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Abstract. Doppler reflectometry spatial and wavenumber resolution is analyzed

within the framework of the linear Born approximation in slab plasma model. Explicit

expression for its signal backscattering spectrum is obtained in terms of wavenumber

and frequency spectra of turbulence which is assumed to be radially statistically

inhomogeneous. Scattering efficiency for both back and forward scattering (in radial

direction) is introduced and shown to be inverse proportional to the square of radial

wavenumber of the probing wave at the fluctuation location thus making the spatial

resolution of diagnostics sensitive to density profile. It is shown that in case of forward

scattering additional localization can be provided by the antenna diagram. It is

demonstrated that in case of backscattering the spatial resolution can be better if

the turbulence spectrum at high radial wavenumbers is suppressed. The improvement

of Doppler reflectometry data localization by probing beam focusing onto the cut-off is

proposed and described. The possibility of Doppler reflectometry data interpretation

based on the obtained expressions is shown.
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1. Introduction

Plasma rotation velocity measurements are of great importance for understanding

transition to improved confinement in tokamaks and physics of transport barriers.

Extensively used nowadays for such investigations is Doppler reflectometry [1, 2, 3].

This technique provides measuring fluctuations propagation poloidal velocity which is

often shown to be dominated by ~E × ~B velocity of plasma [3]. In using this method a

probing microwave beam is launched into the plasma with finite tilt angle with respect

to density gradient. A back-scattered signal with frequency differing from the probing

one is registered by a nearby standing or the same antenna. The information on

plasma poloidal rotation is obtained in this technique from the frequency shift of the

backscattering spectrum which is supposed to originate from the Doppler effect due

to the fluctuation rotation. Spatial distribution of the scattering phenomena, which

is usually assumed to occur in the cut-off vicinity, is the key issue for the diagnostic

applications.

Some numerical simulations undertaken (see [3] and references there, [4]) and

analytical results [5] demonstrate the possibility of the measurements localization by

the cut-off but the problem of Doppler reflectometry locality remains still open and

lacks comprehensive analytical treatment. This stems from the fact that to be sure that

main contribution to the registered signal is made by the cut-off vicinity one should

compare it with integral contributions of distant from the cut-off regions which can be

substantial depending on density profile.

This paper attempts to clarify this problem. Here we present a theoretical

investigation of the Doppler reflectometry signal dependence on the turbulence

distribution with respect to the cut-off. We consider slab two-dimensional model

(see figure 1). This simplification allows us to perform straightforward analytical

treatment and obtain explicit reliable expressions for the scattered signal which can be

easily used for estimation of diagnostics locality and experimental data interpretation

without complicated and time consuming numerical calculation using full-wave codes,

etc. The model considered can be readily applied to large in comparison with

probing beam width, vertically elongated (ITER-like) plasma. The limitations of this

approximation are discussed below.

The paper is organized as follows. In section 2 the consideration is carried on

in the geometrical optics approximation for arbitrary plasma density profile. This

approximation fails to hold in the cut-off region. So in this region the analysis is made

assuming the density profile to be linear and using exact expressions for the probing

and scattered wave electric field given by Airy functions (section 3). Some numerical

examples are given in section 4. Brief discussion of the model considered and results

obtained is provided in section 5. Finally, a conclusion follows in section 6.
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Figure 1. Diagnostics scheme. 1—emitting and receiving antenna, 2—additional

receiving antenna (to be discussed in section 5).

2. Reflectometry signal in WKB–approximation

In this section the reflectometry signal is obtained in geometrical optics (or WKB)

approximation. The plasma is assumed to be nonuniform in x (radial) direction and

uniform in y (poloidal) direction. External magnetic field is supposed to be along z axis.

O-mode Doppler reflectometry is considered but the final results can be easily adapted

to X-mode reflectometry applying corresponding expression for wave radial wavenumber

dependence on the radial coordinate.

A received signal is obtained using reciprocity theorem [6] and is assumed to be

created by single scattering (linear) mechanism. The frameworks of this approximation

and experimental means to check its applicability are discussed in section 5. The

scattering signal averaging is made taking into account radial statistical inhomogeneity

of the turbulence. Then a scattering efficiency is introduced and analyzed.

2.1. Scattering signal

We consider normalized antenna electric field in the following form

~Ea(~r) = ~ez

+∞
∫

−∞

dky

2π
W (x, ky)f(ky)e

ikyy

where factor f(ky) takes into account the antenna pattern describing antenna radiation

in vacuum

f(ky) =

√

c

8π

+∞
∫

−∞

dyE0(x = 0, y)e−ikyy

The vacuum antenna field E0 differs from Ea by the absence of the reflected wave

contribution.

Here and further we suppose the probing wave to oscillate at frequency ω and omit

the corresponding term in equations. Radial electric field distribution is described by
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the function W (x, ky) which is determined by

W ′′ + k2
x(x, ky)W = 0 (1)

where the square of ordinary wave wavevector radial projection is given by k2
x(x, ky) =

k2(x) − k2
y = [ω2 − ω2

pe(x)]/c2 − k2
y. Thus ordinary wave electric field in WKB-

approximation has the following form [7]:

W (x, ky) = 4

√

2πω

c2kx(x, ky)
exp

[

i

∫ xc(ky)

0

kx(x
′, ky) dx′ − iπ

4

]

× cos

[

π

4
−

∫ xc(ky)

x

kx(x
′, ky) dx′

]

where the turning point xc(ky) is determined by the equation

kx [xc(ky), ky] = 0

and x = 0 corresponds to the plasma border.

Using reciprocity theorem [6, 7], an amplitude of the received scattering signal at

frequency ωs = ω + Ω, where Ω denotes the frequency of the fluctuation caused the

scattering, can be written as

As(ωs) =
ie2

4meω

√

Pi

∫ +∞

−∞

δnΩ(~r)E2
a(~r) d~r

Here Pi is the probing wave power. Following the model considered the fluctuations are

assumed to be long enough along the magnetic field direction z, so their dependence on

z can be neglected. Introducing the density perturbation Fourier harmonic

δn(κ, q, Ω) =

∫ +∞

−∞

δn(x, y, Ω)e−iκx−iqydxdy

we obtain

As(ωs) =
iπe2

2meω

√

Pi

∫ +∞

−∞

dky dκ dq

(2π)3
δn(κ, q, Ω)f(ky)f(−ky − q)C(κ, q, ky) (2)

The efficiency of scattering off the fluctuation with radial wavenumber κ and poloidal

wavenumber q has the following form [7]

C(κ, q, ky) =

∫ +∞

−∞

W (x, ky)W (x,−ky − q)eiκxdx

=

∫ +∞

−∞

dx
√

kx(x, ky)kx(x,−ky − q)

∑

m,n=±1

eiΨmn−i(m+n)π/4

Ψmn = κx + mφ(x, ky) + nφ(x,−ky − q) + φ(0, ky) + φ(0,−ky − q)

φ(x, ky) =

∫ xc(ky)

x

kx(x
′, ky) dx′

The scattering efficiency C(κ, q, ky) is an integral of the oscillating function. Main

contribution to this integral is made by stationary phase points. Following [7] to estimate
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this integral let us calculate this contribution. Equalizing the derivative of the phase to

zero one obtains the Bragg condition

κ − mkx(x∗, ky) − nkx(x∗,−ky − q) = 0 (3)

In nonuniform plasma this determines the scattering point x∗

k2(x∗) =

[

κ

2
+

q(2ky + q)

2κ

]2

+ k2
y (4)

The figures m, n are related to different cases of scattering.

m = sgn
κ

2 + q(2ky + q)

κ

, n = sgn
κ

2 − q(2ky + q)

κ

(5)

As it will be shown below case m = n corresponds to the backscattering (BS) and

m = −n accords to the forward scattering (FS). The sign of m is related to the

scattering before (m = −1) and after (m = 1) the cut-off in respect of the probing

wave propagation. Equations (5) express the fact that one fluctuation can scatter the

wave only once. The situation, for example, when the wave with fixed ky is forward

scattered off the fluctuation far from the cut-off and the same wave can be scattered

backward off the same fluctuation near the cut-off is impossible. This circumstance

will allow us below to separate the contributions of forward and backward scattering

processes.

The final expression for the scattering efficiency in WKB approximation takes the

form

C(κ, q, ky) = 2

√

πℓ3
∗

|κ| exp

[

iΨmn(x∗) +
iπ

4
sgn(mnκ)

]

where ℓ∗ = [∂k2(x)/∂x|x=x∗
]
−1/3

is local Airy scale. Introducing local density

variation scale L∗ = [d ln ne(x)/dx|x=x∗
]−1 we obtain for ordinary probing wave ℓ∗ =

[

c2L∗/ω
2
pe(x∗)

]1/3
.

On substituting the obtained expression for the scattering efficiency into (2) we

obtain the received signal

As = 4π3/2 e2

mec2

√

Pi

∫ +∞

−∞

dky dκ dq

(2π)3
δn(κ, q, Ω)f(ky)f(−ky − q)

ℓ
3/2
∗√

κ − io
eiΨ(x∗,ky) (6)

where o > 0 determines how the integration path goes around the singularity. Here

Ψ(x∗, ky) = Ψmn, where m, n is determined by (5).

2.2. Scattering signal analysis: integration over ky

We calculate the integral over ky in (6) using saddle point method. It is especially

efficient if the cut-off is far enough from the antenna and does not coincide with the

focal point of the antenna beam, so that the ray tracing consideration is applicable.

In this case the saddle point k∗

y is determined by the stationary point of the phase

Φ = Ψ(x∗, ky) + arg f(ky) + arg f(−ky − q) and the |f(ky)f(−ky − q)| dependence on
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ky is negligible. Corresponding criterion to distinguish this and opposite case will be

formulated below.

In this “ray tracing” case the stationary phase condition

dΦ [x∗(ky), ky]

dky

∣

∣

∣

∣

ky=k∗

y

= 0 (7)

can be easily interpreted. At first we consider the meaning of dΨ/dky term. Recollecting

that

k2
x(x, ky) = k2(x) − k2

y (8)

and

∂φ(x, ky)

∂ky
= −ky

∫ xc(ky)

x

dx′

kx(x′, ky)

one obtains

∂Ψ

∂ky
= −mky

∫ xc(ky)

x∗

dx

kx(x, ky)
− n(ky + q)

∫ xc(−ky−q)

x∗

dx

kx(x,−ky − q)

− ky

∫ xc(ky)

0

dx

kx(x, ky)
− (ky + q)

∫ xc(−ky−q)

0

dx

kx(x,−ky − q)
(9)

Taking into account that (8) yields the following relation between the projections of

group velocities ~vg = ∂ω/∂~k of incident and scattered waves:

v
(i)
gy

v
(i)
gx

=
ky

kx(x, ky)
,

v
(s)
gy

v
(s)
gx

=
−ky − q

kx(x,−ky − q)

we obtain

∂Ψ

∂ky
= −m

∫ xc(ky)

x∗

v
(i)
gy

v
(i)
gx

dx−
∫ xc(ky)

0

v
(i)
gy

v
(i)
gx

dx+n

∫ xc(−ky−q)

x∗

v
(s)
gy

v
(s)
gx

dx+

∫ xc(−ky−q)

0

v
(s)
gy

v
(s)
gx

dx(10)

Now one can see that ∆y = −∂Ψ/∂ky corresponds to shift of the ray trajectory along

y direction when it returns to the antenna. In less general case it was mentioned in [8].

For instance, if m = −n = 1 then (10) takes the form

∂Ψ

∂ky

= −
∫ xc(ky)

0

v
(i)
gy

v
(i)
gx

dx −
∫ x∗

xc(ky)

v
(i)
gy

−v
(i)
gx

dx −
∫ 0

x∗

v
(s)
gy

v
(s)
gx

dx

and (−∂Ψ/∂ky) is the shift of the ray trajectory in case of forward scattering after the

reflection off the turning point. Here the meaning of the figures m, n (5) announced

above becomes clear.

Accounting for the influence of the wavefront curvature at the antenna given by

arg f(ky) 6= 0 we consider gaussian antenna pattern

f(ky) =

√

2
√

πρe−(ρ2−icR/ω)(ky−K)2/2 (11)

In case of

cR/ω ≫ ρ2 (12)
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parameter R has a meaning of a wavefront curvature radius at the antenna. In (11) K
corresponds to the antenna tilt (K = ω/c sinϑ, where ϑ denotes tilt angle in respect of

the density gradient). This allows us to obtain condition (7) in the form

dΦ

dky
= −∆y +

cR
ω

(2ky + q) = 0 (13)

Taking into account that the ray with poloidal wavevector component ky is radiated

from the position y(ky) = −kyRc/ω of the curved wavefront at the antenna which is

assumed to be situated in the axes origin, it is easy to show that (13) determines a

ray trajectory which returns to the proper point of the antenna wavefront after the

scattering off the fluctuation with wavevector (κ, q).

To get explicit expression for the stationary point position k∗

y we use paraxial

approximation. Supposition of small divergence of the antenna beam |ky − K| ≪ ω/c

which holds usually in the experiments on Doppler reflectometry [3] allows us to write

kx(x, ky) ≈ kx(x,K) −
k2

y −K2

2kx(x,K)

and neglect the dependence on ky in denominators in (9). This allows us to obtain

∂Ψ

∂ky
= −cky

ω
[(m + n)Λ(x∗) + 2Λ0] −

cq

ω
[nΛ(x∗) + Λ0]

Λ(x) =
ω

c

∫ xc(K)

x

dx′

kx(x′,K)
, Λ0 ≡ Λ(0)

Using (7) we get the stationary phase point position

k∗

y =

{

−q/2, m=n

−q/2 [1 + nΛ(x∗) /(Λ0 −R) ] , m=-n
(14)

for the BS and FS respectively.

In the opposite case when ray trajectories consideration is not valid k∗
y is determined

by the antenna pattern amplitude

d|f(ky)f(−ky − q)|
dky

∣

∣

∣

∣

ky=k∗

y

= 0

yielding k∗

y = −q/2 for an arbitrary antenna pattern.

The assumption of gaussian antenna pattern (11) allows us to evaluate the saddle

point position in general case

k∗

y = −q

2

Λ0 −R + nΛ(x∗) − iP
Λ0 −R + (m + n)/2 · Λ(x∗) − iP

where P = ωρ2/c and formulate the criterion in question. The ray tracing consideration

is valid if ρ2 ≪ c|Λ0 −R|/ω and thus the focal point is not too close to the cut-off. If

the focal point is situated in the cut-off ρ2 ≫ c|Λ0 − R|/ω we come to the expression

k∗

y = −q/2.
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Using stationary k∗

y calculated above and performing the integration we obtain the

scattering signal in the following form

As = 2π
e2

mec2

√

Pi

∫ +∞

−∞

dκ dq

(2π)2
δn(κ, q, Ω)

× f
[

k∗

y(κ, q)
]

f
[

−k∗

y(κ, q) − q
]

ℓ3/2
∗

∆(κ, q)√
κ − io

eiΨ(x∗,k∗

y
)

where

∆(κ, q) =

{

ρ2 − i

[

cR
ω

+
1

2

d2Ψ [x∗(ky), ky]

dk2
y

]}−1/2

2.3. Scattering signal averaging

We consider the turbulence to be slightly inhomogeneous along x direction so that the

density fluctuation correlation function takes the form

〈δn(x)δn(x′)〉 = δn2

(

x + x′

2

)
∫ +∞

−∞

dκ

2π

∣

∣

∣

∣

ñ

(

κ, q, Ω,
x + x′

2

)
∣

∣

∣

∣

2

eiκ(x−x′) (15)

This representation is applicable when the turbulence correlation length along x axis

ℓcx is much smaller than the turbulence inhomogeneity scale. It allows us to take into

account the dependence of turbulence on the radial coordinate and still describe it

using wavenumber spectrum |ñ [κ, q, Ω, (x + x′)/2]|2. Supposing the turbulence to be

stationary and homogeneous in y-direction and using (15) we can represent correlation

function of spectral density in the form

〈δn(κ, q, Ω)δn∗(κ′, q′, Ω′)〉 =

∫ +∞

−∞

dx δn2(x)

∣

∣

∣

∣

ñ

(

κ + κ
′

2
, q, Ω, x

)
∣

∣

∣

∣

2

× eix(κ−κ
′)(2π)2δ(q − q′)δ(Ω − Ω′)

where the integration is performed over all plasma volume. It allows spectral power

density of the received signal to be represented in the following form

p(ωs) = 〈AsĀs〉 = Pi

∫ +∞

−∞

dx δn2(x)S(x) (16)

where Ās is complex conjugate to As.

The scattering efficiency S(x) introduced here takes the form

S(x) = 4π2

(

e2

mec2

)2 ∫ +∞

−∞

dκ dκ
′ dq

(2π)3

∣

∣

∣

∣

n

(

κ + κ
′

2
, q, Ω, x

)
∣

∣

∣

∣

2

× f
[

k∗

y(κ, q)
]

f
[

−k∗

y(κ, q) − q
]

f
[

k∗
y(κ

′, q)
]

f
[

−k∗
y(κ

′, q) − q
]

×(ℓ∗ℓ
′

∗)
3/2 ∆(κ, q)∆(κ′, q)√

κκ
′

eix(κ−κ
′)+iΨ[κ,q]−iΨ[κ′,q]

and determines actually the Doppler reflectometry locality and wavenumber resolution.

Performing the integration over κ − κ
′ using stationary phase method we obtain

S(x) ≈ (2π)3/2

(

e2

mec2

)2 ∫ +∞

−∞

dκ dq

(2π)2
|ñ(κ, q, Ω, x)|2

∣

∣f
[

k∗

y(κ, q)
]
∣

∣

2 ∣

∣f
[

−k∗

y(κ, q) − q
]
∣

∣

2
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× ℓ3
∗

|∆(κ, q)|2

|κ|
√

|x′
∗κ
|
exp

{

i [x − x∗(κ, q)]2

2x′
∗κ

(κ, q)
− iπ

4
sgnx′

∗κ
(κ, q)

}

(17)

where x′

∗κ
(κ, q) ≡ ∂x∗(κ, q)/∂κ and the scattering point position x∗(κ, q) is given

by (3).

One can see that due to the oscillating term exp
{

i [x − x∗(κ, q)]2 / (2x′

∗κ
(κ, q))

}

the

main input to the integral (17) is provided by the stationary point x = x∗. It corresponds

to the contribution of the fluctuations producing scattering just in the point x.

Here we suppose the fluctuation spectral density |ñ(κ, q, Ω, x)|2 to vary with κ slow

enough in comparison with the oscillating term. In general case four terms arise from

condition x∗(κ, q) = x which is equivalent to

k [x∗(κ
∗, q)] = k(x) (18)

where k(x∗) is determined by (4) and ky = k∗
y is substituted according to section 2.2.

Solving (18) and taking interest in “stationary” κ
∗ we obtain

κ
∗

m,n = mkx(x, k∗

y) + n
√

k2
x(x, k∗

y) − q(2k∗
y + q) (19)

Figures m and n have the same meaning as above but here and further they are

independent parameters and specify corresponding solutions of (18).

To distinguish contributions of different scattering types we represent the scattering

efficiency in the following form

S(x) = π

(

e2

mec2

)2 ∫ +∞

−∞

dq

2π
[SBS(x, q) + SFS(x, q)] (20)

and discuss the properties of back and forward scattering efficiency separately.

2.4. BS efficiency

To obtain the two terms corresponding to the backscattering which occur before or after

reflection of the probing wave we substitute m = n and k∗
y = −q/2 to (19) according

to (14). This yields

κ
∗

m,m = 2mkx

(

x,−q

2

)

, m = ±1

and

|x′

∗κ
| = ℓ3

∗kx

(

x,−q

2

)

∣

∣∆(κ∗

m,m, q)
∣

∣

2
=

{

ρ4 +
c2

ω2
[Λ0 −R + mΛ(x)]2

}−1/2

It allows us to obtain BS contribution in question

SBS(x, q) =
|f (−q/2)|4
k2

x (x,K)

∑

m=±1

|ñ [2mkx (x,K) , q, Ω, x]|2
√

ρ4 + c2 [Λ0 −R + mΛ(x)]2 /ω2

(21)

It can be seen that the contributions of the BS before (m=n=-1) and after (m=n=1)

the cut-off have different amplitudes due to the diffraction effect dependence on length

of the ray trajectory from emitting to receiving antenna.
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We consider main features of the BS efficiency (21) obtained. The first factor

determining the localization of BS signal which appears to be typical for the fluctuation

reflectometry [9] is k−2(x). Just recently [9] the same factor was revealed in analysis of

correlation matrix of phase perturbations of fluctuation reflectometry signal in nonlinear

regime. It is maximal in the vicinity of the cut-off where in the WKB approximation

it has singularity. This singularity saturation will be treated in details in section 3.

This maximum explained by the growth of the probing and scattered wave electric filed

in the cut-off provides the technique with spatial localization, however, the decay of

k−2(x) when leaving cut-off is not fast enough to guarantee suppression of the signal

coming from wide edge region. Moreover, for quite a few density profiles (e.g. linear

and bent down ones) the integral of k−2(x) over x does not converge due to far from the

cut-off regions. So plasma periphery contribution can be essential in these cases. The

illustration of this effect is given in section 4.

Additional possibility to increase selectively the BS signal coming from the cut-

off can be provided by focusing the beam of probing and receiving antennae to the

cut-off region. This corresponds to R = Λ0 in (21). In this case the focusing causes

additional growth at the cut-off of probing and scattered wave amplitudes leading to the

scattered signal enhancement similar to that predicted for the cut-off or upper hybrid

resonance [10].

The two mentioned effects increasing the probing wave electric field substantially in

the cut-off should enhance the locality of the Doppler reflectometry diagnostics making

it less sensitive to the backscattering in the edge plasma.

The backscattering locality can be also better for some fluctuation radial

wavenumber spectra. One can see from (21) that if the short-scale fluctuations are

suppressed enough in the spectrum the backscattering contribution will be essential in

the cut-off vicinity only.

2.5. FS efficiency

To calculate the FS terms we use ray-tracing consideration. Substituting m = −n

to (19) we obtain

κ
∗

m,−m =
q2Λ(x)

2kx(x, k∗
y)(Λ0 −R)

It is noteworthy that both κ
∗

m,−m have the same sign and differ only slightly due to

different values of k∗

y only.

Finally we obtain

|x′

∗κ
| =

2c(Λ0 −R)

ωq2
kx(x, k∗

y)kx(x,−k∗

y − q)

∣

∣

∣

∣

ωΛ(x)

2cL∗kx(x, k∗
y)

− 1

∣

∣

∣

∣

−1

∣

∣∆(κ∗

m,−m, q)
∣

∣

2
=

(

ρ4 +
c2(Λ0 −R)2

ω2

)−1/2 ∣

∣

∣

∣

1 −
2cL∗kx(x, k∗

y)

ωΛ(x)

∣

∣

∣

∣

−1
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Thus the sum of two similar forward scattering terms corresponding to the

scattering before and after the turning point takes a form

SFS(x, q) =
2

√

ρ4 + c2(Λ0 −R)2/ω2

∣

∣

∣

∣

f

{

−q

2

[

1 +
Λ(x)

Λ0 −R

]}
∣

∣

∣

∣

2

×
∣

∣

∣

∣

f

{

−q

2

[

1 − Λ(x)

Λ0 −R

]}
∣

∣

∣

∣

2
1

k2
x (x,K)

∣

∣

∣

∣

ñ

[

q2Λ(x)

2k(x)(Λ0 −R)
, q, Ω, x

]
∣

∣

∣

∣

2

(22)

The main reason for the mentioned similarity is equal trajectory length in this case. It

is worth noting that if R < Λ0 the forward scattering efficiency SFS is contributed to

by the fluctuations with positive radial wavenumbers only.

Substituting gaussian antenna power diagram (11) into (22) we obtain expression

for the factor describing antenna pattern influence in the following form
∣

∣

∣

∣

f

[

−q

2

(

1 +
Λ(x)

Λ0 −R

)]
∣

∣

∣

∣

2 ∣

∣

∣

∣

f

[

−q

2

(

1 − Λ(x)

Λ0 −R

)]
∣

∣

∣

∣

2

= 4πρ2 exp

{

−ρ2

2

[

(q + 2K)2 +

[

qΛ(x)

Λ0 −R

]2
]}

(23)

Additional contribution to the forward scattering efficiency can be provided by

singularities of the term |∆(κ, q)|2 / |κ| in (17). As it is shown in Appendix A it is small

at substantial distance from the cut-off where the condition

ck(x)

ω
> ρ

√

ω

c(Λ0 −R)

(

12

α

)1/2

(24)

holds. Here α = |L2
∗/ne(xc) · d2ne(x)/dx2||x=xc

characterizes the nonlinearity of the

density profile. If the cut-off is not close to the focal point, so that ρ
√

ω/[c(Λ0 −R)] ≪ 1

the expression (22) for the FS contribution appears to be valid where nonlinear

corrections to k2(x) are still small. Closer to the cut-off where inequality (24) is not

satisfied the contribution of the branching point to the integral in (17) is important.

It is calculated below taking into account that the density profile in this region can be

treated as linear. The corresponding contribution doubles the result for the FS signal.

Similar to (21) FS efficiency (22) is also proportional to k−2(x). However unlike (21)

the cut-off contribution is not enhanced there by probing wave focusing. In this case

the focusing merely compensates the refraction of probing beam leading to FS signal

amplitude growth in all plasma volume. It can be seen from (22) that FS signal is

contributed to by long-scale fluctuations, which disable the third possible localizing

factor discussed for BS — turbulence spectrum.

Nevertheless, according to (22), (23) the extra localization of the forward scattering

can be due to the fact that FS signal coming from plasma volume is received in Doppler

reflectometry is received by the antenna pattern periphery. Supposing gaussian antenna

beam to be wide enough, the integration over q yields the following estimation of the

forward scattering efficiency

SFS(x) = π

(

e2

mec2

)2 ∫ +∞

−∞

dq

2π
SFS(x, q)
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≈
(

e2

mec2

)2
2 (2π)3/2 ωρ

c(Λ0 −R)k2
x(x)

exp

{

−2

[

ρKΛ(x)

Λ0 −R

]2
}

×
∣

∣

∣

∣

ñ

[

2K2Λ(x)

k(x)(Λ0 −R)
,−2K, Ω, x

]
∣

∣

∣

∣

2

Thus the factor describing the antenna pattern effect decreases rapidly in moving off

the cut-off under condition the beam is wide enough or sufficiently tilted. If the antenna

beam focusing to the cut-off is provided this localizing factor can be even more essential.

3. Scattering signal in the cut-off vicinity

The explicit expressions for the scattering efficiency (21), (22) were obtained in the

previous section using WKB and ray tracing consideration. These expressions possesses

singularities when validity conditions for WKB approach

k−2(x)
dk(x)

dx
≪ 1 (25)

and ray tracing consideration

ρ2 ≪
∣

∣

∣

∣

c(Λ0 −R)

ω

∣

∣

∣

∣

are violated in the cut-off vicinity.

To analyze the scattering efficiency in this region a more rigorous approach is

needed. To do that we recollect that in the cut-off vicinity the density profile can

be represented as linear k2(x) = (xc −x)/ℓ3 where ℓ = (c2L/ω2)
1/3

is the Airy scale and

L = [d lnne(x)/dx|x=xc
]−1 is local density variation scale in the cut-off position. In this

case the criterion (25) takes the form k(x)ℓ ≫ 1.

Then in the cut-off vicinity the radial distribution of the ordinary wave electric field

has the following form [7]:

W (x, ky) =

√

8ωℓ

c2
exp

[

i

∫ xc(ky)

0

kx(x
′, ky) dx′ − iπ

4

]

×
∫ +∞

−∞

exp

[

ip3

3
+ (ξ + k2

yℓ
2)p

]

dp

where ξ = (x − xc)/ℓ.

According to the reciprocity theorem [6] the scattering signal has the following

structure

As =
ie2

4meω

√

Pi

∫

dx

∫ +∞

−∞

dky dκ dq

(2π)3
δn(κ, q, Ω)eiκ(x−xc)

× f(ky)f(−ky − q)W (x, ky)W (x,−ky − q) (26)

As we have already done assuming moderate spatial inhomogeneity of the

turbulence (15) and calculating the integral over ky in (26) by stationary phase method
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we transform the registered signal spectral power density to the form (16). For the

scattering efficiency we get

S(x) ≈ 4πℓ3

√

ρ4 + c2(Λ0 −R)2/ω2

(

e2

mec2

)2

×
∫ +∞

−∞

dκ dq

(2π)2
|ñ(κ, q, Ω, x)|2

∣

∣

∣
f

(

−q

2

)
∣

∣

∣

4

R(x, κ, q) (27)

R(x, κ, q) =

∫ +∞

−∞

dτ
√

(β − θ)2 − (τ + iǫ)2
exp

{

iτ 3

6
+

iτ

2

(

β2 − K2
)

}

(28)

where the following notation is used

β = κℓ, θ =
Lℓcq2

ω

Λ0 −R
(Λ0 −R)2 + P2

, ǫ =
Pθ

Λ0 −R , K = 2ℓkx

(

x,−q

2

)

The expression for R(x, κ, q) can be simplified in two cases. In the first one K ≫ θ

and the position of the turbulence x is far from the cut-off. Omitting oscillating terms

hardly having an effect in integrating over β we can distinguish two characteristic ranges

of fluctuation radial wavenumbers. The fist one corresponds to |β| ≪ K. Considering

such fluctuations, which are responsible for the forward scattering we can approximate

R ≈ R(1)(x, κ, q) = 2πJ0

[

1

2
K2 |β − θ|

]

e−ǫK2

(29)

The second group of wavenumbers corresponds to |β| ∼ K. These fluctuations provide

the backscattering in this region. Corresponding expression of the scattering efficiency

has the following form

R ≈ R(2)(x, κ, q) =
24/3π

|β| Ai

[

β2 − K2

22/3

]

(30)

Assuming the spectral density |ñ(κ, q, Ω, x)|2 to vary with κ slow enough and neglecting

this variation when performing the integration over κ which is correct for distances

from the cut-off xc − x > ℓcx where ℓcx is radial correlation length of the turbulence,

we represent the scattering efficiency in form (20) and get the forward scattering

contribution

SFS(x, q) = 4

[

ρ4 +
c2(Λ0 −R)2

ω2

]−1/2 |f (−q/2)|4
k2

x (x,−q/2)

∣

∣

∣

∣

ñ

(

Lcq2

ω

Λ0 −R
(Λ0 −R)2 + P2

, q, Ω, x

)
∣

∣

∣

∣

2

× exp

{

− 2(ρqL)2

(Λ0 −R)2 + P2

[

ckx (x,−q/2)

ω

]2
}

(31)

and backscattering one

SBS(x, q) =

[

ρ4 +
c2(Λ0 −R)2

ω2

]−1/2 |f (−q/2)|4
k2

x (x,−q/2)

∑

±

|ñ [±2kx (x,−q/2) , q, Ω, x]|2 (32)

This BS efficiency expression matches when leaving the cut-off corresponding WKB

formula (21) obtained for the arbitrary density profile whereas the FS contribution (31)

exceeds corresponding WKB result (22) by the factor of 2. Taking into account the



Spatial and Wavenumber Resolution of Doppler Reflectometry 14

discussion of the previous section we can write approximate formula describing the

transition from (22) to (31) which happens when nonlinear correction to the density

profile decreases.

SFS(x, q) ∼ 4
1 + γ2

1 + 2γ2
k−2(x,K)

∣

∣

∣
f

(

−q

2

)
∣

∣

∣

4

exp

{

−1

2

[ρqΛ(x)]2

(Λ0 −R)2 + P2

}

×
[

ρ4 +
c2(Λ0 −R)2

ω2

]−1/2 ∣

∣

∣

∣

ñ

[

q2Λ(x)

2k(x)

Λ0 −R
(Λ0 −R)2 + P2

, q, Ω, x

]
∣

∣

∣

∣

2

(33)

where as above P = ωρ2/c and γ = ck(x)/(ωρ)
√

αc(Λ0 −R)/(12ω).

Expressions (31), (32) and (33) for the scattering efficiency describe the transition

from the ray tracing consideration to the case of probing beam focusing to the cut-off

both for the gaussian and arbitrary antenna pattern. In the last case we determine

parameters ρ, R as:

ρ2 = −ℜf ′′(K)

f 2(K)
, R = ℑωf ′′(K)

cf 2(K)

In case when ray tracing approximation fails to hold, which can be provided by large

antenna beam width ρ2 > cΛ0/ω or by the focusing to the cut-off R ∼ Λ0, the FS

contribution takes the following form

SFS(x, q) ≈ 4 [ρk(x)]−2
∣

∣

∣
f

(

−q

2

)
∣

∣

∣

4

exp

{

−1

2

(cq

ω

)2
[

Λ(x)

ρ

]2
}

|ñ [0, q, Ω, x]|2

Equation (21) for BS contribution holds true in general situation (P ≶ |Λ0 −R|)
for arbitrary antenna pattern providing the redefining of ρ and R mentioned above is

made.

The second important case to be considered is when the turbulence is situated near

the cut-off K . 1 where WKB scattering efficiency has singularity. Main contribution

to the scattering in this location can be shown to be due to fluctuations with |β| < K.

It is given by

R(x, κ, q) ∼ 2πJ0

[

1

2

(

K2 − β2
)

|β − θ|
]

e−ǫ(K2−β2)/2 − π

− 2

∫

∞

0

dτ

τ
sin

[

τ 3

6
+

τ

2

(

β2 − K2
)

]

This expression reveals a scattering efficiency maximum to be situated near K ≈ 2.3

which corresponds to k(x) ∼ 1.15/ℓ or xc−x ∼ 1.3ℓ. A numerical calculation of function

R(x, κ, q) with following integration over κ confirms this result. Figure 2 represents

numerical results (black dots) in case of short-scale fluctuations ℓcx ≪ ℓ. Here for the

sake of clarity the fluctuations spectral density is supposed to be constant in (27) during

the integration over κ.

Additionally this computation shows WKB formulae (21), (22) for scattering

efficiency to be valid up to the maximum providing kx in denominators is replaced

by

kx ↔ kx − 0.5/ℓ (34)
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Figure 2. Scattering efficiency calculated numerically (•) and analytically (solid line)

vs. K = 2kx(x,−q/2)ℓ.

(solid line in figure 2). Oscillations near this solid line correspond to the oscillating

term omitted in (29) which can be shown not to contribute essentially to the resulting

scattered signal magnitude due to averaging provided by slow spatial variation of the

fluctuation amplitude. Fast decay of S for kx < 0.5/ℓ is caused by the probing wave

field decrease in the evanescent region.

In integration over κ in expressions (17), (29), (30) we neglected the influence of

the fluctuation spectral density |ñ(κ, q, Ω, x)|2. Now we consider the case ℓcx ≫ ℓ when

this approximation is not valid. In this case of long-scale turbulence the backscattering

contribution is small in comparison with forward scattering one and can be neglected

S(x) ≈ π

(

e2

mec2

)2 ∫ +∞

−∞

dq

2π
SFS(x, q)

According to (27), (29) the scattering efficiency takes the form

SFS(x, q) ≈ 2c

ωℓ

∣

∣

∣
f

(

−q

2

)
∣

∣

∣

4

e−ǫK2

∫ +∞

−∞

dβ

∣

∣

∣

∣

ñ

(

β

ℓ
, q, Ω, x

)
∣

∣

∣

∣

2

J0

[

1

2
K2 |β − θ|

]

(35)

The characteristic scale of the spectral density variation with β = κℓ is ℓ/ℓcx. The

corresponding scale for the term J0 [1/2K2 |β − θ|] is δβ ∼ K−2. In evaluating last

integral in (35) two cases can be distinguished. Far from the cut-off at xc − x ≫ ℓcx the

integral converges due to the Bessel function at β ∼ δβ ≪ ℓ/ℓcx. It gives k−2
x -behavior

for the scattering efficiency which was obtained above (31).

In the opposite case xc−x . ℓcx the integral in (35) converges due to the turbulence

spectrum at β ∼ ℓ/ℓcx leading to the saturation of the singularity k−2
x . This saturation

is described analytically in the case of gaussian fluctuation spectral density

|ñ (κ, q, Ω)|2 = 2
√

πℓcx |ñ (q, Ω)|2 e−ℓ2cxκ
2
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Figure 3. Approximation of scattering efficiency for ℓcx ≫ ℓ (solid line ℓcx = 2 cm,

ℓ = 0.5 cm) and ℓcx ≪ ℓ (dashed line) vs. K = 2kx(x,−q/2)ℓ.

which allows the integral over β in (35) to be calculated exactly
∫ +∞

−∞

dβ

∣

∣

∣

∣

ñ

(

β

ℓ
, q, Ω, x

)
∣

∣

∣

∣

2

J0

[

1

2
K2 |β − θ|

]

≈ 2πℓ |ñ (q, Ω, x)|2 exp

(

−K4ℓ2

32ℓ2
cx

)

I0

(

K4ℓ2

32ℓ2
cx

)

where I0 is modified Bessel function.

The difference in scattering efficiency behavior for small-scale (ℓcx ≪ ℓ) and long-

scale turbulence (ℓcx ≫ ℓ) is illustrated by figure 3. In our case the transition to the

plateau occurs in the point K2 ∼ 4ℓcx/ℓ which gives

xc − x ∼ ℓcx

To summarize, in the case ℓcx ≪ ℓ in approaching the cut-off the scattering efficiency

grows, has maximum in the point xc − x ∼ 1.3ℓ and diminishes when xc − x < ℓ due

to probing wave field decrease in the evanescent region. When ℓcx ≫ ℓ the scattering

efficiency has a plateau in the region xc − x . ℓcx.

4. Estimation of experiment locality

On performing the correction (34) the WKB-formulae (21), (22) can be used up

to the cut-off vicinity. We consider simple model illustrating main properties of

the scattering efficiency obtained. Geometrical parameters taken correspond to Tore

Supra experiments [1], where cut-off being situated in the antenna near-field zone

(ω/c ∼ 12.6 cm−1, ρ ∼ 14 cm, distance to the cut-off L ∼ 20 cm). Let us assume bent

down plasma density profile (figure 4(a)) similar to observed in Tore Supra [11] and

step-like plasma poloidal velocity distribution (figure 4(b)). For the sake of simplicity



Spatial and Wavenumber Resolution of Doppler Reflectometry 17

3,05 3,10 3,15 3,20
0

1

2

3

4

(a)

n
, 
1
0

1
9
 m

-3

R, m

3,05 3,10 3,15 3,20

-0,5

0,0

0,5

1,0

R, m

v
, 
1
0

3
 m

/s

 

 

(b)
1

2345

-2 -1 0 1 2
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

 

(c)

f, Mhz

1

2

3

4

5

Figure 4. Signal spectrum evolution. (a) Assumed density profile. Horizontal axe is

equivalent to the major radius. Probing is performed from right-hand side. (b) Poloidal

velocity profile (solid line), cut-off positions (•) and velocity estimated using frequency

spectrum shift (◦). (c) Signal spectrum corresponding to the cut-off positions marked

on (b).

we assume the turbulence level to be uniform (which looks like real situation when

relative turbulence amplitude δn/n increases in approaching plasma periphery) and the

wavenumber spectra to be gaussian.

The probing is performed at different frequencies and therefore with different cut-

off positions. We assume probing antenna to provide constant tilt angle ϑ = 11.5◦ and

will calculate corresponding probing wave poloidal wavenumber K = ω/c sinϑ for each

frequency.

We take into account scattered signal frequency shift due to the Doppler effect

in the final expression for the scattering efficiency therefore assuming arising additional

dependence on radial coordinate |ñ [. . . , . . . , Ω − qv(x)]|2 to be slow enough. We perform

the integration over q in (32), (33) assuming the antenna pattern (11) to be wide enough

to determine the behavior of integrand and calculate spectral power density (16) of the

registered signal. Spectra obtained are represented in figure 4(c).

Turbulence correlation length was taken small ℓc ∼ 0.1 cm, Airy length being

ℓ ∼ 0.5 cm. So the turbulence spectrum did not improve enough the locality and

one can see that contribution of long area with v = −0.5 · 105 cm/s (see figure 4(b))

is essential for spectra 1–3 (figure 4(c)). It can be seen that these spectra Doppler

shifts do not accord the velocity in corresponding cut-off positions (see figure 4(d)).
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Figure 5. Signal spectrum evolution. (a) Assumed density profile. Horizontal axe is

equivalent to the major radius. Probing is performed from right-hand side. (b) Poloidal

velocity profile (solid line), cut-off positions (•) and velocity estimated using frequency

spectrum shift (◦). (c) Signal spectrum corresponding to the cut-off positions marked

on (b).

It is necessary to move cut-off deep inside the plasma (spectra 4, 5) to provide the

dominance of the region behind the velocity step point. Thus poor locality of Doppler

reflectometry associated with bend down density profile in this situation can obscure

the velocity distribution.

Diagnostics localization dependence on plasma density profile is also demonstrated

by the next example simulating a transport barrier. We consider plasma density

profile (figure 5(a)) bent down in plasma periphery and bent up in the core. The

poloidal velocity profile has high gradient in the “barrier” region (figure 5(b)). One can

see that up to cut-off position 3 frequency spectrum shift (see spectra 1–3, figure 5(c))

accords to negative poloidal rotation velocity corresponding to the plasma periphery.

But on crossing the twist point by the cut-off position the signal grows and the frequency

shift changes to that corresponding to the local value of the velocity in the cut-off region

(cf. spectra 4, 5, figure 5(c) and figure 5(d)). This illustrates the better locality of the

method when used on bent up density profile.

To illustrate antenna focusing influence we consider the density profile of DIII-D

tokamak plasma with internal transport barrier (figure 6(a)) [12]. Here we take into

account the distance between antenna and the plasma, which was assumed to be

equal 1 m, and suppose that the probing is performed with narrow antenna beam
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Figure 6. Antenna focusing influence. (a) DIII-D density profile [12]. (b) Turbulence

amplitude assumed. (c) Poloidal velocity profile (solid line), and velocity estimated

using Doppler reflectometry signal frequency spectrum shift: •—using antenna

focusing, ◦—without focusing.

(ρ ∼ 1 cm) to provide condition (12) to be satisfied. Besides that we take into account

the turbulence suppression in the barrier region (see figure 6(b)). Despite the fact that

density profile in the barrier region is favorable for the diagnostics, antenna focusing

makes the spectrum shift more adequate to the behavior of plasma velocity in the cut-off.

5. Discussion

First of all we discuss the frameworks of approximations used. In this paper we

consider Doppler reflectometry in slab plasma geometry. As it was mentioned in

section 1 this model is reliable for large vertically elongated plasma. The effects of

cylindricalness become important when the probing beam width in the cut-off vicinity

is comparable with the cut-off surface curvature radius which takes place in small

toroidal devices or in case of probing of plasma central regions. These cases of essentially

cylindrical plasma geometry were considered numerically in [13] and analytically (for

specific plasma density profiles) in [14]. In these papers rather obvious conclusion was

obtained that plasma poloidal curvature enhances the diagnostics sensitivity to the

fluctuations with high poloidal wavenumbers. Another cylindrical geometry effect was

investigated numerically in [15] where strong influence of the plasma cylindricalness on

the diagnostics locality was demonstrated.

Essential can be the plasma poloidal curvature influence on the focused antenna

beam. In the present paper it was neglected, which is correct, when the focus radial shift

due to refraction associated with the plasma curvature is less than radial fluctuation
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correlation length ℓcx. This criterion can be represented in form

2Λ0
xc

r0

< ℓcx

Here Λ0 is the ray trajectory length from the antenna to cut-off, which was defined above,

xc is the distance between the antenna and the cut-off and r0 is the plasma radius in

poloidal plane. Roughly this criterion can be approximated as x2
c/r0 . ℓcx. When it fails

to hold to provide the focusing to the cut-off the probing wavefront curvature radius

should be calculated taking into account plasma poloidal curvature. All the mentioned

effects will be taken into account in separate paper of the authors.

Additionally it should be noted that 2D plasma geometry effects like cylindricalness

are not a priory significant in reflectometry (see e.g. [9, 16, 17], where it was

demonstrated both analytically [9] and numerically [16, 17] that 2D theory predictions

for radial correlation reflectometry are similar to conclusions of simple 1D model).

The second essential assumption made in the paper is associated with linear

character of the scattering signal formation. According to [18] this approximation is

correct when following criterion is satisfied

δn2

n2
c

ω2xcℓcx

c2
ln

xc

ℓcx

≪ 1 (36)

Here δn is r.m.s amplitude of the turbulence and nc denotes the density in the cut-

off. It can be seen that (36) can be violated in case of high fluctuation amplitude or

long trajectory length. In this case probing wave multi-scattering should be taken into

account. This situation can be treated analytically by the procedure using in [18] and it

will be done in the paper by the authors which is now under preparation for submission.

For diagnostics results interpretation it is important to distinguish linear and

nonlinear situation. To do that experimentally one can use additional acquisition

antenna (antenna 2 in figure 1) which receives the wave reflected from the cut-

off. If the specular component persists in the frequency spectrum measured by this

additional antenna the distortions of the probing wave in propagation are weak and

we deal with linear situation of single-scattering. In the opposite case when the line

at probing frequency is lost in the broadened reflection spectrum these distortions

due to propagation in turbulent plasma lead to extinction of the specular component,

which indicates transition to nonlinear small-angle multi-scattering regime. This way of

experimental confirmation seems to be reliable but needs additional access to plasma. If

it is impossible some information can be obtained from the form of Doppler reflectometry

spectrum received by antenna 1 in figure 1. If the frequency spectrum width is consistent

with estimation made based on the antenna pattern width (δω ∼ 2
√

2v/ρ) one can

conclude that the signal most likely resulted from single-scattering.

The scattering efficiency introduced and analytically obtained (21), (22) in the

paper reveals main similarities and differences of conventional reflectometry and Doppler

technique. In the both methods scattering signal is proportional to reversed square of

probing wavenumber [9]. That provides the diagnostics with spatial localization, which

can be rather poor in case of unfavorable density profile.
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The back-scattering signal component formation is similar for tilted probing, which

is performed in Doppler technique and normal probing which is specific for conventional

method. In particular, in both cases the probing wave focusing to the cut-off, according

to (21), underlines the cut-off region contribution and should improve the diagnostics

localization. It is worth mentioning that utilization of non-slab probing wave fronts

have been already discussed in [3, 19, 20], however in these papers the front curvature

was chosen close to the cut off surface curvature in order to improve the Doppler

reflectometry wave number resolution [3, 20], or to reduce the 2D interference effects

in the signals reflected from different parts of corrugated cut off surface [19]. Finally it

should be noted that 2D-focusing onto the cut-off surface, which can be easily realized in

experiment, can provide even better localization than 1D-focusing only possible within

2D model considered in the present paper.

Essential are the peculiarities of FS efficiency (22). Both for Doppler and

conventional reflectometry the cut-off contribution to the FS component is received by

the most favorable part of the antenna diagram ky = −q/2. However the suppression of

the signal coming from the plasma volume in the case of conventional reflectometry takes

place only for fluctuations satisfying condition qρ ≫ 1, at which the cut off contribution

is suppressed as well. For longer poloidal scales q−1 ≥ ρ the suppression is not efficient

and additional localization is not possible. On contrary for Doppler reflectometry due

to the tilted probing the FS component of the signal, coming from the plasma volume

is suppressed providing the following condition is fulfilled

ρKΛ0

Λ0 −R ≫ 1

It can be easily achieved by large enough antenna tilt angle or beam width, or by the

focusing to the cut-off, thus making the FS contribution extremely localized to the

cut-off.

Finally we discuss the wavenumber resolution of the Doppler reflectometry. The

scattering efficiency obtained (21), (21) demonstrates that diagnostics possess practically

no radial wavenumber resolution due to the fact that scattering signal is an integral over

radial wavenumbers and small κ are pronounced with weight function 1/κ. Poloidal

wavenumber resolution can be easily estimated and is determined by antenna pattern

width. For BS contribution it can be represented as

δq ∼
√

2

ρ

FS poloidal wavenumber resolution can be
√

2 times worse.

6. Conclusion

In the present paper the Doppler reflectometry spatial and wavenumber resolution is

analyzed in the framework of the linear Born approximation in slab plasma model. The

results obtained provide realistic description of Doppler reflectometry experiment in

large elongated plasma at low level of density perturbation.
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Explicit expression for the backscattering spectrum is obtained in terms

of wavenumber and frequency spectra of turbulence assumed to be statistically

inhomogeneous in radial direction. The treatment is performed for arbitrary density

profile and antenna pattern taking into account diffraction effects. In agreement with [3]

it is demonstrated that the signal consists of contributions of back and forward scattering

in radial direction, which take place both before and after the reflection of the probing

wave in the turning point. Similar to the traditional fluctuation reflectometry [9]

the scattering efficiency for both back and forward scattering is shown to be inverse

proportional to the square of radial wavenumber of the probing wave at the fluctuation

location thus making the spatial resolution of diagnostics sensitive to the density profile.

It is shown that additional localization is provided in case of forward scattering in the

radial direction by the antenna diagram and in case of backscattering by the fact that

the turbulence spectrum is suppressed at high radial wavenumbers. The improvement

of the diagnostics locality by probing beam focusing onto the cut-off surface is proposed

described as well.

It is demonstrated that analytical expressions obtained can be easily used for

fast interpretation of Doppler reflectometry data in particular for estimation of this

diagnostics locality. They can as well serve for benchmarking and testing of full wave

numerical codes developed for interpretation of conventional fluctuation reflectometry

data [13, 14, 15, 16, 17, 21], should the authors consider the application of these codes

to the field of Doppler reflectometry.

The magnetic surfaces curvature, if important, can be accounted for within the same

theoretical approach applied to cylindrical plasma geometry. The nonlinear effects in

Doppler reflectometry spectra formation becoming significant in large devices and at

high density perturbation level can be described within WKB approximation in the way

similar to one used in [18].
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Appendix A.

Here we estimate additional contribution to the forward scattering efficiency (22), which

can be provided by singularities of the term |∆(κ, q)|2 / |κ| in (17). This term possesses
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four branching points which in ray tracing case are determined by equations

κ1−4 = ± q2

Λ0 −R

[

cL∗Λ∗

ωk [x∗ (κ1−4)]

]1/2 (

1 ± iωρ2

2c(Λ0 −R)

)

where L∗, Λ∗ are taken in the scattering point x∗ (κ1−4) corresponding to κ1−4. The

branching point contribution is especially large in the cut-off vicinity where k2(x) =

ω2/c2(xc − x)/L∗ and

Λ(x) =
2cL∗

ω
k(x)

The real part of right branching points κb ≡ ℜκ1,4 in this case coincides with the

stationary phase point κ
∗ ≡ κ

∗
m,−m which gives the main contribution to the FS

efficiency. The analysis in this case becomes complicated and inaccurate in WKB

approximation. More rigorous approach to this case will be developed below in section 3

taking into account that close to the cut-off, where density profile can be supposed linear,

accurate solutions of equation (1) are available.

In general case these branching points are situated far from the stationary point,

so that their contribution to the integral (17) is a quickly oscillating function of x and

q and therefore is negligible. This is easy to show already in the case of profile slightly

different from linear when branching point κb is not so far from the stationary one to

allow us to decompose

x∗(κb) ≈ a + x′

∗(κb − κ
∗)

To estimate the contribution of branching point we perform the integration over

χ = κ − κb within vicinity of the branching point taking into account that

|∆(κ, q)|2
|κ| ≈ ω

c(Λ0 −R)

[

χ2 +

(

ωρ2
κb

2c(Λ0 −R)

)2
]−1/2

The phase in (17) takes the form

i[x − x∗(κ, q)]2

2x′
∗κ

= − iωk2(x)ℓ6
∗

c(Λ0 −R)

[

1 −
(

ωΛ∗

2cL∗k(x)

)2
]

q2 − 2ik2ℓ2
∗
χ

This representation allows us to perform the integration over χ and estimate the integral

over q in (17). The ratio between the contributions of the branching and stationary

points takes the form

Sb(x)

SFS(x)
∼ ρ

√

ω

c(Λ0 −R)

∣

∣

∣

∣

∣

1 −
(

ωΛ∗

2cL∗k(x)

)2
∣

∣

∣

∣

∣

−1/2

The factor on right-hand side of this equation can be estimated as
[

1 −
(

ωΛ∗

2cL∗k(x)

)2
]−1/2

∼ ω

ck(x)

√

12

α

where α = |L2
∗
/ne(xc) · d2ne(x)/dx2||x=xc

characterizes the nonlinearity of the density

profile. This leads to the condition (24), when contribution in question can be neglected.
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