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Laboratoire de Physique de la Matière Condensée

UMR 7125 CNRS and FR 2438 ”Matière et Systèmes Complexes”
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Abstract

We study the friction between a flat solid surface where polymer
chains have been end-grafted and a cross-linked elastomer at low slid-
ing velocity. The contribution of isolated grafted chains’ penetration
in the sliding elastomer has been early identified as a weakly veloc-
ity dependent pull-out force. Recent experiments have shown that
the interactions between the grafted chains at high grafting density
modify the friction force by grafted chain. We develop here a sim-
ple model that takes into account those interactions and gives a limit
grafting density σl beyond which the friction no longer increases with
the grafting density, in good agreement with the experimental data.

1 Introduction

In recent years, polymer chains grafted to a surface or an interface have
been the subject of many theoretical and experimental studies because of
their practical importance[1]. In particular, the interface between a solid
surface and a crosslinked elastomer network can be strengthened by the ad-
dition of chains that are tethered by one end to the solid surface. As a crack
grows along the interface, these coupling chains are progressively pulled-
out from the elastomer leading to significant energy dissipation[2][3]. The
presence of end-tethered chains plays also an important role in friction[4,

1



Figure 1: Grafted chain that has partially entered the elastomer (λ0 is the
distance between cross-links, λ the slab width, and d is the stretching length
of the neq confined monomers).

2, 5, 3]. Very recently, Bureau and Léger [9] studied the friction of a
poly(dimethylsiloxane) (PDMS) elastomer network sliding, at low velocity,
on a substrate on which PDMS chains are end-tethered and clearly evidenced
the contribution to friction of the pull-out mechanism of chain-ends that pen-
etrate into the network. This study, while confirming semi-quantitatively
the picture of arm retraction relaxation of the grafted chains proposed by
Rubinstein et al. [4][5], also reveals the unexpected feature that the friction
stress, after increasing with the grafting density of tethered chains, reaches
a plateau. In this letter we proposed a simple model, based on the role of
cooperative effects, that is able to explain this result. In the whole paper we
will consider a cross-linked elastomer of reticulation number P (the mesh-

size is λ0 = aP
1

2 , where a is the monomer size), in contact with a flat neutral
surface with N-mer grafted chains (N > P ) of the same chemical constitu-
tion. The starting point of our study is the description of the penetration
of a single grafted chain in a static rubber, made by O’Connor and McLeish
[6]. They assume that the chains can be confined in a slab between the
elastomer and the flat surface without entangling with the elastomer (see
fig. 1). This slab should correspond to the first mesh of the elastomer and
its width λ be on the order of λ0. They considered the case where the end
of a grafted chain penetrates the elastomer at a distance d from the grafting
point. This leads to a partial penetration on only m monomers, while the
n remaining monomers (n = N − m) are confined in the slab.

As the swelling energy of the elastomer can easily be shown to be neg-
ligible for a single chain (and even for higher grafting densities [7], see last
section), the m monomers ’feel’ like in a melt of longer chains, and the free
energy of the chain only contains the stretching and the confinement energies
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of the n monomers [8] :

F (n)

kT
≃

3

2

d2

a2n
+

3

2

a2n

λ2
(1)

when d > λ. Minimizing this expression with respect to n, we get the
equilibrium value of n: neq = λd/a2 if d is inferior to dmax = a2N/λ, and
the minimum free energy Fin/kT = 3d/λ. The neq monomers constitute a
stretched string of blobs of size λ (see fig. 1 and 2a), which exerts a strong
horizontal force f0 = 3kT/λ on the elastomer. If d < λ, the stretching force
is not horizontal, and its projection on the horizontal axis is f ≃ 3kTd/λ2.
This partial penetration state is metastable as long as d ≥ 0, but its life time
is very long, for the chain has to go through a high energy state in order to
reach another state of smaller d. In this hight energy state the whole chain
is confined in the slab, it forms a string of flat blobs of size l = a2N/d if

d > aN
1

2 , and a blob of size aN
1

2 otherwise (see fig. 2b), and the free energy
is Fout = F (N). Then, the time it takes for the chains to relax to another
state is proportional to exp[(Fout − Fin)/kT ].

When the elastomer slides on the grafted surface, the chain can not relax
to the state where d = 0. The competition between the relaxation and the
pull-out due to the elastomer sliding is thus key to the understanding of how
a grafted chain can enhance friction. In the next section we will calculate
the relaxation time for a given d. Then, we will see how a sliding velocity
v imposes a mean extension d and a pull-out friction force f . In another
sections we will consider interactions between several grafted chains, and
show how it can modify the average friction force by grafted chain. Lastly,
we will compare our results with recent experiments proceeded by Bureau
and Léger [9].

2 Relaxation time

When the chain partially penetrates the elastomer and has n monomers in
the slab, the difference between its free energy and the minimum free energy
is (F (n) − Fin)/kT = 3a2(n − neq)

2/(2nλ2). Then, setting l = a2n/λ, we
can consider the chain free end as a random walker diffusing in the potential
U(l) = 3(l − d)2/(2lλ) (0 < l < dmax) with a diffusion coefficient Deff (l).
The relaxation time we are looking for is the mean first passage time at
l = dmax (that is when the chain retracts entirely in the slab, n = N),
from the initial position l = dmax −λ0 (that is the chain just penetrates the
elastomer on a mesh size, n = N −P ). This mean first passage time τin can
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be shown [10][11] to be:

τin(d) =

∫ dmax

dmax−λ0

dx exp [U(x)]

∫ x

0
dx′ e−U(x′)

Deff (x′)
(2)

The inner integral is dominated by the region near x′ = d and can
be approximated by (Deff (d)(2U”(d)/π)

1

2 )−1, where U”(d) = 3/λd, and
Deff (d) = 2a2/τ0N if λ = λ0/2, which we will assume here-after (τ0 is
the monomer relaxation time). The outer integral can be approximated by
λ0 exp[U(dmax)], as (U ′(dmax))−1 > λ0. Then, the mean relaxation time at
a given d is:

τin(d) ≃



















τ0N
λ2

a2

√

π
6 exp

[

3
2

(dmax−λ)2

a2N

]

, if d < λ

τ0N
λ2

a2

√

πd
6λ

exp
[

3
2

(dmax−d)2

a2N

]

, if λ < d < dmax − 1
2

√

π
6 aN

1

2

τ0N
λ
a2

(

1
2

√

π
6 aN

1

2 + dmax − d
)

, if dmax − 1
2

√

π
6aN

1

2 < d < dmax

(3)
Notice that τin does not vanish at d = dmax, as the chain end can still ex-

plore the inside of the elastomer on the curvilinear distance
√

π/6(aN
1

2 /2).
This calculation of the relaxation time notably differs from the one of Ru-
binstein et al. [4][5], and the result is smaller by a factor (P/N)

1

2 to P/N

when d < dmax −
√

π/6(aN
1

2 /2). Another interesting time is the mean first
passage time at n = N−P from the initial position n = N , which is the time
τout the chain spends entirely in the slab before to hop inside the elastomer.
It corresponds to the diffusion time of the chain free end through the first
mesh of the elastomer: τout = τ0P

2. During this short time, the free end is
driven back toward the grafting point as a result of the elastic shrink of the
chain on the mean distance 6dτout/τ0N

2, but it also diffuses horizontally on
the distance λ0 which is much bigger than 6dτout/τ0N

2. Therefore, diffusion
dominates.

3 Sliding friction

If the elastomer slides on the grafted surface at the velocity v, a fully pen-
etrating chain would be pulled-out of the elastomer and stretched in the
sliding direction. But if vτin < dmax, the chain will spontaneously re-
lax and hop out of the elastomer before its complete stretching. Then,
a permanent regime will settle, corresponding to cycles of hopping in and
out, fixing an average value for d. Every hopping out, the free end of the
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Figure 2: a) Top view of a grafted chain that has partially entered the
elastomer. b) The same chain confined in the slab when relaxing from the
stretched conformation a).

chain diffuses in the slab on the distance λ0, and every hopping in this
free end is shifted of vτin(d) in the sliding direction. Then, the smallest
possible value dmin for d is given by the relation vτin(dmin) = λ0. All
the values between dmin and dmax can be explored by diffusion, but as
τin(d) is a strongly decreasing function of d, the time averaged value of
d is approximately dmin − λ0(vτ ′

in(dmin))−1, with the standard deviation
δd = −λ0(vτ ′

in(dmin))−1. The value of δd ≃ a2N/3(dmax −dmin) varies from

λ0/6 when dmin = λ0, to aN
1

2 /
√

3 when dmin = dmax − aN
1

2 /
√

3, and is
thus always much smaller than dmin. Then, we can approximate the average
value of d by dmin, which gives :

vτin(d) ≃ λ0 (4)

Equation 4 has been already proposed by Rubinstein et al. [4], but the
prediction for τin(d) differs from ours (see eq. 3). Now that we get d as a
function of v, we can express the force f applied by a grafted chain on the
elastomer for different velocities. Four velocity regimes can be brought out
of this result :

If v < v1 ≃ λ0e
− 3

2

a
2

N

λ2 /(τ0NP ), then d < λ, the chain is almost fully
relaxed, and f ≃ f0

v
v1

. For we consider cases where a2N ≫ λ2, v1 is
extremely small.

If v1 < v < v2 ≃ a/(τ0N
3

2 ), then the chain is partially stretched, and
as λ < d < dmax, f ≃ f0. In addition to this stretching force we shall
take into account the Rouse friction of the elastomer on the whole chain 1,

1Even if the the part of the chain that is in the elastomer is relaxed, it is pulled-out at
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which is approximately kTτ0Nv/a2, much smaller than f0 in this regime and

the latter one. We note v′1 ≃ v2

√

aN
1

2 /λ exp[−3(dmax − aN
1

2 )2/2a2N ] the

velocity for which d = aN
1

2 . Below v′1 the chain relaxes forming a flat blob

of size aN
1

2 . The velocities v1 and v′1 are extremely small. When v < v2/2,

as d < dmax − 1
2

√

π
6 aN

1

2 , d is given by the relation

v

v2
≃

1

2

√

dmax

d
e
− 3

2

a
2

N

λ2

(

1− d

dmax

)

2

(5)

If v2 < v < v3 = a/(τ0P
3

2 ), then the chain is pulled-out faster than it
can relax, d = dmax, and the friction force on the chain is f0 + kTτ0Nv/a2,
where kTτ0Nv/a2 is no longer much smaller than f0.

At last, if v3 < v, the Rouse friction dominates, and d > dmax.
These regimes have been depicted by Rubinstein et al., but the expres-

sions of v1 and v2 differs, mainly because their estimation of τin differs from
ours. Notice that the friction of the elastomer on the substrate is to be
added to the friction of the chains, and that it could be partially screened
out by the grafted layer [2].

At this point it is important to notice that nothing prevents the chain
orientation to fluctuate around the sliding direction2. If the angle between
the chain orientation and v is θ, one should replace v by vcosθ in equation
4, which really changes d only for angles close to π/2 or −π/2. These
fluctuations lower the effective pull-out friction force by grafted chains of a
factor 2/π. Considering more than one grafted chain, one can foresee that a
more important consequence of these fluctuations is that it allows the chains
to entangle one with the other.

4 Cooperative effects at higher grafting densities

If two chains are grafted at a distance D smaller than d, they can cross, and
possibly entangle one with the other. Two situations can be distinguished.
First, if the distance D⊥ between the two grafting points perpendicularly to
v (see fig. 3a) is bigger than the size l of the flat blobs, the entanglement can
only form at the end of one of the chains, and will untie within approximately
(l/λ0)

4 hopping in and out cycles (the time for the end of the chain to diffuse
on the size l), whereas it took (D⊥/λ0)

4 cycles to form. Thus, that kind

the velocity vλ/λ0 in average.
2This was not possible in the situation Rubinstein et al. studied, as the chain was

dragged inside the elastomer.
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Figure 3: Entanglement process between two grafted chains: a) The free
end of the relaxed chain B passes over and underneath the stretched part
of the chain A. b) The chain B recovers its plume conformation.

of entanglement is fleeting and irrelevant. If D⊥ is smaller than l, then an
entanglement can form relatively quickly and let the chains recover the same
orientation as v. Then, the stretching forces of the two chains equilibrate,
and the entanglement slides toward the middle of the chains (see fig. 3b).
The effective friction force applied on the elastomer by those two chains is
then fA + fB = f0(cosθA + cosθB) < 2f0. This entanglement can untie
only if one of the chains free end reaches it. But as d can not be smaller
than dmin, this kind of entanglement has a quasi-infinite life time if the
distance D‖ between the two grafting points parallel to v is smaller than
dmin. Therefore, we can assume that a chain entangle with all the chains
that are grafted within the area 2l × dmin ≃ 2ld = 2a2N if v′1 < v < v2.
Then, if σ is the grafting density scaled by a2, we can roughly evaluate the
average value of cosθ as

< cosθ >≃
d

2σN
√

(

d
2σN

)2
+
(

l
2

)2
=

1
√

1 + σ2
(

aN
d

)4
(6)

This gives the pull-out friction by surface unit as a function of σ :

Σ ≃
σf0

a2

√

1 + σ2
(

aN
d

)4
≃

{

f0
σ
a2 , if σ <

(

d
aN

)2

f0
d2

a4N2 , if σ >
(

d
aN

)2 (7)

So, this rough model exhibit an interesting feature of elastomer-grafted
surface friction: at low grafting densities (σ < σl ≃ (d/aN)2) the friction
force by surface unit increases linearly with σ, there is no interaction between
grafted chains. At higher grafting densities (σ > σl) the friction force by
surface unit saturates at the value Σl = f0d/aN (we don’t consider here the
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friction of the elastomer on the substrate). The roughness of our evaluation
of < cosθ > actually only allows us to give an evaluation of σl, give or take a
multiplicative constant. Nevertheless, σl ≃ (d/aN)2 = a2/l2 is the grafting
density beyond which the mean distance between grafted chains is smaller
than l, and we can understand that entanglements produce an important
orientation disorder beyond this limit.

The general tendencies for σl correspond to the four velocity regimes
we developed in the previous section. If v < v′1, then l = aN

1

2 and σl =
σmin ≃ 1/N , whereas if v2 < v < v3, then l = λ and σl = σmax ≃ 4/P .
When v > v3, the Rouse friction dominates and should not be sensitive to
entanglements. Using equation 5 we can establish the relation between v
and σl between v′1 and v2/2 :

v

v2
≃

1

2

(

σmax

σl

)
1

4

e
− 3

2

a
2

N

λ2

(

1−
(

σ
l

σmax

) 1
2

)2

(8)

The ratio X2 = a2N/λ2 ∼ N/P is an important parameter characteriz-
ing the system; it gives the range of saturation grafting densities σmax/σmin =
X2. The parameter X also drives the way σl evolves within (σmin, σmax)
while v varies from v′1 to v2 (see fig. 4). Indeed, the range of velocities for
which σl is bigger than σmax/2 is given by v(1/2)/v2 ≃ exp

[

−X2/8
]

, which
represents several decades when X ≫ 1 (see fig. 4a). Another way to see
the role played here by X is to write the saturation grafting density corre-
sponding to v = v2/10: σl(1/10)/σmax ≃ (1 − 1/X)2 (all logarithmic factor

being ignored, see fig. 4b), which correspond to d ≃ dmax − N
1

2 .
It is interesting to note that σmax and Σmax are independent of the

chains length N ; Σmax being the maximum friction enhancement one can
obtain grafting polymer chains on the flat surface, and σmax the minimum
grafting density one should use in order to reach Σmax. The grafted chains
length is though an important parameter as it fixes the velocity range over
which σl ∼ σmax. One should use long chains (a2N ≫ λ2) in order to have
Σl close to Σmax at very low velocities. Nevertheless, the maximum grafting
density one can experimentally reach is 1/N

1

2 , and one can show that beyond

σ∗ ≃ P
1

10 N− 3

5 the grafted layer no longer interdigitates with the elastomer
[7]; thus the maximum chain length one should use is N ≃ P

11

6 .
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Figure 4: Characteristic plots of the evolution of σl/σmax with v/v2 (X2 =
a2N/λ2).

5 Results and experiment comparison

Comparison with experiments is made harder by the fact that λ is an un-
known parameter assumed to be approximately λ0/2. However, it can give
insights into the validity of the model. Using a PDMS elastomer with
reticulation number P = 100 and a grafted surface of N = 1540[9] and
380(unpublished studies) PDMS chains, Bureau et al. systematically stud-
ied Σ = f(σ) for sliding velocities from 0.3 to 250µm.s−1, each time observ-
ing a friction force by grafted chain on the order of kT/λ0 at low grafting
densities, and a saturation of the friction at high grafting densities [9].

For N = 1540, they studied saturation at v = 0.3, 10, and 100µm.s−1,
while v2 ≃ 300µm.s−1. At v = 0.3µm.s−1, σl ≃ 0.025nm−2, at v =
10µm.s−1, σl ≃ 0.035nm−2, and at 100µm.s−1 the friction seems to saturate
around 0.04nm−2. For N = 380, they studied saturation at v = 10, 100, and
250µm.s−1, while v2 ≃ 2000µm.s−1. At v = 10µm.s−1, σl ≃ 0.015nm−2, at
v = 100µm.s−1, σl ≃ 0.025nm−2, and at 250µm.s−1, the friction seems to
saturate at σl ≃ 0.035nm−2.

As 1/a2P = 0.04nm−2, σmax ≃ 0.08nm−2 would fit with λ ≃ 0.7λ0.
Then, for N = 1540, X2 = a2N/λ2 ≃ 30. For the three velocities studied
experimentally, expression 8 gives σl(0.3) ≃ 0.03nm−2, σl(10) ≃ 0.04nm−2,
and σl(100) ≃ 0.055nm−2. For N = 380, X2 ≃ 8, then, expression 8 gives
σl(10) ≃ 0.01nm−2, σl(100) ≃ 0.02nm−2, and σl(250) ≃ 0.03nm−2. Thus,
the model reasonably captures those experimental data, even if a slight
misevaluation of λ would induce consequent errors on X2 and σl(v).

Although more data are needed to confirm the model, we think that it
is the best candidate explaining the saturation of the friction : The first
other possibility comes from the fact that increasing the grafting density
can induce an increase of λ, and a decrease of f0 ≃ kT/λ. Indeed, we can

9



estimate that λ ≃ λ0/2 + σneqa. Then, σf0 ≃ σkT/(λ0/2 + σneqa), which

would give a saturation grafting density equal to P
1

2 /neq. This overestimates
σl, and would give σl as an decreasing function of v and N , which is not the
case experimentally. The second possibility comes from the fact that when
σ > σ∗ ≃ P

1

10 N− 3

5 , the grafted chains no longer penetrate the elastomer
because the swelling of the elastomer would not be negligible any more. But,
again, this over estimate σl, and would give σl as an decreasing function of
N .

6 Conclusion

We have described here a model for the sliding friction of an elastomer on a
flat grafted surface that allows us to understand the participation of grafted
chains on friction at low and high grafting densities. This model describes
the pull out process of the grafted chains and the formation of entanglements
between grafted chains at high grafting densities. The general feature that
follows from this is a linear relation between the pull out friction force by
surface unit and the surface grafting density when σ is low, and a saturation
of the pull out friction force by surface unit beyond a limit grafting density
σl, which is an increasing function of v and N . The predictions for σl are in
good agreement with experimental results of Bureau et al. which have been
mainly conducted in the range v < v2. For v2 < v < v3, our model predicts
that σl simply varies like 1/P ; it would be very interesting to experimentally
check this prediction in the future.

We thanks Lionel Bureau and Liliane Léger for very interesting discus-
sions and for letting to our knowledge unpublished results.
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