dire
t 
onsequen
e of the lemmas 1 and 2. �Proof of proposition 3. (2) ⇒ (1): In view of assumption M one has for n large enough

E
n
µ{Nn,Cγn} = 2n

∫ Cγn

0 ν(x)dx = 2nFν(Cγn) thus (2) entails 2nλ−1
n Fν(Cγn) ∼ φ(C) as

n → +∞ and then Fν ∈ RV(α) in view of the 
hara
terisation (A.8) of regular variation.Sin
e Fν(0) = 0 we have more pre
isely Fν ∈ RV(α) for α > 0 and sin
e ν is monotone we
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(3) ⇒ (2): Let ε > 0. We de�ne the event

An(C, ε) =
{∣∣∣

Nn,Cγn

φ(C)λn
− 1

∣∣∣ 6 ε
}

.Then:
λ−1

n E
n
µ{Nn,Cγn} = λ−1

n E
n
µ

{
Nn,Cγn(1An(C,ε) +1Ac

n(C,ε))
}

6 (1+ ε)φ(C)+nλ−1
n P

n
µ

{
Ac

n(C, ε)
}
,and then lim supn λ−1

n E
n
µ{Nn,Cγn} 6 (1 + ε)φ(C). On the other side:

λ−1
n E

n
µ{Nn,Cγn} > λ−1

n E
n
µ{Nn,Cγn1An(C,ε)} > (1 − ε)φ(C)Pn

µ{An(C, ε)},and then lim infn λ−1
n E

n
µ{Nn,Cγn} > (1 − ε)φ(C).

(1) ⇒ (3): Let ν ∈ RV(β) and 0 < ε 6 1/2. If β > −1 we have Fν ∈ RV(β + 1) (see inthe appendix) thus we 
an write Fν(h) = hβ+1ℓF (h) where ℓF is slowly varying. We de�ne
γn = n−1/(2(β+1)) when β > −1 and γn = n−1 if β = −1. When β = −1 we have Fν ∈ RV(0)(see appendix). We note that in both 
ases we have limn γn = 0 and γn+1 ∼ γn as n → +∞.In view of lemma 2 we get for n large enough

P
n
µ

{∣∣∣
Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
φ(C)λn

)
,where we used the fa
t that ℓF is slowly varying and where we de�ned λn , 2nFν(γn) and

φ(C) , Cβ+1. Then we 
learly have limn nλ−1
n = +∞ and proposition follows. �6.2. Proof of the upper bounds for f̂Hn(x0).Proof of proposition 4. Sin
e Eλ ⊂ ΩK

Hn
, (3.13) and proposition 1 entail that uniformly forany f ∈ FHn(x0, ω) we have

|f̂n(x0) − f(x0)| 6 λ−1
√

k + 1K∞Rn(1 + |γHn |),where γHn is 
onditional on Xn 
entered Gaussian su
h that E
n
f,µ{γ2

Hn
|Xn} 6 1. The resultfollows by integration with respe
t to P

n
f,µ(·|Xn). �Proof of the proposition 5. Let us de�ne ε , ̺−1. We 
an assume without loss of generalitythat ε < 1

2 ∧ λβ,K . We 
onsider the event An,ε from lemma 6. In view of this lemma wehave An,ε ⊂ Eλβ,K−ε ∩ {(1 − ε)hn 6 Hn 6 (1 + ε)hn} and then F̺hn(x0, ω) ⊂ FHn(x0, ω).Thus using proposition 4 we get
sup

f∈F̺hn (x0,ω)
E

n
f,µ{|f̂n(x0) − f(x0)|p1An,ε |Xn} 6 m(p)(λβ,K − ε)−pKp

∞(k + 1)p/2Rp
n

6 m(p)(λβ,K − ε)−pKp
∞(k + 1)p/2(1 + ε)p(s+1)rp

n,where we used equation (6.1) in the same way as in the proof of lemma 1 to obtain on An,εthat ω(Hn) 6 (1 + ε)s+1ω(hn). On the 
omplementary Ac
n,ε using inequality (6.11) andlemma 3 and sin
e αn = O(nγ) for some γ > 0 we get

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Ac
n,ε

} 6 2p(αnr−1
n )p(

√
npCσ,k,2p + 1)

√
Pn

µ{Ac
n,ε} = on(1),and (4.2) follows. The equivalent of rn is given by lemma 4. �



14 STÉPHANE GAÏFFAS6.3. Lemmas for the proof of the upper bounds.Lemma 1. If ω ∈ RV(s) for any s > 0 then for any 0 < ε 6 1
2 there exists 0 < η 6 ε su
hthat

{∣∣∣
Nn,(1−ε)hn

2nFν((1 − ε)hn)
− 1

∣∣∣ 6 η
}
∩

{∣∣∣
Nn,(1+ε)hn

2nFν((1 + ε)hn)
− 1

∣∣∣ 6 η
}
⊂

{∣∣∣
Hn

hn
− 1

∣∣∣ 6 ε
}

.Proof. In view of (3.13) we have
{Hn 6 (1 + ε)hn} = {Nn,(1+ε)hn

> σ2ω−2((1 + ε)hn)}.Let de�ne ε1 , 1 − (1 − ε2)−2(1 + ε)−2s. For ε small enough, it is 
lear that ε1 > 0. Were
all that ℓω stands for the slowly varying term of ω (see de�nition 2). Sin
e (A.1) holdsuniformly on ea
h 
ompa
t set in (0,+∞), we have for n large enough that for any y ∈ [12 , 3
2 ]:

(1 − ε2)ℓω(hn) 6 ℓω(yhn) 6 (1 + ε2)ℓω(hn), (6.1)so using (6.1) with y = 1 + ε (ε 6 1
2), we obtain in view of (2.5):

2(1 − ε1)nFν((1 + ε)hn) > (1 − ε2)−2(1 + ε)−2sσ2ω−2(hn)

= σ2
(
(1 + ε)hn

)−2s
(1 − ε2)−2ℓ−2

ω (hn)

> σ2ω((1 + ε)hn)−2,and then
{Nn,(1+ε)hn

> 2(1 − ε1)nFν((1 + ε)hn)} ⊂ {Hn 6 (1 + ε)hn}.Using again (6.1) with y = 1 − ε we get in the same way
{Nn,(1−ε)hn

< 2(1 + ε1)nFν((1 − ε)hn)} ⊂ {Hn > (1 − ε)hn},and then:
{∣∣∣

Nn,(1−ε)hn

2nFν((1 − ε)hn)
− 1

∣∣∣ 6 ε1

}
∩

{∣∣∣
Nn,(1+ε)hn

2nFν((1 + ε)hn)
− 1

∣∣∣ 6 ε1

}
⊂

{∣∣∣
Hn

hn
− 1

∣∣∣ 6 ε
}

,and the result follows for the 
hoi
e η = ε ∧ ε1. �Lemma 2. Under assumption M, we have for any ε, h > 0:
P

n
µ

{∣∣∣
Nn,h

2nFν(h)
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
nFν(h)

)
.Proof. It su�
es to use the Bernstein inequality to the sum of independent random variables

Zi = 1|Xi−x0|6h − P
n
µ{|X1 − x0| 6 h} for i = 1, . . . , n. �Lemma 3. For any p > 0 and h > 0 the estimator f̂h (see de�nition 4) satis�es

sup
f ∈ U(α)

E
n
f,µ{|f̂h(x0)|p|Xn} 6 Cσ,k,p(α

√
n)p,where Cσ,k,p , (k + 1)p/2

√
2/π

∫
R+(1 + σt)p exp(−t2/2)dt.Proof. When Nn,h = 0 we have by de�nition f̂h = 0 and the result is obvious, so we assume

Nn,h > 0. Using the fa
t that λ(A + B) > λ(A) + λ(B) when A and B are symmetri
aland non-negative matri
es we get λ(X̃K
h ) > N

1/2
n,h > 0 thus X̃K

h is invertible. Equation(3.10) entails |f̂h(x0)| = |〈(X̃K
h )−1X̃K

h θ̂h , e1〉| = |〈(X̃K
h )−1Yh , e1〉|. In view of (1.1) we 
ande
ompose for j ∈ {0, . . . , k}:

(Yh)j = 〈Y , φj,h〉h,K = 〈f , φj,h〉h,K + 〈ξ , φj,h〉h,K , Bh,j + Vh,j.
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e f ∈ U(α) we have under assumption K that |Bh,j| 6 αNn,h, thus ‖Bh‖∞ 6 αNn,h. Asin the proof of proposition 1 we have that 〈(X̃K
h )−1Vh , e1〉 is, 
onditional on Xn, 
enteredGaussian with varian
e

v2
h = σ2〈e1 , (X̃K

h )−1XK2

h (X̃K
h )−1e1〉 6 σ2〈e1 , (X̃K

h )−1XK
h (X̃K

h )−1e1〉
6 σ2‖(X̃K

h )−1‖2‖XK
h ‖.Assumption K entails that all the elements of the matrix XK

h are smaller than Nn,h, thus
‖XK

h ‖ 6 (k +1)Nn,h. Sin
e X̃K
h is symmetri
al we get ‖(X̃K

h )−1‖ = λ−1(X̃K
h ) 6 N

−1/2
n,h , andthen v2

h 6 σ2(k + 1). Finally, we have
|f̂h(x0)| 6 |〈(X̃K

h )−1Bh , e1〉| + |〈(X̃K
h )−1Vh , e1〉| 6 ‖(X̃K

h )−1‖‖Bh‖ + σ
√

k + 1|γh|
6

√
k + 1(α

√
n + σ|γh|),where γh is, 
onditional on Xn, 
entered Gaussian with varian
e smaller than 1. The resultfollows by integrating with respe
t to P

n
f,µ(·|Xn). �Lemma 4. If ν ∈ RV(β), ω ∈ RV(s) for s > 0 and the sequen
e (hn) is de�ned by (2.5)then the rate rn = ω(hn) satis�es

rn ∼ cs,βσ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞, (6.2)where ℓω,ν is slowly varying and cs,β = 4s/(1+2s+β). When ω(h) = rhs (Hölder regularity)for r > 0, we have more pre
isely :
rn ∼ cs,βσ2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n → +∞, (6.3)where ℓs,ν is slowly varying. It is noteworthy that when β = −1 the result be
omes:

rn ∼ 2σn−1/2ℓω,ν(1/n) as n → +∞.When ν ∈ ΓV(ρ) we have
rn ∼ ℓω,ν(1/n), (6.4)where ℓω,ν is slowly varying.Proof. Let us denote Fν(h) ,

∫ h
0 ν(t)dt and let G(h) = ω2(h)Fν(h). When β > −1 we have

Fν ∈ RV(β+1) (see the appendix) and when β = −1, Fν is slowly varying. Thus G ∈ RV(1+
2s + β) for any β > −1. The fun
tion G is 
ontinuous and su
h that limh→0+ G(h) = 0 inview of (A.2) sin
e 1+2s+β > 0. Then, for n large enough hn is given by hn = G←(σ2/(4n)),where G←(h) , inf{y > 0|G(y) > h} is the generalised inverse of G. Then in view of (A.8)we have G← ∈ RV(1/(1 + 2s + β)) and then ω ◦ G← ∈ RV(s/(1 + 2s + β)) (see appendix).Thus we 
an write ω ◦ G←(h) = hs/(1+2s+β)ℓω,ν(h) where ℓω,ν is a slowly varying fun
tion.Thus:

rn = ω
(
G←

(σ2

4n

))
= cs,βσ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν

(σ2

4n

)

∼ cs,βσ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞,sin
e ℓ is slowly varying. When ω(h) = rhs we 
an write more pre
isely hn = G←(σ2/(4r2n))where G(h) = h2sFν(h) so (6.2) and (6.3) follow.Let y ∈ R. Using (A.9) and the uniformity in (A.1) we get limh→0+ ℓω(h+yρ(h))/ℓω(h) =
1, thus limh→0+ ω(h + yρ(h))/ω(h) = 1. Moreover, sin
e ΓV(ρ) is stable under integration(see appendix) we have Fν ∈ ΓV(ρ), thus limh→0+ G(h + yρ(y))/G(h) = exp(y) and then
G ∈ ΓV(ρ). For n large enough, hn is well de�ned and given by hn = G←(σ2/(4n)).



16 STÉPHANE GAÏFFASSin
e G← ∈ ΠV(ℓ) for ℓ = ρ ◦ ν← ∈ RV(0) (see appendix), G← belongs in parti
ular to
RV(0) in view of (A.11) and then rn = ω ◦ G←(σ2/(4n)) where ω ◦ G← ∈ RV(0). Thus
rn ∼ ω ◦ G←(n−1) as n → +∞ and (6.4) follows with ℓω,ν = ω ◦ G←. �Study of the terms λ(XK

hn
) and λ(XK

Hn
). We re
all that the matrix Xh,K is de�ned asthe symmetri
al and non-negative matrix with entries for 0 6 j, l 6 k, (Xh,K)j,l = Kn,h,j+lwhere:

Kn,h,α ,
1

Nn,h

n∑

i=1

(Xi − x0

h

)α
K

(Xi − x0

h

)
, (6.5)for α ∈ N. Let us de�ne Kn,h,α , Nn,hKn,h,α and:

Kα,β , (1 + (−1)α)

∫ 1

0
yα+βK(y)dy. (6.6)We de�ne for any ε > 0 the event

Dn,h,α,K,ε ,
{∣∣∣

Kn,h,α

nFν(h)
− (β + 1)Kα,β

∣∣∣ 6 ε
}

.Lemma 5. Let α ∈ N and ε > 0. Under assumption K and if µ ∈ R(x0, β) with β > −1then for any positive sequen
e (γn) going to 0 we have for n large enough:
P

n
µ

{
Dc

n,γn,α,K,ε

}
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (6.7)When β = −1 we have:

P
n
µ

{∣∣∣
Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}

6 2 exp
(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (6.8)Proof. First we prove (6.7). We de�ne Qi,n,α ,

(
Xi−x0

γn

)α
K

(
Xi−x0

γn

), Zi,n,α , Qi,n,α −
E

n
µ{Qi,n,α}. Sin
e µ ∈ R(x0, β) one has for i = 1, . . . , n:

1

nFν(γn)
E

n
µ{Qi,n,α} =

γnν(γn)

Fν(γn)

1 + (−1)α

ℓν(γn)

∫ 1

0
yα+βK(y)ℓν(yγn)dy,where we used assumption K and the fa
t that for n large enough [x0 − γn, x0 + γn] ⊂ W .Then equations (A.3) and (A.4) entail:

lim
n

1

nFν(γn)
E

n
µ{Qi,n,α} = (β + 1)Kα,β ,and for n large enough:

Dc
n,γn,α,K,ε ⊂

{∣∣∣
1

nFν(γn)

n∑

i=1

Zi,n,α

∣∣∣ > ε/2

}
. (6.9)We have in view of assumption K: E

n
µ{Zi,n,α} = 0, |Zi,n,α| 6 2 and

b2
n ,

n∑

i=1

E
n
µ{Z2

i,n,α} 6 nE
n
µ{Q2

1,n,α} 6 2nFν(γn).Sin
e the Zi,n,α are independent we 
an apply Bernstein inequality. If τn , ε
2nFν(γn)equation (6.9) and Bernstein inequality entail:

P
n
µ

{
Dc

n,γn,α,K,ε

}
6 2 exp

( −τ2
n

2(b2
n + 2τn/3)

)
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
,



CONVERGENCE RATES WITH A DEGENERATE DESIGN 17thus (6.7) follows. The proof of equation (6.8) is similar. When β = −1 we have ν(t) =

t−1ℓν(t). We de�ne Zi,n , Qi,n,0 − E
n
f,µ{Qi,n,0}. We have in view of equation (A.5):

lim
n→+∞

1

Fν(γn)
E

n
µ{Qi,n,0} = lim

n→+∞
2

Fν(γn)

∫ 1

0
K(t/h)ℓν(t)dt/t = 2K(0) > 0.Then for n large enough one has

{∣∣∣
Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}
⊂

{∣∣∣
1

nFν(γn)

n∑

i=1

Zi,n

∣∣∣ > ε/2
}

.The Zi,n are independent and 
entered and |Zi,n| 6 2. Moreover, in view of assumptionK we have as previously b2
n ,

∑n
i=1 E

n
µ{Z2

i,n} 6 2nFν(γn) and using again the Bernsteininequality we get (6.8). �Lemma 6. Let assumption K holds and ω ∈ RV(s) with s > 0, µ ∈ R(x0, β) with β > −1and λβ,K be de�ned by equation (4.1). We have λβ,K > 0 and we 
an �nd for any 0 < ε 6 1
2an event An,ε su
h that for n large enough

An,ε ⊂ {|λ(XK
hn

) − λβ,K | 6 ε} ∩ {|λ(XK
Hn

) − λβ,K | 6 ε} ∩
{∣∣∣

Hn

hn
− 1

∣∣∣ 6 ε
}

, (6.10)and
P

n
µ{Ac

n,ε} 6 4(k + 2) exp
(
− cβ,σ,εr

−2
n

)
, (6.11)where cβ,σ,ε > 0.Proof. Sin
e λβ,K is the smallest eigenvalue of XK

β we have λβ,K > 0 otherwise de�ning
p(y) = (1, y, . . . , yk) and sin
e XK

β is symmetri
al we should have
0 = λβ,K = inf

‖x‖=1
〈x , XK

β x〉 = 〈x0 , XK
β x0〉 =

∫ 1

−1

(
tx0p(y)

)2
yβK(y)dy,where x0 6= 0 is the normalised eigenve
tor asso
iated to the eigenvalue λβ,K and where weused the fa
t that

λ(M) = inf
‖x‖=1

〈x , Mx〉, (6.12)for any symmetri
al matrix M . Then ∀y ∈ SuppK we have tx0p(y) = 0 whi
h leads to a
ontradi
tion sin
e y 7→ tx0p(y) is a polynomial. For any h, ε > 0 we introdu
e the events:
An,h,ε =

{
|λ(XK

h ) − λβ,K | 6 ε
}
, Bn,h,α,ε =

{∣∣∣Kn,h,α − β + 1

2
Kα,β

∣∣∣ 6 ε
}

. (6.13)Using the 
hara
terisation (6.12) we 
an prove easily that
2k⋂

α=0

Bn,h,α,ε/(k+1)2 ⊂ An,h,ε. (6.14)Sin
e
Kn,Hn,α − Kn,hn,α = Kn,Hn,α

(
1 − Nn,Hn

Nn,hn

(Hn

hn

)α)

+
1

Nn,hn

n∑

i=1

(Xi − x0

hn

)α(
K

(Xi − x0

Hn

)
− K

(Xi − x0

hn

))
,



18 STÉPHANE GAÏFFASwe have when K is the re
tangular kernel KR

|Kn,Hn,α − Kn,hn,α| 6
∣∣∣
Nn,Hn

Nn,hn

(Hn

hn

)α
− 1

∣∣∣ +
1

2

(Hn

hn
∨ 1

)α∣∣∣
Nn,Hn

Nn,hn

− 1
∣∣∣,and otherwise under assumption K

|Kn,Hn,α − Kn,hn,α| 6
∣∣∣
Nn,Hn

Nn,hn

(Hn

hn

)α
− 1

∣∣∣ +
Nn,Hn

Nn,hn

(Hn

hn

)α
ρ
∣∣∣
Hn

hn
− 1

∣∣∣
κ

+ ρ
∣∣∣
hn

Hn
− 1

∣∣∣
κ
.Let us introdu
e for ε > 0 the event

Fn,ε ,
{∣∣∣

Nn,Hn

Nn,hn

− 1
∣∣∣ 6 ε

}
.Then for a good 
hoi
e of ε1 6 ε we have |Kn,Hn,α − Kn,hn,α| 6 ε

2(k+1)2
on the event

Cn,ε1∩Fn,ε1 and sin
e K 6 1 we have Kα,β 6 2
β+1 and noting that Dn,h,0,KR,ε1

=
{∣∣ Nn,h

2nFν(h)−
1
∣∣ 6 ε1

} we have for any α ∈ N

Dn,h,0,KR, ε
3(k+1)2+ε

∩ Dn,h,α,K, ε
3(k+1)2+ε

⊂ Bn,h,α, ε
2(k+1)2

.Using (6.14) we get for η , 2ε
3(k+1)2+2ε

:
Dn,hn,0,KR,η ∩

2k⋂

α=0

Dn,hn,α,K,η ⊂ An,hn,ε. (6.15)We take 0 < ε2 6 ε1 su
h that (1+ε2)β+3

1−ε2
6 1 + ε1 (for ε1 small enough). Sin
e h 7→ Nn,h isin
reasing we have

Cn,ε2 ⊂ {Nn,(1−ε2)hn
6 Nn,Hn 6 Nn,(1+ε2)hn

},and in view of lemma 1 we 
an take 0 < ε3 6 ε2 su
h that
Dn,(1−ε2)hn,0,KR,ε3

∩ Dn,(1+ε2)hn,0,KR,ε3
⊂ Cn,ε2.Using (A.1) with the slowly varying fun
tion ℓF (h) , Fν(h)h−(β+1) we have for n largeenough that uniformly for y ∈ [12 , 3

2 ]

(1 − ε1)ℓF (hn) 6 ℓF (yhn) 6 (1 + ε1)ℓF (hn), (6.16)and in parti
ular for y = 1 − ε1 and y = 1 + ε1 we get by the de�nition of ε2 and sin
e
ε3 6 ε2 6 ε1:

Dn,(1−ε2)hn,0,KR,ε3
∩ Dn,(1+ε2)hn,0,KR,ε3

∩ Dn,hn,0,KR,ε3
⊂ Fn,ε1.Then we de�ne for ε4 , ε3 ∧ ε

3(k+1)2+ε the event
An,ε , Dn,(1−ε2)hn,0,KR,ε4

∩ Dn,(1+ε2)hn,0,KR,ε4
∩ Dn,hn,0,KR,ε4

∩
2k⋂

α=0

Dn,hn,α,K,ε4,whi
h satis�es (6.10) in view of the previous embeddings. Using inequality (6.7) in lemma5 and sin
e ε4 6 ε2 6 ε1 6 1
2 we get

P
n
µ{Ac

n,ε} 6 4(k + 2) exp
(
− 2−(β+3)ε4σ

2

8(2 + ε4/3)
r−2
n

)
,where we used (6.16) and (2.5). �



CONVERGENCE RATES WITH A DEGENERATE DESIGN 196.4. Proof of the lower bounds.Lemma 7. If there are 2 elements f0 and f1 of a 
lass Σ su
h that the Kullba
k-Leiblerdistan
e between the 
orresponding probabilities P0 and P1 satis�es K(P0, P1) < Q < +∞with |f0(x0) − f1(x0)| > 2crn for some 
onstant c > 0 then the pointwise minimax risk
Rn(Σ, µ) over the 
lass Σ de�ned by (2.1) in the model (1.1) satis�es:

Rn(Σ, µ) > C(c,Q, p)rn,where C(c,Q, p) , c
21/p

(
e−Q ∨ 1−

√
Q/2

2

)1/p.This result is 
lassi
al. It 
an be found in Tsybakov [19℄ with a proof based on a twohypothesis redu
tion s
heme and inequalities between the Kullba
k-Leibler distan
e andothers probability distan
es.Proposition 6. Let hn be de�ned by (2.5), (αn) be a positive numbers sequen
e going to
+∞ and rn = ω(hn). If Σ = Σhn,αn(x0, ω) is the 
lass given by de�nition 2 we have

lim inf
n

r−1
n Rn(Σ, µ) > Cs,p. (6.17)Proof. We use the lemma 7. All we have to do is to �nd two fun
tions f0,n and f1,n su
hthat:(1) There is some 0 < Q < +∞ su
h that K(Pn

0 , Pn
1 ) 6 Q,(2) f0,n, f1,n ∈ Σhn,αn(x0, ω),(3) |f0,n(x0) − f1,n(x0)| > 2crn for some 
onstant c > 0.We 
hoose the 2 following hypothesis:

f0,n(x) = ω(hn)1|x−x0|6hn
, f1,n(x) = ω(|x − x0|)1|x−x0|6hn

.(1): Sin
e the ξi are 
entered Gaussian of varian
e σ2 and independent of Xn we have:
K(Pn

0 , Pn
1 |Xn) =

1

2σ2

n∑

i=1

(
f0,n(Xi) − f1,n(Xi)

)2
,then in view of (2.5): K(Pn

0 , Pn
1 ) = n

2σ2 ‖f0,n − f1,n‖2
L2(µ) 6 nω2(hn)Fν(hn)/σ2 = 1/2.(2): For h ∈ [0, hn], taking P as the 
onstant polynomial equal to ω(hn) we have that the
ontinuity modulus of f0,n is 0, and taking P = 0 we obtain that the 
ontinuity modulus of

f1,n is bounded by ω(h). Moreover for n large enough, we 
learly have f0,n, f1,n ∈ U(αn)sin
e αn → +∞.(3): If we take c = 1/2 we have |f1,n(x0) − f0,n(x0)| = ω(hn) = 2crn. �6.5. Computations of the examples. For a given design density, we 
ompute the mini-max 
onvergen
e rate rn by �rst giving an equivalent as n → +∞ of the smallest solution
hn of

ω(h) =
σ√

nFν(h)
,and then and equivalent of rn = ω(hn).



20 STÉPHANE GAÏFFAS6.5.1. Regularly varying design example. In the regularly varying design 
ase we �nd theequivalent of hn using the following proposition.Proposition 7. Let γ > 0 and α ∈ R. If G(h) = hγ(log(1/h))α, then we have:
G←(h) ∼ γα/γh1/γ(log(1/h))−α/γ as h → 0+.Proof. When α = 0, the result is obvious then assume α ∈ R−{0}. We look for h su
h that

hγ(log(1/h))α = x, when x > 0 is small. If α > 0 we de�ne t = log(hγ/α), so this equationbe
omes
t exp(t) = −γx1/α/α, (6.18)where t 6 0. The equation (6.18) has two solutions for x small enough, but they 
annotbe written in an expli
it way. Then let us 
onsider the Lambert fun
tion W de�ned asthe fun
tion satisfying W (z)eW (z) = z for any z ∈ C. See for instan
e Corless et al. [3℄about this fun
tion. We are only interested here by its real bran
hes. This fun
tion hastwo bran
hes W0 and W−1 in R. We denote by W0 the one su
h that W0(0) = 0 and

W−1 the one su
h that limh→0− W−1(h) = −∞. The two solutions of (6.18) are then
t0 = W−1(−γx1/α/α) and t1 = W0(−γx1/α/α) and h0 , exp

(
αW−1(−γx1/α/α)/γ

) isthe smallest solution. By the de�nition of W we have for −1/e < x < 0 and a ∈ R:
eaW−1(x) = (−x)a(−W−1(x))−a and sin
e W−1 satis�es W−1(−x) ∼ log(x) as x → 0+we have h0 = (γx1/α/α)α/γ (−W−1(−γx1/α/α))−α/γ ∼ γα/γx1/α(log(1/x))−α/γ as x → 0+.When α < 0 we pro
eed similarly. We have t > 0 and (6.18) has a single solution t =

W0(−γx1/α/α), thus h , exp(−αW0(−γx1/α/α)/γ). By the de�nition of W0 we have
∀x > 0 and a ∈ R: eaW0(x) = xaW−a

0 (x) and sin
e W0 satis�es W0(x) ∼ log(x) as x → +∞we �nd again h ∼ γα/γx1/α(log(1/x))−α/γ as x → 0+. �For the se
ond example of regularly varying design, using the proposition 7, we �nd thatan equivalent to the sequen
e hn de�ned by (2.5) is
(1 + 2s + β)(α+2γ)/(1+2s+β)

(σ

r

)2/(1+2s+β)
(n(log n)α+2γ)−1/(1+2s+β),and sin
e ω(h) = rhs(log(1/h))γ we �nd that an equivalent of rn (up to a 
onstant dependingon s, β, γ, α) is

σ2s/(1+2s+β)r(β+1)/(1+2s+β)(n(log n)α−γ(1+β)/s)−s/(1+2s+β).The 
omputation for the third example (β = −1) is similar to the se
ond example, sin
e
Fν(h) = (log(1/h))1−α.6.5.2. Γ-varying design example. For the Γ-varying design example ν(h) = exp(−1/hα), we�rst use the fa
t that when ν ∈ ΓV(ρ) we have Fν(h) ∼ ρ(h)ν(h) as h → 0+ (see appendix).Re
alling that ρ(h) = hα+1

α , we solve
h1+2s+α exp(−1/hα) = yn, (6.19)where yn , σ2α/(r2n). De�ning t , h−α, equation (6.19) be
omes t−(1+2s+α)/α exp(−t) =

yn that we rewrite x exp(x) = α/(1+ 2s + α)y
−α/(1+2s+α)
n for x , α/(1+ 2s + α)t. Then wehave x = W0

(
α/(1 + 2s + α)y

−α/(1+2s+α)
n

), where W0 is de�ned in the proof of proposition7. Using the fa
t that W0(x) ∼ log(x) as x → +∞, we get x ∼ α
1+2s+α log n as n → +∞,thus hn ∼ (log n)−1/α and the result holds sin
e rn , rhs

n.
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ts on regular and Γ-variationWe re
all here some results about regularly and Γ-varying fun
tions. The results statedin this se
tion 
an be found in Bingham et al. [1℄, Geluk and de Haan [5℄ and Senata [14℄.A.1. Regular variation. Let ℓ be a slowly varying fun
tion in all the following. An im-portant result is that the property
lim

h→0+
ℓ(yh)/ℓ(h) = 1, (A.1)holds uniformly for y in any 
ompa
t set in (0,+∞). Now if R1 ∈ RV(α1) and R2 ∈ RV(α2)one has(1) R1 × R2 ∈ RV(α1 + α2),(2) R1 ◦ R2 ∈ RV(α1 × α2).If R ∈ RV(γ) for γ ∈ R − {0} then as h → 0+ we have

R(h) →
{

0 if γ > 0,

+∞ if γ < 0.
(A.2)The asymptoti
 behaviour of regularly varying fun
tions integrals, usually 
alled Abeliantheorems, plays a key role in the proofs.

• If γ > −1 we have
∫ h

0
tγℓ(t)dt ∼ (1 + γ)−1h1+γℓ(h) as h → 0+, (A.3)and in parti
ular h 7→

∫ h
0 tγℓ(t)dt ∈ RV(γ+1). This result is known as the Karamatatheorem.

• When γ = −1 and if ∫ η
0 ℓ(t)dt

t < +∞ for some η > 0 then h 7→
∫ h
0 ℓ(t)dt

t ∈ RV(0)and we have
lim

h→0+

1

ℓ(h)

∫ h

0
ℓ(t)

dt

t
= +∞.

• If R is some positive monotone fun
tion su
h that h 7→
∫ h
0 R(t)dt belongs to RV(γ)for some γ > 0 then R ∈ RV(γ − 1).

• If K is a fun
tion su
h that ∫ 1
0 t−δK(t)dt < +∞ for some δ > 0 then

∫ 1

0
K(t)ℓ(th)dt ∼ ℓ(h)

∫ 1

0
K(t)dt as h → 0+. (A.4)Moreover, when ∫ η

0 ℓ(t)dt/t < +∞ for some η > 0, and K is su
h that ∀t > 0,
|K(t) − K(0)| 6 ρ|t|κ for some ρ > 0 and κ > 0 one has

∫ 1

0
K(t/h)ℓ(t)dt/t ∼ K(0)

∫ 1

0
ℓ(t)dt/t as h → 0+. (A.5)If R is de�ned and bounded on [0,+∞) one 
an de�ne the generalised inverse as

R←(y) = inf{h > 0 su
h that R(h) > y}. (A.6)If R ∈ RV(γ) for some γ > 0, then there exists R− ∈ RV(1/γ) su
h that
R(R−(h)) ∼ R−(R(h)) ∼ h as h → 0+, (A.7)and R− is unique up to an asymptoti
 equivalen
e. Moreover, one version of R− is R←.



22 STÉPHANE GAÏFFASIf (δn)n>0 and (λn)n>0 are sequen
es of positive numbers su
h that δn+1 ∼ δn as n → +∞,
limn δn = 0, and if there is a positive and 
ontinuous fun
tion φ su
h that for any y > 0:

lim
n

λnR(yδn) = φ(y), (A.8)then R varies regularly.A.2. Γ-variation. We des
ribe now the properties of Γ-varying fun
tions and Π-varyingfun
tions. The results are due to de Haan. The referen
es are the same as for regularvariation. All the following results 
an be found there in.A �rst result tells that if ν is a fun
tion su
h that (2.6) holds for all y ∈ R, then (2.6)holds uniformly on ea
h 
ompa
t set in R. If ρ is su
h that (2.6) holds, then:
lim

h→0+
ρ(h)/h = 0. (A.9)The auxiliary fun
tion ρ in de�nition (2.6) is unique up to within an asymptoti
 equivalen
eand 
an be taken as h 7→

∫ h
0 ν(t)dt/ν(h).The 
lass ΓV(ρ) is stable under integration. If ν ∈ ΓV(ρ) then Fν(h) =

∫ h
0 ν(t)dt ∈ ΓV(ρ)and we have

Fν(h) ∼ ρ(h)ν(h) as h → 0+.We have seen that under the operation of fun
tional inversion, the 
lass of regularlyvarying fun
tions RV is stable. In the 
ase of Γ-variation, the inversion maps the 
lass ΓVin another 
lass of fun
tions, namely the de Haan 
lass ΠV.De�nition 5 (Π-Variation). A fun
tion ν is in the de Haan 
lass ΠV if there exists a slowlyvarying fun
tion ℓ and a positive real number c su
h that:
∀y > 0, lim

h→0+
(ν(yh) − ν(h))/ℓ(y) = c log(y). (A.10)The 
lass of fun
tions ν satisfying (A.10) is denoted by ΠV(ℓ).

• If ν ∈ ΓV(ρ) then ℓ = ρ ◦ ν← is slowly varying and ν← ∈ ΠV(ℓ).
• If ν ∈ ΠV(ℓ) for some ℓ ∈ RV(0) then ν← ∈ ΓV(ρ) with ρ = ℓ ◦ ν←.In both senses the inverses and their auxiliary fun
tions are asymptoti
ally unique. Thefollowing in
lusion tells that Π-variation 
an be viewed as a re�nement of slow variation.A
tually, any Π-varying fun
tion is slowly varying: for any ℓ ∈ RV(0) we have

ΠV(ℓ) ⊂ RV(0). (A.11)Referen
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