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Abstract. The model of nonparametric regression with a random design is considered.
We want to estimate the regression function at a point x0 where the density of the design
is vanishing or exploding. Depending on assumptions on the local regularity of the re-
gression function and on the local behaviour of the design, we find several minimax rates.
These rates lie in a wide range, from slow rates of order ℓ(n) where ℓ(n) is slowly varying

(for instance (log n)−1) to fast rates of order n−1/2ℓ(n). In particular, if the modulus
of continuity at x0 of the regression function can be bounded from above by a regularly
varying function of index s, and if the density of the design is regularly varying of index
β, we prove that the minimax rate of convergence at x0 is of order n−s/(1+2s+β)ℓ(n).

1. Introduction

1.1. The model. Suppose that we have n independant and identically distributed obser-
vations (Xi, Yi) ∈ R × R such that:

(1.1) Yi = f(Xi) + ξi,

where f : R → R is the regression function and where the variables (ξi)i=1,...,n (the noise)

are centered Gaussian of variance σ2 and independant of Xn , σ(X1, . . . ,Xn), the σ-algebra
generated by the variables (Xi)i=1,...,n. The variable Yi is then a noisy observation of the
function f at the random point Xi. Let x0 ∈ R be the estimation point. The random
variables (Xi)i=1,...,n (the design) are distributed with respect to a density µ. Take for
instance the density

µ(x) =
β + 1

xβ+1
0 + (1 − x0)β+1

|x − x0|β1[0,1](x),

for x0 ∈ [0, 1] and β > −1. When β > 0 this density models a lack of information at
the point x0 quantified by the parameter β. Conversely, when −1 < β < 0, µ models an
exploding quantity of information at x0 quantified by β.

1.2. Motivations. The pointwise estimation of a regression function is a well-known prob-
lem which has been intensively studied by many authors. The first authors who computed
the minimax rate over a nonparametric class of Hölderian functions are Ibragimov and
Hasminski (1981) and Stone (1980). Over a class of Hölderian functions of smoothness pa-

rameter s, the local polynomial estimator converges with the rate n−s/(1+2s) and this rate is
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optimal in the minimax sense. Many authors worked on related problems: see for instance
Korostelev and Tsybakov (1993), Nemirovski (2000), Tsybakov (2003). Nevertheless, these
results require that the density of the design is non-vanishing and finite at the point of
estimation. This assumption roughly means that the information is spatially homogeneous.
The next logical step is then to look for the minimax risk at a point where the density of
the design µ is vanishing or exploding. Such a result would improve the understanding of
the case of very inhomogeneous distribution of the observations. Hall et al. (1997) answer
this question in the case of a Hölder type smoothness of order 2: if µ(x) ∼ xβ near 0, where

β > 0, the authors show that a local linear procedure converges with the rate n−4/(5+β)

when estimating f at 0. The optimality of this rate is also proved. Guerre (1999) considers
in a more general setup for the design the case of a Lipschitz regression function and in
particular extends the result of Hall et al. for β > −1. We intend here to develop the
estimation of the regression function when the design is degenerate in a systematical way.

1.3. Results. The rates of convergence are given in the minimax sense. Let us define the
pointwise minimax risk over the class Σ (see 3.2 for a definition):

(1.2) Rn,p(Σ, µ, x0) ,
(
inf
Tn

sup
f∈Σ

E
n
f,µ{|Tn − f(x0)|p}

)1/p
,

where infTn stands for any estimator Tn based on the observations (1.1), x0 is the point
of estimation and p is some positive number. The expectation E

n
f,µ in (1.2) is taken with

respect to the joint probability P
n
f,µ of pairs of random variables (Xi, Yi)i=1,...,n. In this

paper we prove that the following minimax rates hold:

rn ≍ n−s/(1+2s+β)ℓ(n) as n → +∞,

where an ≍ bn means 0 < lim infn an/bn 6 lim supn an/bn < +∞, and where s > 0 is the
local (around x0) smoothness parameter of the regression function, and β is a parameter
describing the local behaviour of the design density. More precisely, if the modulus of
continuity of the regression function f at x0 is bounded from above by a regularly varying
function ω at 0 of index s (if ω(h) = rhs for instance, we find a classical Hölder ball of
radius r) and if the design density µ has the form ν(| ·−x0|) close to x0 where ν is regularly
varying of index β > −1, the minimax rate rn of estimation at x0 is of order:

n−s/(1+2s+β)ℓω,ν(n),

where ℓω,ν is a slowly varying function depending on ω and ν. When β = −1 it is noteworthy
that

rn ≍ n−1/2ℓω,ν(n),

which is barely a minimax parametric rate of estimation up to the slow term ℓ. We consider
also the framework of Γ-variation for the density of the design, including densities behaving
like exp(−1/|x − x0|α) for α > 0 at x0 (which is an example of function vanishing at x0

faster than any power function). We show in this Γ-variation framework that the minimax
rate is slow, and in this latter example

rn ≍ (log n)−s/α.

When the design is regularly varying or Γ-varying, we prove that

rn = ω(hn),

where hn (the bandwidth) is the smallest solution of the bias-variance equation:

ω(h) =
σ√

nFν(h)
,
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where σ is the noise level (σ2 is the variance of the ξi) and where Fν(h) =
∫ h
0 ν(t)dt.

1.4. Adaptation. Forthcoming results concern adaptation in regularity and design. The
procedure considered in this paper heavily depends (via the bandwidth hn) on the smooth-
ness parameter of the regression function and on the behaviour of the density of the design
at the point of estimation. An extension of this result is then to look for a procedure able
to estimate the regression function without an a priori knowledge on the regularity of the
regression function nor the density of the design. On design adaptation, see Guerre (1999),
Guerre (2000) and on pointwise regularity adaptation see Cai and Brown (1998), Lepski
(1990), Lepski et al. (1997), Lepski and Spokoiny (1997), Nemirovski (2000), Spokoiny
(1998) among many others.

1.5. Organisation of the paper. We introduce in section 2 the local polynomial estima-
tion procedure, we define our estimator in definition 2.1. We give a bias-variance decom-
position in proposition 2.3, conditional on the design. In section 3 we assume the design is
regularly varying, and we give upper and lower bounds in theorems 3.6 and 3.7. In section
4 we assume the design is Γ-varying. The upper and lower bounds are stated in theorems
4.7 and 4.8. Section 5 is devoted to the proofs, and the sections A and B recall technical
results of the Karamata theory (regular variation) and the de Haan theory (Π-variation,
Γ-variation).

2. Local polynomial estimation

2.1. Introduction. The local polynomial estimator is well-known and has been intensively
studied (see Stone (1980), Fan and Gijbels (1996), Spokoiny (1998), Tsybakov (2003),
among others). If f is a smooth function at x0, it is close to its Taylor polynomial at x0: a
function f ∈ Ck(x0) (the space of k times differentiable functions at x0 with a continuous
k-th derivative) is such that for any x close to x0:

(2.1) f(x) ≈ f(x0) + f
′

(x0)(x − x0) + . . . +
f (k)(x0)(x − x0)

k

k!
.

Let h > 0 (the bandwidth) and k ∈ N. We define φj,h(x) ,
(

x−x0
h

)j
and the space

Vk,h , Span{(φj,h)j=0,...,k}.
For some fixed non-negative function K (the kernel) we define the weighted pseudo-scalar
product:

(2.2) 〈f , g〉h,K ,

n∑

i=1

f(Xi)g(Xi)K
(Xi − x0

h

)
,

and ‖·‖h,K the corresponding pseudo-norm (K > 0). In view of (2.1) it is natural to consider
the estimator defined as the closest polynomial of order k to the observations (Yi)i=1,...,n in
the least square sense, that is:

(2.3) f̂h = arg min
g∈Vk,h

‖g − Y ‖2
h,K .

Then f̂h(x0) is the local polynomial estimator of f at x0. A necessary condition for f̂h to
be the minimizer of (2.3) is to be solution of the linear problem:

(2.4) find f̂ ∈ Vk,h such that ∀φ ∈ Vk,h, 〈f̂ , φ〉h,K = 〈Y , φ〉h,K .
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The estimator f̂h is given by:

(2.5) f̂h = P
θ̂h

,

where

(2.6) Pθ = θ0φ0,h + θ1φ1,h + . . . + θkφk,h,

with θ̂h the solution, whenever it makes sense, of the linear system:

(2.7) XK
h θ = YK

h ,

where XK
h is the symmetrical matrix with entries, for 0 6 j, l 6 k:

(2.8) (XK
h )j,l = 〈φj,h , φl,h〉h,K ,

and YK
h is the vector defined by:

YK
h = (〈Y , φj,h〉h,K ; 0 6 j 6 k).

We assume that the kernel K satisfies the following assumptions:

Assumption K. K is a non-negative function such that:

• Supp K ⊂ [−1, 1],
• K is symmetrical,
• K∞ , supx K(x) 6 1,
• There is some ρ > 0 and κ > 0 such that ∀x, y ∈ Supp K, |K(x)−K(y)| 6 ρ|x−y|κ.

Remark. The conditions on the kernel K are satisfied by all the classical kernels used in
nonparametric curve smoothing. The first assumption is used to make the kernel K localise
the information around the point of estimation x0 (see (2.2)). The last one is technical.
The two other ones are used for the sake of simplicity, since we only really need the kernel
to be bounded from above.

Let us define:
Nn,h = #{Xi such that Xi ∈ [x0 − h, x0 + h]},

the number of design points falling in the interval [x0−h, x0 +h], and we define the random
matrix (measurable with respect to Xn)

XK
h , N−1

n,hX
K
h .

The matrix XK
h is a ”renormalisation” of the matrix XK

h . We will see that this matrix
is asymptotically non-degenerate with a large probability in the context of section 3 (see
proposition 5.2). Actually our estimator is a bit different from the classical local polynomial
estimator (defined as the solution of the linear system (2.7)) that can be found in the
literature. For technical reasons, we need to introduce a ”correction” term in the matrix
XK

h . For a fixed bandwidth h > 0, our estimator is defined as follows:

Definition 2.1. Given some h > 0, we consider f̂h defined by (2.5) with θ̂h the solution,

when it makes sense (if Nn,h = 0 we take f̂h = 0), of the linear system:

(2.9) X̃K
h θ = YK

h ,

where:
X̃K

h , XK
h + N

1/2
n,h Ik+11λ(XK

h )6N
1/2
n,h

,

with λ(M) standing for the smallest eigenvalue of a matrix M , and Ik+1 denoting the
identity matrix in R

k+1.
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Remark. One can understand the definition of the matrix X̃K
h as follows: in the ”good”

case, that is when the matrix XK
h is non-degenerate (the smallest eigenvalue of XK

h is not

too small: λ(XK
h ) > N

−1/2
n,h ), we solve the system (2.7), while in the ”bad” case we still have

a control on the smallest eigenvalue of X̃K
h (that we need in the proof of the upper bound),

since λ(X̃K
h ) > N

1/2
n,h .

2.2. Bias-variance equilibrium. A main result on the local polynomial estimator is the
bias-variance decomposition. This is a classical result, many times presented in different
forms: see Cleveland (1979), Goldenshluger and Nemirovski (1997), Korostelev and Tsy-
bakov (1993), Spokoiny (1998), Stone (1977), Tsybakov (1986) and Tsybakov (2003). The
version by Spokoiny (1998) is close to the one presented here. Mainly, the differences are
linked with the fact that the design is random and that we consider a slightly modified ver-
sion of the local polynomial estimator (see definition 2.1). Let us first define the modulus
of continuity at x0:

Definition 2.2 (Modulus of continuity). Let k ∈ N. The modulus of continuity of a
continuous function f at x0 is defined by:

(2.10) ωf,k(x0, h) = inf
P∈Pk

sup
|x−x0|6h

|f(x) − P (x − x0)|,

where Pk is the set of real polynomials of order k.

Remark. It is easy to see when f belongs to a Hölder ball of regularity s and radius r that
ωf,k(x0, h) 6 rhs/(k!) where k , ⌊s⌋ is the largest integer smaller than s.

We introduce the event

(2.11) ΩK
h , {X1, . . . ,Xn are such that λ(XK

h ) > N
−1/2
n,h and Nn,h > 0}.

Note that on ΩK
h the matrix XK

h is invertible.

Proposition 2.3 (Bias-variance decomposition). Under assumption K, we have on the
event ΩK

h the following decomposition:

(2.12) |f̂h(x0) − f(x0)| 6 λ−1(XK
h )

√
k + 1K∞

(
ωf,k(x0, h) + σN

−1/2
n,h |γh|

)
,

where γh is, conditional on Xn, a centered Gaussian random variable s.t. E
n
f,µ{γ2

h|Xn} 6 1.

Remark. Inequality (2.12) in proposition 2.3 holds conditional on the design, on the event
ΩK

h . We will see this event has a large probability in the regular variation framework.

Now the problem is, like with any linear estimation procedure, to answer the following
question: how to choose the bandwidth h? A preliminary work is to study the behaviour

of the variance term σ2N
−1/2
n,h in the decomposition (2.12). In order to do so, we need some

assumptions on the local behaviour of the law of the design close to the point of estimation
x0. We assume in all the following:

Assumption M. There is some fixed neighbourhood W of x0 and some continuous function
ν : R

+ → R
+ such that:

(2.13) ∀x ∈ W, µ(x) = ν(|x − x0|).
In particular, we assume the law of the design is symmetrical close to x0. The following

result makes a link between the behaviour of the counting process Nn,h (that appears in the
variance term of the decomposition (2.12)) and the behaviour of µ close to x0. Actually,
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the regular variation property (defined in section 3) naturally appears under assumptions
on the asymptotic behaviour of Nn,h. This result will motivate assumption R below, that is
the choice of the regular variation framework for the design. Let us denote by P

n
µ the joint

probability of the variables (Xi)i=1,...,n.

Proposition 2.4. Under assumption M, with ν monotone, the following properties are
equivalent:

(1) ν is regularly varying of index β > −1,
(2) There exist sequences of positive numbers (λn)n>0 and (γn)n>0, such that limn γn =

0, lim infn nλ−1
n > 0, γn+1 ∼ γn as n → +∞ and a continuous function φ : R

+ →
R

+ such that for any C > 0:

E
n
µ{Nn,Cγn} ∼ φ(C)λn as n → +∞,

(3) There exist (λn)n>0, (γn)n>0 and φ as previously such that for any C > 0 and ε > 0:

lim
n→+∞

n

λn
P

n
µ

{∣∣∣
Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

= 0.

The proof is delayed until section 5. It is a consequence of the sequence characterisation
of regular variation (see theorem A.10 for the details).

3. Regularly varying design

3.1. Introduction. The definition and the main properties of regularly varying functions
are due to Karamata (1930). Main references on regular variation are Bingham et al. (1989),
Geluk and de Haan (1987), Resnick (1987) and Senata (1976).

Definition 3.1 (Regular variation). A continuous function ν : R
+ → R

+ is regularly
varying at 0 if there is a function φ : R

+ → R
+ and a real number β ∈ R such that:

(3.1) ∀y > 0, lim
h→0+

ν(yh)/ν(h) = yβ.

We denote by RV0(β) the space of functions satisfying (3.1). A function in RV0(0) is said
slowly varying.

Assumption R. Assumption M holds with ν ∈ RV0(β) for β > −1. We denote by

ℓν(h) , h−βν(h) the slow term of ν.

Remark. Typical examples of regularly varying function (of index β) are xβ, xβ(log(1/x))γ

for γ ∈ R, and more generally any power function times a log or compositions of log to
some power. For other examples, see in the references cited above.

The aim of the following part is to compute the minimax risk for the problem of estimation
at x0 when the design is regularly varying at this point in the sense of assumption R. First
we prove upper bounds using the local polynomial estimator, and secondly we prove the
corresponding lower bounds, so the minimax rates will follow.

3.2. The upper bound.

Definition 3.2. For s > 0, a sequence of positive numbers (δn)n going to 0 and ω ∈ RV0(s),
we define

Fδn(x0, ω) ,
{
f : [0, 1] → R such that ∀h 6 δn, ωf,k(x0, h) 6 ω(h)

}
,
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where k = ⌊s⌋ (the largest integer smaller than s). We define ℓω(h) , ω(h)h−s, the slow
term of ω. For a sequence of positive numbers (αn)n going to +∞, we define

U(x0, δn, αn) ,
{
f : [0, 1] → R such that sup

x∈[x0−δn,x0+δn]
|f(x)| 6 αn

}
.

Finally, we define

Σδn,αn(x0, ω) , Fδn(x0, ω) ∩ U(x0, δn, αn).

Remark. In a classical Hölder ball, we estimate the modulus of continuity at x0 by some
power function times a constant (the radius). The above class generalizes the Hölder regu-
larity, since it estimates the modulus of continuity by a power function times a slow factor.
Thus we find back a classical Hölder balls of radius r by chosing the slowly varying function
ℓω constant and equal to r.

Remark. Since we are interested in the pointwise estimation of the regression function f ,
we only need a regularity assumption in some neighbourhood of x0. In definition 3.2 we
note that the class of functions depends on the number of observations n, and that we only
ask for a control on the modulus of continuity in a decreasing interval [0, δn] as n increases.
We will see that a natural choice for δn is the optimal bandwidth hn, defined below.

Proposition 3.3. Under assumption R, one has, for any positive sequence γn going to 0:

∀ε > 0, P
n
µ

{∣∣∣
Nn,γn

2nFν(γn)
− 1

∣∣∣ > ε
}

6 2 exp
(
−ε2C1(β)nFν(γn)

)
,

where C1(β) = (3/(β + 1) + 4/3)−1/2 when β > −1 and C1(β) = 64/13 when β = −1.

Then, when nFν(γn) → +∞ as n → +∞, we have:

Nn,γn ∼
Pn

µ

2nFν(γn) as n → +∞,

where Xn ∼
P

Yn means limn P{|Xn/Yn − 1| > ε} = 0 for any ε > 0. The equation (2.12) and

the proposition 3.3 together entail, when f ∈ Fδn(x0, ω), (the term λ(XK
h ) is of the order

of a positive constant when h → 0+, see lemma 5.2) that a natural choice for the optimal
bandwidth h = hn is the following:

Definition 3.4. Let hn be defined as the smallest solution (well defined in view of propo-
sition 3.5 below) of the equation:

(3.2) ω(h) =
σ√

nFν(h)
,

where Fν(h) =
∫ h
0 ν(t)dt.

The following proposition gives the existence, the uniqueness and the form of hn:

Proposition 3.5. Under assumption R and if ω ∈ RV0(s) for some s > 0, there is a
solution to equation 3.2 for n large enough. We have limn→+∞ hn = 0 and:

(3.3) hn ∼ σ2/(1+2s+β)n−1/(1+2s+β)ℓω,ν(1/n) as n → +∞,

where ℓω,ν is a slowly varying function. When ω(h) = rhs (Hölder regularity) for some
r > 0, we have more precisely:

(3.4) hn ∼ (σ/r)2/(1+2s+β)n−1/(1+2s+β)ℓs,ν(1/n) as n → +∞,
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where ℓs,ν is again slowly varying. Moreover, if hn,1 and hn,2 are both solutions of (3.2),
then hn,1 ∼ hn,2. It is noteworthy that these results still hold when β = −1. In this case,
(3.3) becomes:

hn ∼ σ1/sn−1/(2s)ℓω,ν(1/n) as n → +∞.

Then we plug-in the bandwidth hn in the estimator f̂h (see definition 2.1):

(3.5) f̂n(x0) , f̂hn(x0).

The next result tells that the rate

(3.6) rn , ω(hn),

for hn given by definition 3.4 is a rate of convergence for the estimator f̂n(x0) over the
class Σhn,αn(x0, ω), where αn = nγ , for any γ > 0. Note that γ needs not to be known

by the statistician. We need to introduce some notation. Let C(p) ,
√

2/π
∫

R+(1 +

t)p exp(−t2/2)dt. We define λK
β > 0 as the smallest eigenvalue of the symmetrical and

positive matrix with entries, for 0 6 j, l 6 k:

(3.7) (XK
β )j,l =

β + 1

2

(
1 + (−1)j+l

) ∫ 1

0
yj+l+βK(y)dy.

We choose the sequence δn = hn in definition 3.2, since we only need to control the bias
term ωf,k(x0, h) (see proposition 2.3) for h in the interval [0, hn].

Theorem 3.6. Let us assume K and R with β > −1. We assume there exists γ > 0 such
that αn = nγ. For any p > 0, the following inequality holds:

(3.8) sup
f ∈ Σhn,αn(x0, ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p} 6 C(p)(λK
β )−pKp

∞(k + 1)p/2 + on(1),

where the rate rn defined by (3.6) satisfies:

rn ∼ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞,

where ℓω,ν is a slowly varying function. When assumption R holds with β = −1, and if
K(0) > 0, we have for any 0 < s 6 1:

(3.9) sup
f ∈ Σhn,αn(x0, ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p} 6 C(p)K(0)−pKp
∞ + on(1),

where

rn ∼ σn−1/2ℓω,ν(1/n) as n → +∞.

Remark. When ℓω is constant and equal to r > 0 (f is in an Hölder ball of radius r) we
have:

rn ∼ σ2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n → +∞.

Remark. Is is important to notice when β = −1 that the upper bound (3.9) only holds for
small regularities 0 < s 6 1, for technical reasons. In this case, it is clear in view of (2.4)
(here k = 0) that the local polynomial estimator is a Nadaraya-Watson estimator, defined
as:

f̂n(x0) =

∑n
i=1 YiK

(
Xi−x0

hn

)
∑n

i=1 K
(

Xi−x0
hn

) .
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3.3. The lower bound.

Theorem 3.7. Under assumption R one has for any p > 0 and n large enough:

(3.10) Rn,p(Σhn,αn(x0, ω), µ, x0) > C4rn,

where rn is given by (3.6) and C4 is some constant depending on s and p only.

Then theorems 3.6 and 3.7 together entail that rn is the minimax rate of estimation at
the point x0 over the class Σhn,αn(x0, ω).

3.4. Examples.

First example. The simplest example is the case of a non-degenerate design (0 < µ(x0) <
+∞) with a modulus of continuity of the regression function bounded from above by ω(h) =
rhs. This is the common case found in the literature. In this case, the design is actually
slowly varying (β = 0, with the slow term constant and equal to the limit at x0), and solving
(3.2) leads to the classical minimax rate:

rn ≍ σ2s/(1+2s)r1/(1+2s)n−s/(1+2s),

where ≍ denotes here and in all this section the equality in order, up to constants depending
on s and β, but not on r nor σ.

Second example. We choose α, γ ∈ R and r > 0, s > 0, β > −1. We consider ν such that
Fν(h) = hβ+1(log(1/h))α and ω(h) = rhs(log(1/h))γ . Then hn satisfies, in view of lemma
5.5 (see the proof of proposition 3.5 and the proof of lemma 5.5 for the details):

hn ∼ (1 + 2s + β)(α+2γ)/(1+2s+β)(σ/r)2/(1+2s+β)(n(log n)α+2γ)−1/(1+2s+β),

and then we find the minimax rate:

rn ≍ σ2s/(1+2s+β)r(β+1)/(1+2s+β)(n(log n)α−γ(1+β)/s)−s/(1+2s+β).

Remark. We note this rate has the form given by theorem 3.6 with the slow factor ℓω,ν(h) =

(log(1/h))(γ(β+1)−sα)/(1+2s+β) . When γ(1+β)−sα = 0 there is no slow term in the minimax
rate, although there are slow terms in ν and ω. Again, if β = 0 and γ = sα, we find the
classical minimax rate of the first example, although the terms ν and ω do not have the
classical forms.

Third example. We consider the case β = −1. We choose α > 1, thus ν(h) = (α −
1)h−1(log(1/h))−α is integrable at 0. We have Fν(h) = (log(1/h))1−α. We take the same ω
as in the second example, with 0 < s 6 1 (when β = −1, theorem 3.6 holds only for small
regularities). Then we have:

hn ∼ (2s)(2γ+1−α)/(2s)(σ/r)1/sn−1/(2s)(log n)(α−1−2γ)/(2s),

and then:

rn ≍ σn−1/2(log n)(α−1)/2.

Remark. This rate is barely the parametric rate of estimation (up to the slow log factor).
This is due to the fact that since the design is very ”exploding”, we have a lot of information
at the point of estimation x0, thus we can estimate f(x0) very fast. Also, we note the para-
maters of regularity of the regression function (the radius term r and γ) have disappeared
from the minimax asymptotic rate.
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4. Γ-varying design

4.1. Introduction. The framework of regular variation includes any design density behav-
ing close to the point of estimation as a polynomial times a slow term. It does not include
for instance a design with a behaviour similar to exp(−1/|x − x0|), prolonged at x0 by 0.
This function converges to 0 at x0 faster than any power function. Such a choice for the
density of the design can model a very big lack of information at x0, thus it is natural to look
for a framework including such behaviours, and for the corresponding pointwise minimax
risk. In fact such a function belongs to the following class, introduced by de Haan (1970):

Definition 4.1 (Γ-variation). We denote by ΓV0, the class of all non-decreasing and con-
tinuous functions ν : R

+ → R
+ such that there exists a continuous function ρ : R

+ → R
+

with:

(4.1) ∀y ∈ R, lim
h→0+

ν(h + yρ(h))/ν(h) = exp(y).

We denote by ΓV0(ρ) the class of all such functions. The function ρ is called the auxiliary
function of ν.

We delay the technical properties of this class of functions in section B. Here we assume
the following:

Assumption G. The variables (Xi)i=1...n satisfy assumption M with a function ν ∈ ΓV0.

Remark. A density behaving like exp(−1/|x − x0|) close to x0 satisfies (2.13) with ν(h) =
exp(−1/h), where ν belongs to ΓV0(ρ) with the auxiliary function ρ(h) = h2.

4.2. The upper bound.

Definition 4.2. For 0 < s 6 1, a sequence of positive numbers (δn)n going to 0 and
ω ∈ RV0(s), we define

Fδn(x0, ω) ,
{
f : [0, 1] → R such that ∀h 6 δn, sup

|x−x0|6h
|f(x) − f(x0)| 6 ω(h)

}
,

and as previously we denote by ℓω the slow term of ω. For a sequence of positive numbers
(αn)n going to +∞ we define

Σδn,αn(x0, ω) , Fδn(x0, ω) ∩ U(x0, δn, αn),

where the class U is given in definition 3.2.

To prove the upper bounds, we can consider two Nadaraya-Watson type estimators. Let
K be a kernel satisfying assumption K, and h > 0 a bandwidth. Let (ηn)n>0 be a sequence
of positives numbers converging to 0, to be specified above. The first estimator is the
regressogram:

(4.2) f̂n(x0, h) ,

∑n
i=1 Yi1|Xi−x0|6h

Nn,h ∨ ηn
,

where Nn,h =
∑n

i=1 1|Xi−x0|6h. The second estimator is defined by:

(4.3) f̃n(x0, h) ,

∑n
i=1 YiKρ,h(Xi − x0)

Kn,ρ,h ∨ ηn

,

where

(4.4) Kρ,h(x) , K
(x − h

ρ(h)

)
+ K

(x + h

ρ(h)

)
,
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and

Kn,ρ,h ,
n∑

i=1

Kρ,h(Xi − x0).

Since Supp K ⊂ [−1, 1], the estimator f̃n(x0, h) makes a local average of the observations
Yi such that Xi ∈ [x0 − h − ρ(h), x0 − h + ρ(h)] ∪ [x0 + h − ρ(h), x0 + h + ρ(h)], which is

an interval not containing the point of estimation x0. In spite of this, f̃n(x0, h) (for a good
choice of the bandwith) is minimax (see theorems 4.7, 4.8). If µ satisfy assumption G, there
is barely no information at x0, so the procedure actually ”catches” the information ”far”
from x0.

Proposition 4.3. Under assumption K, if f ∈ Fδn(x0, ω) and if 0 < h 6 δn is small
enough and such that Kn,ρ,h > ηn and Nn,h > ηn, we have:

|f̂n(x0, h) − f(x0)| 6 ω(h) + σN
−1/2
n,h |γh,1|,(4.5)

|f̃n(x0, h) − f(x0)| 6 2ω(h) + σK
−1/2
n,ρ,h|γh,2|,(4.6)

where (γh,j)j=1,2 are, conditional on Xn, centered Gaussian variables s.t. E
n
f,µ{γ2

h,j|Xn} 6 1.

As in the regular variation framework, the problem of the choice of an optimal bandwidth
arises.

Proposition 4.4. Under assumptions G, K one has for any sequence (γn)n>0 of positive
numbers such that limn→+∞ γn = 0:

P
n
µ

{∣∣∣
Nn,γn

2nFν(γn)
− 1

∣∣∣ > ε
}

6 2 exp
(
−ε2nFν(γn)/6

)
,(4.7)

P
n
µ

{∣∣∣
Kn,ρ,γn

2nFν(γn)
− cK

∣∣∣ > ε
}

6 2 exp
(
−C1ε

2nFν(γn)
)
,(4.8)

where cK ,
∫

K(y) exp(y)dy and C1 , C1(K) = (3
∫

K2(y) exp(y)dy + 1/3)−1/8.

Then in view of proposition 4.3 and proposition 4.4 we define the optimal bandwidth
h = hn as in the definition 3.4:

Definition 4.5. Let hn be defined as the smallest solution (well defined in view of propo-
sition 4.6) of the equation:

(4.9) ω(h) =
σ√

nFν(h)
,

where Fν(h) =
∫ h
0 ν(t)dt.

The following proposition gives the existence and the uniqueness of hn. Moreover it tells
that hn is ”large”, since it converges slowly to 0.

Proposition 4.6. Under assumption G there exist a solution to equation 4.9 for n large
enough. We have limn→+∞ hn = 0 and:

(4.10) hn = ϕ(n−1),

where ϕ belongs to the de Haan class ΠV0(ℓ) (see definition B.5) with ℓ a slowly varying
function depending on ν. Moreover, since ΠV0(ℓ) ⊂ RV0(0) (see lemma B.6), ϕ is in
particular slowly varying.



12 STÉPHANE GAÏFFAS

Let us define the rate

(4.11) rn , ω(hn),

where hn is given by definition 4.5. Then we define f̂n(x0) , f̂n(x0, hn) and f̃n(x0) ,

f̃n(x0, hn), with ηn = rτ
n where τ > 0, and αn = r−γ

n where γ > 0.

Theorem 4.7. Under assumptions G, K one has for any p > 0:

sup
f ∈ Σhn,αn(x0, ω)

E
n
f,µ

{
r−p
n |f̂n(x0) − f(x0)|p

}
6 C(p) + on(1),(4.12)

sup
f ∈ Σhn,αn(x0, ω)

E
n
f,µ

{
r−p
n |f̃n(x0) − f(x0)|p

}
6 C(K, p) + on(1),(4.13)

where rn is given by (4.11), C(K, p) is a constant depending on K and p only, C(p) is the
same as in theorem 3.6. Moreover we have:

rn = ℓω,ν(n
−1),

where ℓω,ν is a slowly varying function such that limh→0+ ℓω,ν(h) = 0.

4.3. The lower bound.

Theorem 4.8. Under assumption G, one has for any p > 0 and for n large enough:

(4.14) Rn,p(Σhn,αn(x0, ω), µ, x0) > C5rn,

where rn is defined in (4.11) and C5 is some constant depending on s and p only.

Then rn is the minimax rate of convergence over the class Σhn,αn(x0, ω).

4.4. Example. We consider a density µ satisfying G with ν(h) = exp(−1/hα), for α > 0
and we take ω(h) = rhs for r > 0 and 0 < s 6 1. It is an easy computation to see that ν
belongs to the class ΓV0(ρ) for the auxiliary function ρ(h) = α−1hα+1. In this case, we find
the following minimax rate (see section 5.2.1 for the details):

rn ≍ r(log n)−s/α.

As told by theorem 4.7 and 4.8, we find that the minimax rate in this example is very slow.
We note that the parameters s and α are on the same scale.

5. Proofs

We begin with the proofs of the results on the local polynomial estimation procedure in
the considered model, without assumptions on the density of the design. First we give the
proof of proposition 2.3. In all the following, 〈· , ·〉 denotes the Euclidean scalar product on
R

k+1, e1 = (1, 0, . . . , 0) ∈ R
k+1, ‖ · ‖∞ stands for the sup norm in R

k+1 and ‖ · ‖ stands for
the Euclidean norm in R

k+1.

Proof of proposition 2.3. On ΩK
h we have in view of definition 2.1 that X̃K

h = XK
h and XK

h
is invertible. Let 0 < ε 6 1/2, and n > 1. We can find a polynomial Pn,ε

f of order k such

that
sup

|x−x0|6h
|f(x) − Pn,ε

f (x)| 6 ωf,k(x0, h) +
ε√
n

.

In particular with h = 0 we get |f(x0) − Pn,ε
f (x0)| 6 ε√

n
. Defining θh ∈ R

k+1 such that

Pn,ε
f = Pθh

(see (2.6)) we get

|f̂h(x0) − f(x0)| 6
ε√
n

+ |〈θ̂h − θh , e1〉| =
ε√
n

+ |〈(XK
h )−1XK

h (θ̂h − θh) , e1〉|.
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Then we have for j ∈ {0, . . . , k} by (2.4) and (1.1):

(XK
h (θ̂h − θh))j = 〈f̂h − Pn,ε

f , φj,h〉h,K = 〈Y − Pn,ε
f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈Y − f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈ξ , φj,h〉h,K

, Bh,j + Vh,j,

thus XK
h (θ̂h − θh) = Bh + Vh. In view of assumption K, we get:

|Bh,j| = |〈f − Pn,ε
f , φj,h〉h,K | 6 ‖f − Pn,ε

f ‖h,K‖φj,h‖h,K 6 Nn,hK∞(ωf,k(x0, h) +
ε√
n

),

thus ‖Bh‖∞ 6 Nn,hK∞(ωf,k(x0, h) + ε√
n
). Moreover, since λ−1(Xh) 6 N

1/2
n,h 6 n1/2 on

Ωh,K, we have:

|〈(XK
h )−1Bh , e1〉| 6 ‖(XK

h )−1‖‖Bh‖ 6 ‖(XK
h )−1‖

√
k + 1‖Bh‖∞

6 λ−1(XK
h )

√
k + 1K∞ωf,k(x0, h) +

√
k + 1K∞ε,

where we last used the fact that ‖M−1‖ = λ−1(M) for a positive symmetrical matrix. The
variance term Vh is clearly conditional on Xn a centered Gaussian vector, and its covariance

matrix is equal to σ2XK2

h . Thus the random variable 〈(XK
h )−1Vh , e1〉h,K is, conditional on

Xn, centered Gaussian, of variance:

v2
h = σ2〈e1 , (XK

h )−1XK2

h (XK
h )−1e1〉 6 σ2〈e1 , (XK

h )−1XK
h (XK

h )−1e1〉
= σ2〈e1 , (XK

h )−1e1〉
6 σ2‖(XK

h )−1‖ = σ2N−1
n,hλ−1(XK

h ),

since K 6 1. Then

λ(XK
h ) = inf

‖x‖=1
〈x , XK

h x〉 6 ‖XK
h e1‖ 6

√
k + 1,

since XK
h is symmetrical and its entries are smaller than 1 in absolute value. Thus:

v2
h 6 σ2N−1

n,hλ−1(XK
h ) 6 σ2N−1

n,h(k + 1)λ−2(XK
h ),

and the proposition follows. �

Proof of proposition 2.4. (2) ⇒ (1): In view of assumption M one has for n large enough

E
n
µ{Nn,Cγn} = 2n

∫ Cγn

0 ν(x)dx = 2nFν(Cγn) thus (2) entails 2nλ−1
n Fν(Cγn) ∼ φ(C) as

n → +∞ and then Fν ∈ RV0 in view of theorem A.10. Since Fν(0) = 0 we have more
precisely Fν ∈ RV0(α) for α > 0 and since ν is monotone, using proposition A.6 we have
ν ∈ RV0(α − 1).
(3) ⇒ (2): Let ε > 0. We define the event

An(C, ε) =
{∣∣∣

Nn,Cγn

φ(C)λn
− 1

∣∣∣ 6 ε
}

.

Then:

λ−1
n E

n
µ{Nn,Cγn} = λ−1

n E
n
µ

{
Nn,Cγn(1An(C,ε) +1Ac

n(C,ε))
}

6 (1+ ε)φ(C)+nλ−1
n P

n
µ

{
Ac

n(C, ε)
}
,

and then lim supn λ−1
n E

n
µ{Nn,Cγn} 6 (1 + ε)φ(C). On the other side:

λ−1
n E

n
µ{Nn,Cγn} > λ−1

n E
n
µ{Nn,Cγn1An(C,ε)} > (1 − ε)φ(C)Pn

µ{An(C, ε)},
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and then lim infn λ−1
n E

n
µ{NCγn} > (1 − ε)φ(C).

(1) ⇒ (3): Let ν ∈ RV0(β) and 0 < ε 6 1/2. If β > −1 we define γn = n−1/(2(β+1)),
and theorem A.4 entails Fν ∈ RV0(β + 1), thus we can write Fν(h) = hβ+1ℓν(h) where
ℓν is slowly varying. If β = −1 we define γn = n−1, and proposition A.5 entails again
Fν ∈ RV0(β + 1). We note that limn γn = 0 and γn+1 ∼ γn as n → +∞. In view of
proposition 3.3 we get for n large enough:

P
n
µ

{∣∣∣
Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

6 2 exp
(
−C1ε

2φ(C)λn/4
)
,

where we used ℓν is slowly varying and where we defined λn , 2nFν(γn) and φ(C) , Cβ+1.
Then we clearly have limn nλ−1

n = +∞ (when β = −1, limn nλ−1
n = limn ℓ−1

ν (n−1) = +∞),
and the proposition follows. �

5.1. Regularly varying design. We define K0(x) = 1
21|x|61 the rectangular kernel.

Proof of proposition 3.3. This proposition is actually a corollary of lemma 5.1 below, for
the choice K = K0 and α = 0. When β > −1, the Karamata theorem A.4 entails Fν(γn) ∼
(1+ β)−1γnν(γn) as n → +∞, and entail together with (5.2) the result. When β = −1, the
result is straightforward in view of (5.3) for the choice K = K0. �

Proof of proposition 3.5. Let us define G(h) = ω2(h)Fν(h). When β > −1, the Karamata
theorem A.4 entails Fν ∈ RV0(β + 1). When β = −1, the proposition A.5 entails Fν

is slowly varying. Thus, in view of proposition A.2, G belongs to RV0(1 + 2s + β) for
any β > −1. The function G is continuous and such that limh→0+ G(h) = 0 in view of
proposition A.3, since 1 + 2s + β > 0. Then for n large enough hn is well defined and given
by hn = G←(σ2/n), where G←(h) , inf{y > 0|G(y) > h} is the generalised inverse of G.
Theorem A.9 entails G← ∈ RV0(1/(1+2s+β)), thus there is a slowly varying function ℓω,ν

such that G←(h) = h1/(1+2s+β)ℓω,ν(h). Thus:

hn = σ2/(1+2s+β)n−1/(1+2s+β)ℓω,ν(σ
2/n) ∼ σ2/(1+2s+β)n−1/(1+2s+β)ℓω,ν(1/n) as n → +∞,

where we used ℓω,ν is slowly varying. When ω(h) = rhs, we can write more precisely
hn = G←(σ2/(r2n)), where G(h) = h2sFν(h), so (3.3) and (3.4) follow. The asymptotic
equivalence of any solutions hn,1 and hn,2 is given by the theorem A.9. �

Study of the term λ(XK
hn

). We recall that the matrix XK
h is defined as the symmetrical

and non-negative matrix with entries, for 0 6 j, l 6 k, (XK
h )j,l = Kn,h,j+l, where:

Kn,h,α , N−1
n,h

n∑

i=1

(Xi − x0

h

)α
K

(Xi − x0

h

)
,

for α ∈ N. Let us define Kn,h,α , Nn,hKn,h,α, and:

(5.1) Kα,β , (1 + (−1)α)

∫ 1

0
yα+βK(y)dy.

We define, for any ε > 0, the event

Dn,α,K,ε ,
{∣∣∣

Kn,γn,α

nγnν(γn)
− Kα,β

∣∣∣ 6 ε
}

.
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Lemma 5.1. For any α ∈ N and 0 < ε 6 1, one has under assumptions K, R with β > −1
that for any sequence (γn)n of positive numbers converging to 0:

(5.2) P
n
µ

{
Dc

n,α,K,ε

}
6 2 exp

(
−C1ε

2nγnν(γn)
)
,

for n large enough, where C1 = C1(α, β,K) = (3
∫ 1
0 y2α+βK2(y)dy + K∞/3)−1/8. When

β = −1 we have:

(5.3) P
n
µ

{∣∣∣
Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}

6 2 exp
(
−C2ε

2nFν(γn)
)
,

where C2 = C2(K) = (2 + K∞/3)−1/8.

Proof. Let α ∈ N, 0 < ε 6 1. We first prove the result when β > −1. We define Qi,n,α ,(
Xi−x0

γn

)α
K

(
Xi−x0

γn

)
, Zi,n,α , Qi,n,α − E

n
µ{Qi,n,α}. Under assumption R one has for i ∈

{1, . . . , n}:
1

γnν(γn)
E

n
µ{Qi,n,α} =

1 + (−1)α

ℓν(γn)

∫ 1

0
yα+βK(y)ℓν(yγn)dy,

where we used assumption K and the fact that for n large enough [x0 − γn, x0 + γn] ⊂ W .
Now theorem A.7 entails:

lim
n→+∞

1

ℓν(γn)

∫ 1

0
yα+βK(y)ℓν(yγn)dy =

∫ 1

0
yα+βK(y)dy.

Then for n large enough:

(5.4) Dc
n,α,K,ε ⊂

{∣∣∣
1

nγnν(γn)

n∑

i=1

Zi,n,α

∣∣∣ > ε/2

}
.

We have En
µ{Zi,n,α} = 0, |Zi,n,α| 6 2K∞ in view of assumption K. We get in the same way

as previously

b2
n,α ,

n∑

i=1

E
n
µ{Z2

i,n,α} 6 nE
n
µ{Q2

i,n,α} ∼ 2nγnν(γn)

∫ 1

0
y2α+βK2(y)dy as n → +∞,

then for n large enough we have b2
n,α 6 C2nγnν(γn), where C2 , 3

∫ 1
0 y2α+βK2(y)dy > 0.

Since the Zi,n,α are independants we can apply the Bernstein inequality. If τn , ε
2nγnν(γn),

equation (5.4) and the Bernstein inequality entails:

P
n
µ

{
Dc

n,α,K,ε

}
6 2 exp

( −τ2
n

2(b2
n,α + 2K∞τn/3)

)
6 2 exp

(
−C1ε

2nγnν(γn)
)
,

thus (5.2) follows. When β = −1, ν(t) = t−1ℓν(t), and we procede as previously. We define

Zi,n , Qi,n,0 − E
n
f,µ{Qi,n,0}. We have in view of proposition A.8:

lim
n→+∞

1

Fν(γn)
E

n
µ{Qi,n,0} = lim

n→+∞
2

Fν(γn)

∫ 1

0
K(t/h)ℓν(t)dt/t = 2K(0) > 0.

Then for n large enough one has

{∣∣∣
Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}
⊂

{∣∣∣
1

nFν(γn)

n∑

i=1

Zi,n

∣∣∣ > ε/2
}

.
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The Zi,n are independant and centered variables, and |Zi,n| 6 2K∞. Moreover, in view of
assumption K, we have

b2
n ,

n∑

i=1

E
n
µ{Z2

i,n} 6 nE
n
µ{Q2

i,n,0} = 2n

∫ 1

0
K2(t/γn)ν(t)dt 6 2nFν(γn).

Then using again the Bernstein inequality we get (5.3). �

The following proposition is a deviation result for the difference between the smallest
eigenvalue of the matrix XK

h and the smallest eigenvalue λK
β > 0 of the positive matrix XK

β

(defined in (3.7)). This proposition entails that the matrix XK
hn

is non-degenerate with a
large pobability when n is large.

Proposition 5.2. Under assumption R with β > −1, if γn is a sequence of positive numbers
converging to 0, and 0 < ε 6 1, then one has for n large enough:

P
n
µ{|λ(XK

γn
) − λK

β | > ε} 6 4(k + 1) exp
(
−C(β)η2nγnν(γn)

)
,

with λK
β = λ(XK

β ) > 0, C(β) = (3/(β + 1) + 1/3)−1/8 and η , ε
2(β+1)(k+1)2+ε .

Proof. Since λK
β is the smallest eingenvalue of XK

β we have λK
β > 0, otherwise, defining

p(y) = (1, y, . . . , yk) and since XK
β is symmetrical, we have

0 = λK
β = inf

‖x‖=1
〈x , XK

β x〉 = 〈x0 , XK
β x0〉 =

∫ 1

−1

(
tx0p(y)

)2
yβK(y)dy,

where x0 6= 0 is the normalized eigenvector associated to the eigenvalue λK
β , and where

we used the fact that λ(M) = inf‖x‖=1〈x , Mx〉 for any symmetrical matrix M . Then

∀y ∈ Supp K we have tx0p(y) = 0, which leads to a contradiction since y 7→ tx0p(y) is a
polynomial. For any ε > 0 we introduce the events:

An,ε =
{
|λ(XK

γn
) − λK

β | 6 ε
}
, Bn,α,ε =

{∣∣∣Kn,γn,α − β + 1

2
Kα,β

∣∣∣ 6 ε
}

.(5.5)

We note that

(5.6)

2k⋂

α=0

Bn,α,ε/(k+1)2 ⊂ An,ε,

for 0 < ε 6 1. Noting that Dn,0,K0,ε1 =
{∣∣ Nn,γn

2nγnν(γn) − 1
β+1

∣∣ 6 ε1

}
, we have

Dn,0,K0,ε1 ∩ Dn,α,K,ε1 ⊂ Bn,α,ε,

and for any α ∈ N, where ε1 , ε
2(β+1)+ε . Now using (5.6) we get for η , ε

2(β+1)(k+1)2+ε
:

Dn,0,K0,η ∩
2k⋂

α=0

Dn,α,K,η ⊂ An,ε.

Finally, lemma 5.1 entails for n large enough

P
n
µ{Ac

n,ε} 6 P
n
µ{Dc

n,0,K0,η} +

2k∑

α=0

P
n
µ{Dc

n,α,K,η} 6 4(k + 1) exp
(
−C(β)η2nγnν(γn)

)
. �
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Proof of the upper bound.

Proposition 5.3. For any p > 0 and h > 0 such that Nn,h > 0, the estimator f̂h (see
definition 2.1) satisfies:

sup
f ∈ U(x0, h, αn)

E
n
f,µ{|f̂h(x0)|p} = O((

√
nαn)p).

Proof. Using the fact that λ(A + B) > λ(A) + λ(B) when A and B are symmetrical and

non-negative matrices, we get λ(X̃K
h ) > N

1/2
n,h > 0, and then X̃K

h is invertible. Thus equation

(2.9) entails |f̂h(x0)| = |〈(X̃K
h )−1X̃K

h θ̂h , e1〉| = |〈(X̃K
h )−1Yh , e1〉|. In view of (1.1) we can

decompose for j ∈ {0, . . . , k}:
(Yh)j = 〈Y , φj,h〉h,K = 〈f , φj,h〉h,K + 〈ξ , φj,h〉h,K , Bh,j + Vh,j.

Since f ∈ U(x0, h, αn) we have under assumption K that |Bh,j| 6 αnNn,hK∞, thus ‖Bh‖∞ 6

αnNn,hK∞. As in the proof of proposition 2.3 we have that 〈(X̃K
h )−1Vh , e1〉 is, conditional

on Xn, a centered Gaussian variable, of variance:

v2
h = σ2〈e1 , (X̃K

h )−1XK2

h (X̃K
h )−1e1〉 6 σ2〈e1 , (X̃K

h )−1XK
h (X̃K

h )−1e1〉
6 σ2‖(X̃K

h )−1‖2‖XK
h ‖.

Assumption K entails all the elements of the matrix XK
h are smaller than Nn,hK∞, thus

‖XK
h ‖ 6 (k + 1)Nn,hK∞. Since X̃K

h is symmetrical we get ‖(X̃K
h )−1‖ = λ−1(X̃K

h ) 6 N
−1/2
n,h ,

and then v2
h 6 K∞σ2(k + 1). Finally, we have

|f̂h(x0)| 6 |〈(X̃K
h )−1Bh , e1〉| + |〈(X̃K

h )−1Vh , e1〉| 6 ‖(X̃K
h )−1‖‖Bh‖ + σ

√
k + 1|γh|

6
√

k + 1(αn

√
n + σ|γh|),

where γh is, conditional on Xn, centered Gaussian with variance smaller than 1. The result
follows by integration. �

Proof of theorem 3.6. Let 0 < ε 6 1. Let assume β > −1. Let define the event

An,ε ,
{
|λ(XK

hn
) − λK

β | 6 ε
}
∩

{∣∣∣
Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}

.

Proposition 5.2 and proposition 3.3 together entails:

P
n
µ{Ac

n,ε} 6 2 exp
(
−C(β)ε2nFν(hn)

)
+ 2(k + 2) exp{−C(β)η2nhnν(hn)}

6 2(k + 3) exp
(
−C(β)η2r−2

n /2
)
,

for n large enough, where we used the Karamata theorem and r2
n = ω2(hn) = σ2/(nFν(hn)).

Since limn nFν(hn) = +∞, we have for n large enough An,ε ⊂ {λ(XK
hn

) > N
1/2
n,hn

} and in

particular on the event An,ε the matrix XK
hn

is invertible. Then using proposition 2.3 and
since f ∈ Fhn(x0, ω), we get:

|f̂n(x0) − f(x0)|1An,ε 6 (λK
β − ε)−1

√
k + 1K∞

(
ω(hn) +

σ√
(2 − ε)nFν(hn)

|γhn |
)

6 (λK
β − ε)−1

√
k + 1K∞ω(hn)(1 + |γhn |),

where we last used the definition 3.4 of hn. Since γhn is conditional on Xn centered Gaussian
such that E

n
f,µ{γ2

hn
|Xn} 6 1, we get for any p > 0 and n large enough:

sup
f∈Fhn (x0,ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1An,ε |Xn} 6 (λK
β − ε)−p(k + 1)p/2Kp

∞C(p),
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where C(p) is defined in section 3.2. Now we work on the complementary event Ac
n,ε. We

recall that αn = nγ for some γ > 0. If Nn,hn = 0 we have by definition f̂n(x0) = 0 and then

sup
f∈U(x0,hn,αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Ac
n,ε

} 6 r−p
n npγ

P
n
f,µ{Ac

n,ε} = on(1).

Then we assume Nn,hn > 0. the proposition 5.3 entails:

sup
f∈U(x0,hn,αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p} 6 2pr−p
n (

√
E n

f,µ{|f̂n(x0)|2p} + npγ)
√

Pn
µ{Ac

n,ε}

6 O(r−p
n np(1+2γ))

√
Pn

µ{Ac
n,ε} = on(1).

Then we have proved inequality (3.8). Since ω ∈ RV0(s) and G← ∈ RV0(s/(1 + 2s + β))
(see the proof of proposition 3.5) we have in view of proposition A.2: ω ◦G← ∈ RV0(s/(1+
2s + β)). Thus we get rn = ω(hn) = ω(G←(σ2/n)) and:

rn = σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(σ
2/n) ∼ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n → +∞.

When assumption R holds with β = −1 and 0 < s 6 1, the bias variance equation (2.12)
becomes:

|f̂n(x0) − f(x0)| 6 (Kn,hn,0)
−1K∞(ω(hn) + σN

−1/2
n,hn

|γhn |).
We define the event An,ε =

{∣∣ Nn,hn

2nFν(hn) − 1
∣∣ 6 ε

}
∩

{∣∣ Kn,hn,0

2nFν(hn) − K(0)
∣∣ 6 ε

}
, so (5.3) in

lemma 5.1 and proposition 3.3 together entail P
n
µ{Ac

n,ε} 6 4 exp
(
−ε2C(β)nFν(hn)

)
. The

rest of the proof is straightforward. �

Proof of the lower bound. Since we are considering a pointwise risk, we know (see for
instance Tsybakov (2003)) that a 2-hypothesis reduction scheme is enough to prove the
lower bound. The following proposition can be found in Tsybakov (2003).

Proposition 5.4. If there are 2 elements f0 and f1 of a class Σ, such that the Kullback-
Leibler distance between the corresponding probabilities P0 and P1 satisfies K(P0, P1) < Q <
+∞ with |f0(x0)−f1(x0)| > 2crn for some constant c > 0, then the pointwise minimax risk
Rn,p(Σ, µ, x0) over the class Σ defined by (1.2) in the model (1.1) satisfies:

Rn,p(Σ, µ, x0) > C(c,Q, p)rn,

where C(c,Q, p) , c
21/p

(
e−Q ∨ 1−

√
Q/2

2

)1/p
.

Proof of theorem 3.7. In view of proposition 5.4 all we have to do is to find two functions
f0,n and f1,n such that:

(1) There is some 0 < Q < +∞ such that K(Pn
0 , Pn

1 ) 6 Q,
(2) f0,n, f1,n ∈ Σhn,αn(x0, ω),
(3) |f0,n(x0) − f1,n(x0)| > 2crn for some constant c > 0.

We choose the 2 following hypothesis:

f0,n(x) = ω(hn)1|x−x0|6hn
, f1,n(x) = ω(|x − x0|)1|x−x0|6hn

,

(1): Since the ξi are centered Gaussian of variance σ2 and independants of Xn we have:

K(Pn
0 , Pn

1 |Xn) =
1

2σ2

n∑

i=1

(
f0,n(Xi) − f1,n(Xi)

)2
,

thus by the definition 3.4 of hn: K(Pn
0 , Pn

1 ) = n
2σ2 ‖f0,n−f1,n‖2

L2(µ) 6 nω2(hn)Fν(hn)/σ2 = 1.

(2): For h ∈ [0, hn], we have ωf0,n,k(x0, h) = 0 (take P as the constant polynomial equal
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to ω(hn)) and ωf1,n,k(x0, h) 6 ω(h) (take P = 0). Moreover for n large enough, we clearly
have f0,n, f1,n ∈ U(x0, hn, αn) since αn → +∞.
(3): If we take c = 1/2 we have |f1,n(x0) − f0,n(x0)| = ω(hn) = 2crn. �

This lemma is used to compute the minimax risk of the examples in section 3.4.

Lemma 5.5. Let γ > 0 and α ∈ R. If G(h) = hγ(log(1/h))α, then we have:

G←(h) ∼ γα/γh1/γ(log(1/h))−α/γ as h → 0+.

Proof. When α = 0, the result is obvious. We assume α ∈ R
∗. We look for h such that

hγ(log(1/h))α = x, when x > 0 is small. If α > 0 we define t = log(hγ/α), so this equation
becomes

(5.7) t exp(t) = −γx1/α/α,

where t 6 0. The equation (5.7) has two solutions for x small enough, but they cannot
be written in an explicit way. Then let us consider the Lambert function W defined as
the function satisfying W (z)eW (z) = z for any z ∈ C. See for instance Corless et al.
(1996) about this function. We are only interested here by its real branches. This function
has two branches W0 and W−1 in R. We denote by W0 the one such that W0(0) = 0
and W−1 the one such that limh→0− W−1(h) = −∞. The two solutions of (5.7) are then

t0 = W−1(−γx1/α/α) and t1 = W0(−γx1/α/α) and h0 , exp
(
αW−1(−γx1/α/α)/γ

)
is

the smallest solution. By the definition of W we have for −1/e < x < 0 and a ∈ R:

eaW−1(x) = (−x)a(−W−1(x))−a and since W−1 satisfies W−1(−x) ∼ log(x) as x → 0+

we have h0 = (γx1/α/α)α/γ(−W−1(−γx1/α/α))−α/γ ∼ γα/γx1/α(log(1/x))−α/γ as x → 0+.
When α < 0 we procede similarly. We have t > 0 and (5.7) has a single solution t =

W0(−γx1/α/α), thus h , exp(−αW0(−γx1/α/α)/γ). By the definition of W0 we have

∀x > 0 and a ∈ R: eaW0(x) = xaW−a
0 (x) and since W0 satisfies W0(x) ∼ log(x) as x → +∞

we find again h ∼ γα/γx1/α(log(1/x))−α/γ as x → 0+. �

5.2. Γ-varying design.

Proof of proposition 4.3. We prove inequality (4.6), since the proof of (4.5) is similar and
more direct. We denote the weights of the Nadaraya-Watson estimator by:

wn,i(x0) ,
Kρ,h(Xi − x0)

Kn,ρ,h(Xi − x0)
.

We have |f̃n(x0, h) − f(x0)| 6
∑n

i=1 |f(Xi) − f(x0)|wn,i(x0) + |∑n
i=1 ξiwn,i(x0)|. In view

of assumption K and since f ∈ Fδn(x0, ω), we have for h small enough |f(Xi) − f(x0)| 6
ω(h + ρ(h)) 6 ω(2h) 6 2ω(h), where we used ω ∈ RV0(s) with 0 < s 6 1, and ρ(h) ≪ h, in
view of lemma B.2. Then the result follows, since

∑n
i=1 ξiwn,i(x0) is, conditional on Xn, a

centered Gaussian variable of variance σ2
∑n

i=1 w2
n,i(x0) 6 σ2K

−1
n,ρ,h. �

Proof of proposition 4.6. Let us define G(h) , ω2(h)Fν(h). Let y ∈ R. In view of the-
orem A.1 and lemma B.2 we get limh→0+ ℓω(h + yρ(h))/ℓω(h) = 1, thus limh→0+ ω(h +
yρ(h))/ω(h) = 1. Moreover Fν ∈ ΓV0(ρ) in view of proposition B.4, then limh→0+ G(h +
yρ(y))/G(h) = exp(y), and then G ∈ ΓV0(ρ). The function G is continuous and such that
limh→0+ G(h) = 0, so for n large enough, hn is well defined and given by hn = G←(σ2/n).
Then theorem B.7 entails G← ∈ ΠV0(ℓ) for ℓ = ρ◦ν←, with ℓ slowly varying. Moreover, the
lemma B.6 entails G← is in particular slowly varying. Then hn = G←(σ2/n) ∼ G←(n−1)

as n → +∞, and the proposition follows with the choice ϕ , G←. �
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Proof of proposition 4.4. We prove inequality (4.8). Let us define Zi,n = Kρ,γn(Xi − x0) −
E

n
µ{Kρ,γn(Xi − x0)}. Assumptions M, K entail for n large enough:

1

ρ(γn)ν(γn)
E

n
µ{Kρ,γn(X1 − x0)} =

2

ν(γn)

∫
K(y)(ν(γn + yρ(γn))dy.

In view of assumption G and proposition B.1 we get:

lim
n→+∞

1

ν(γn)

∫
K(y)ν(γn + yρ(γn))dy =

∫
K(y)eydy,

then for n large enough one has in view of lemma B.3:

{∣∣∣
Kn,ρ,γn

2nFν(hn)
− cK

∣∣∣ > ε
}
⊂

{∣∣∣
1

nρ(γn)ν(γn)

n∑

i=1

Zi,n

∣∣∣ > ε/2
}

.

The variables (Zi,n)i=1,...,n are clearly independant and centered, and assumption K entails
|Zi,n| 6 2. In the same way as previously one has for n large enough

b2
n ,

n∑

i=1

E
n
µ{Z2

i,n} = nE
n
µ{Z2

1,n} 6 3nFν(γn)

∫
K2(y)eydy,

thus we can apply the Bernstein inequality: we define τn , ε
2nFν(γn), and we get:

P
n
µ

{∣∣∣
Kn,ρ,γn

2nFν(γn)
− cK

∣∣∣ > ε
}

6 2 exp
( −τ2

n

2(b2
n + τn/3)

)
6 2 exp

(
−C1ε

2nFν(γn)
)
,

thus the inequality (4.8). Introducing the variables Zi,n , 1|Xi−x0|6γn
−P

n
µ{|Xi −x0| 6 γn}

and using again proposition B.3 and the Bernstein inequality, we prove (4.7) in the same
fashion as (4.8). �

Proof of theorem 4.7. We prove inequality (4.13). Let 0 < ε 6 1, and let define the event:

An,ε =
{∣∣∣

Kn,ρ,hn

2Fν(hn)
− cK

∣∣∣ 6 ε
}

.

Since nFν(hn) → +∞ and ηn → 0 as n → +∞, we have for n large enough An,ε ⊂
{Kn,ρ,hn > ηn}. Thus for n large enough, proposition 4.3 and proposition 4.4 together entail,

in view of the definition 4.5 of hn that |f̃n(x0)−f(x0)|1An,ε 6 2ω(hn)(1+(cK −ε)−1/2|γhn |).
Thus we have

sup
f∈Fhn (x0,ω)

E
n
f,µ

{
r−p
n |f̃n(x0) − f(x0)|p1An,ε |Xn

}
6 C(K, p),

where C(K, p) is a constant depending on K and p only. Now we work on the complementary

event Ac
n,ε. If Kn,ρ,hn = 0, since f̃n(x0) = 0 and f ∈ U(x0, hn, αn) we have in view of (4.8):

E
n
f,µ

{
r−p
n |f̃n(x0) − f(x0)|p1Ac

n,ε
1Kn,ρ,hn=0

}
6 r−p(1+γ)

n P
n
f,µ{Ac

n,ε}

6 r−p(1+γ)
n exp(−C1σ

2r−2
n ) = on(1).

When Kn,ρ,hn > ηn, proposition 4.3 entails for n large enough:

|f̃n(x0) − f(x0)| 6 2ω(hn) + σK
−1/2
n,ρ,hn

|γhn | 6 2η−1/2
n (1 + σ|γhn |),
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thus

E
n
f,µ

{
r−p
n |f̃n(x0) − f(x0)|p1Ac

n,ε
1Kn,ρ,hn>ηn

}
6 C(σ, p)r−p

n η−p/2
n P

n
f,µ{Ac

n,ε}

6 C(σ, p)r−p(1+τ/2)
n exp(−C1σ

2r−2
n ) = on(1),

uniformly for f ∈ Σhn,αn(x0, ω). Now assumption K entails

E
n
f,µ

{
|f̃n(x0)|p1Kn,ρ,hn6ηn

|Xn

}
6 2p(αn + η−p+1/2

n C(p)),

thus:

sup
f∈U(x0,hn,αn)

E
n
f,µ

{
r−p
n |f̃n(x0) − f(x0)|p1Ac

n,ε
1Kn,ρ,hn6ηn

}
= on(1),

and (4.13) follows. One can prove in the same way (4.12), using (4.7) and (4.5). Since
rn = ω(hn) = ω(ϕ(n−1)) where ω is regularly varying and ϕ is slowly varying, we have in

view of proposition 4.6 that defining ℓω,ν , ω ◦ ϕ we get rn = ℓω,ν(n
−1) with ℓω,ν slowly

varying. �

Proof of theorem 4.8. We introduce the same hypothesis as in the proof of theorem 3.7,
with hn given by definition 4.5. The proof is then exactly the same. �

5.2.1. Proof for the example in section 4.4. The equation to be solved is:

(5.8) h1+2s+α exp(−1/hα) = yn,

where yn , σ2α/(r2n). Defining t , h−α, equation (5.8) becomes t−(1+2s+α)/α exp(−t) = yn

that we rewrite x exp(x) = α/(1 + 2s + α)y
−α/(1+2s+α)
n , for x , α/(1 + 2s + α)t. Then we

have x = W0

(
α/(1 + 2s + α)y

−α/(1+2s+α)
n

)
, where W0 is defined in the proof of the lemma

5.5. Using the fact that W0(x) ∼ log(x) as x → +∞, we get x ∼ α
1+2s+α log n as n → +∞,

thus hn ∼ (log n)−1/α as n → +∞, and the result holds since rn , rhs
n. �

Appendix A. Regular variation : Karamata theory

We recall here some results about regularly varying functions. The results stated in this
section can be found in Bingham et al. (1989), Geluk and de Haan (1987) and Senata
(1976).

Theorem A.1 (Uniform convergence). If ℓ is slowly varying at 0 then one has:

lim
h→0+

ℓ(yh)/ℓ(h) = 1,

uniformly on each compact set in (0,+∞).

The uniform convergence theorem is the most important result in the theory. It was first
proved by Karamata in 1930.

Remark. It is of special importance to notice the uniformity does not hold on an interval
including 0. This is the reason why some extra assumptions will be required in Abelian
type theorems.

Proposition A.2. If ℓ1 and ℓ2 varies slowly, one has:

(1) ℓα
1 varies slowly for any α ∈ R,

(2) ℓ1 × ℓ2, ℓ1 + ℓ2 vary slowly,
(3) If limh→0+ ℓ2(h) = 0 then ℓ1 ◦ ℓ2 varies slowly.
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Proposition A.3. If R varies regularly with an index γ 6= 0, then as h → 0+ one has

R(h) →
{

0 if γ > 0,

+∞ if γ < 0.

The asymptotic behaviour of integrals of regularly varying functions plays a key role in
the proofs of this paper. See the proof of lemma 5.1 for instance.

Theorem A.4 (Karamata). If ℓ varies slowly, and if γ > −1, one has:

(A.1)

∫ h

0
tγℓ(t)dt ∼ (1 + γ)−1h1+γℓ(h) as h → 0+,

and in particular h 7→
∫ h
0 tγℓ(t)dt is regularly varying of index 1 + γ.

The following proposition is an extension to the Karamata theorem when γ = −1:

Proposition A.5. If ℓ varies slowly and
∫ η
0 ℓ(t)dt/t < +∞ for some η > 0, then h 7→∫ h

0 ℓ(t)dt/t is slowly varying, and

lim
h→0+

1

ℓ(h)

∫ h

0
ℓ(t)

dt

t
= +∞.

Proposition A.6. If R is some positive monotone function such that h 7→
∫ h
0 R(t)dt belongs

to RV0(γ) for some γ > 0 then R ∈ RV0(γ − 1).

Theorem A.7 (Abelian theorem). If ℓ is slowly varying at 0 and K is a function such that∫ 1
0 t−δK(t)dt < +∞ for some δ > 0 then:

(A.2)

∫ 1

0
K(t)ℓ(th)dt ∼ ℓ(h)

∫ 1

0
K(t)dt as h → 0+.

Proposition A.8. If ℓ varies slowly with
∫ η
0 ℓ(t)dt/t < +∞ for some η > 0, and K is such

that ∀t ∈ R
+, |K(t) − K(0)| 6 ρ|t|κ for some ρ > 0 and κ > 0 one has:

∫ 1

0
K(t/h)ℓ(t)dt/t ∼ K(0)

∫ 1

0
ℓ(t)dt/t as h → 0+.

Now we give a result concerning the inversion of regularly varying functions. If R is
defined and bounded on [0,+∞[ one can define the generalised inverse:

(A.3) R←(y) = inf{h > 0 such that R(h) > y}.
Theorem A.9 (Inversion theorem). If R ∈ RV0(γ) for some γ > 0, then there exists
R− ∈ RV0(1/γ) such that

(A.4) R(R−(h)) ∼ R−(R(h)) ∼ h as h → 0+,

and R− is unique up to an asymptotic equivalence. Moreover, one version of R− is R←.

Theorem A.10. If (δn)n>0 and (λn)n>0 are sequences of positive numbers such that δn+1 ∼
δn as n → +∞, limn δn = 0, and if there is a positive and continuous function φ such that
for any y > 0:

lim
n

λnR(yδn) = φ(y),

then R varies regularly.
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Appendix B. Γ-variation : de Haan theory

We describe here the properties of Γ-varying functions and Π-varying functions. The
results are due to de Haan. The references are the same as for regular variation. All the
following results can be found there in.

Proposition B.1 (Uniformity). If ν is a function such that (4.1) holds for all y ∈ R, then
(4.1) holds uniformly on each compact set in R.

Lemma B.2. If ρ is such that (4.1) holds, then:

(B.1) lim
h→0+

ρ(h)/h = 0.

Lemma B.3. The auxiliary function ρ in definition (4.1) is unique up to within an asymp-

totic equivalence and can be taken as h 7→
∫ h
0 ν(t)dt/ν(h).

Proposition B.4. The class ΓV0(ρ) is stable under integration. If ν ∈ ΓV0(ρ), then

Fν(h) =
∫ h
0 ν(t)dt ∈ ΓV0(ρ).

We have seen that under the operation of functional inversion, the class of regularly
varying functions RV0 is stable. In the case of Γ-variation, the inversion maps the class
ΓV0 in another class of functions, namely the de Haan class ΠV0.

Definition B.5 (Π-Variation). A function ν is in the de Haan class ΠV0 if there exists a
slowly varying function ℓ and a positive real number c such that:

(B.2) ∀y > 0, lim
h→0+

(ν(yh) − ν(h))/ℓ(y) = c log(y).

The class of functions ν satisfying (B.2) is denoted by ΠV0(ℓ). The function ℓ is called the
auxiliary function of ν.

The following lemma tells us Π-variation can be viewed as a refinement of slow variation:
actually, any Π-varying function is slowly varying.

Lemma B.6. For any ℓ ∈ RV0(0) we have:

ΠV0(ℓ) ⊂ RV0(0).

Theorem B.7. If ν ∈ ΓV0(ρ) then ℓ = ρ ◦ ν← is slowly varying and ν← ∈ ΠV0(ℓ).
Conversely if ν ∈ ΠV0(ℓ) for some ℓ ∈ RV0(0) then ν← ∈ ΓV0(ρ) with ρ = ℓ ◦ ν←. In both
senses the inverses and their auxiliary functions are asymptotically unique.
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