Hurwitz action on tuples of Euclidean reflections

Jean Michel

To cite this version:

Jean Michel. Hurwitz action on tuples of Euclidean reflections. 2004. hal-00003068

HAL Id: hal-00003068
https://hal.science/hal-00003068
Preprint submitted on 13 Oct 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HURWITZ ACTION ON TUPLES OF EUCLIDEAN REFLECTIONS

J. MICHEL

This note was prompted by the reading of [4], which purports to show that if an n-tuple of Euclidean reflections has a finite orbit under the Hurwitz action of the braid group, then the generated group is finite. I noticed that the proof given is fatally flawed; however, using the argument of Vinberg given in [3], I found a short (hopefully correct) proof which at the same time considerably simplifies the computational argument given in [4]. This is what I expound below. I first recall all the necessary notation and assumptions, expounding some facts in slightly more generality than necessary.

0.1. Hurwitz action.

Definition. Given a group G, we call Hurwitz action the action of the n-strand braid group B_n on G^n given by

$$\sigma_i(s_1, \ldots, s_n) = (s_1, \ldots, s_{i-1}, s_i s_{i+1}^{-1}, s_i, s_{i+2}, \ldots, s_n).$$

The inverse is given by $\sigma_i^{-1}(s_1, \ldots, s_n) = (s_1, \ldots, s_{i-1}, s_i^{-1} s_{i+1}, s_i, s_{i+2}, \ldots, s_n)$. Here $a b$ is $b^{-1} a b$ and $b a$ is $b a b^{-1}$.

This action preserves the product of the n-tuple. We need to repeat some remarks in [3]. By decreasing induction on i one sees that $\sigma_1 \ldots \sigma_n(s_1, \ldots, s_n) = (s_1, \ldots, s_{i-1}, s_n, s_i^n, \ldots, s_{n-1}^n)$. In particular if $\gamma = \sigma_1 \ldots \sigma_{n-1}$ we get $\gamma(s_1, \ldots, s_n) = (s_n, s_1, \ldots, s_{n-1})^{s_n}$ whence, if $c = s_1 \ldots s_n$, we get that $\gamma^n(s_1, \ldots, s_n) = (s_1, \ldots, s_n)^c$.

We also deduce that given any subsequence (i_1, \ldots, i_k) of $(1, \ldots, n)$, there exists an element of the Hurwitz orbit of (s_1, \ldots, s_n) which begins by $(s_{i_1}, \ldots, s_{i_k})$.

Assume now that the Hurwitz orbit of (s_1, \ldots, s_n) is finite. Then some power of γ fixes (s_1, \ldots, s_n), thus some power of c is central in the subgroup generated by the s_i. Similarly, by looking at the action of $\sigma_1 \ldots \sigma_{n-1}$ on an element of the orbit beginning by $(s_{i_1}, \ldots, s_{i_k})$ we get that for any subsequence (i_1, \ldots, i_k) of $(1, \ldots, n)$ there exists a power of $s_{i_1} \ldots s_{i_k}$ central in the subgroup generated by $(s_{i_1}, \ldots, s_{i_k})$.

0.2. Reflections. Let V be a vector space on some subfield K of \mathbb{C}. We call complex reflection a finite order element $s \in \text{GL}(V)$ whose fixed points are a hyperplane. If ζ (a root of unity) is the unique non-trivial eigenvalue of s, the action of s can be written $s(x) = x - \tilde{r}(x)r$ where $r \in V$ and \tilde{r} is an element of the dual of V satisfying

$$(a^b)^{-1} = a^{-1} b a^{-1} b^{-1} a b.$$
$\hat{r}(r) = 1 - \zeta$. These elements are unique up to multiplying r by a scalar and \hat{r} by the inverse scalar. We say that r (resp. \hat{r}) is a root (resp. coroot) associated to s.

0.3. Cartan Matrix. If (s_1, \ldots, s_n) is a tuple of complex reflections and if r_i, \hat{r}_i are corresponding roots and coroots, we call Cartan matrix the matrix $C = \{c_i(r_j)\}_{i,j}$. This matrix is unique up to conjugating by a diagonal matrix. Conversely, a class modulo the action of diagonal matrices of Cartan matrices is an invariant of the $\text{GL}(V)$-conjugacy class of the tuple. It determines this class if it is invertible and $n = \dim V$. Indeed, this implies that the r_i form a basis of V; and in this basis the matrix s_i differs from the identity matrix only on the i-th line, where the opposed of the i-th line of C has been added; thus C determines the s_i.

If C can be chosen Hermitian (resp. symmetric), such a choice is then unique up to conjugating by a diagonal matrix of norm 1 elements of K (resp. of signs).

If C is Hermitian (which implies that the s_i are of order 2), then the sesquilinear form given by \hat{C} is invariant by the s_i (if the s_i are not of order 2, but the matrix obtained by replacing all elements on the diagonal of \hat{C} by 2's is Hermitian, then the latter matrix defines a sesquilinear form invariant by the s_i).

0.4. Coxeter element. We keep the notation as above and we assume that the r_i form a basis of V. We recall a result of [2] on the “Coxeter” element $c = s_1 \ldots s_2$. If we write $C = U + V$ where U is upper triangular unipotent and where V is lower triangular (with diagonal terms $-\zeta_i$, thus V is also unipotent when s_i are of order 2), then the matrix of c in the r_i basis is $-U^{-1}V$ (to see this write it as $U s_1 \ldots s_n = -V$ and look at partial products in the left-hand side starting from the left). As U is of determinant 1, we deduce that $\chi(c) = \det(xI + U^{-1}V) = \det(xU + V)$ where $\chi(c)$ denotes the characteristic polynomial; in particular $\det(C) = \chi(c)_{|x=1}$; one also gets that the fix-point set of c is the kernel of C, equal to the intersection of the reflecting hyperplanes.

0.5. The main theorem. The next theorem implies the statement given in [4]. (1.1] considers Euclidean reflections with the r_i linearly independent; if the r_i are chosen of the same length this implies that C is symmetric, and as C is then the Gram matrix of the r_i, it is invertible:

Theorem. Let (s_1, \ldots, s_n) be a tuple of reflections in $\text{GL}(\mathbb{R}^n)$ which have an associated Cartan matrix symmetric and invertible. Assume in addition that the Hurwitz orbit of the tuple is finite. Then the group generated by the s_i is finite.

Proof. In the next paragraph, we just need that (s_1, \ldots, s_n) is a tuple of complex reflections with a finite Hurwitz orbit and with the r_i a basis of V.

A straightforward computation shows that an element of $GL(V)$ commutes to the s_i if and only if it acts as a scalar on the subspaces generated by $\{r_i\}_{i \in I}$ where I is a block of C (i.e., a connected component of the graph with vertices $\{1, \ldots, n\}$ and edges (i,j) for each pair such that either $C_{i,j}$ or $C_{j,i}$ is not zero). The finiteness of the Hurwitz orbit implies that for any subsequence (i_1, \ldots, i_k) of $(1, \ldots, n)$, there exists a power of $s_{i_1} \ldots s_{i_k}$ which commutes to s_{i_1}, \ldots, s_{i_k}. This power acts thus as a scalar on each subspace generated by the r_{i_j} in a block of the submatrix of C determined by (i_1, \ldots, i_k). As the determinant of each s_{i_j} on this subspace is a root of unity, the scalar must be a root of unity. Thus, the restriction of each $s_{i_1} \ldots s_{i_k}$ to the subspace $< r_{i_1}, \ldots, r_{i_k} >$ generated by the r_{i_j} is of finite order.
We use from now on all the assumptions of the theorem. Thus the \(s_i \) are order 2 elements of \(O(C) \), the orthogonal group of the quadratic form defined by \(C \).

Also, \(\chi(c) \) is a polynomial with real coefficients. As \(c \) is of finite order, any real root of \(\chi(c) \) is 1 or \(-1\). This implies that \(\chi(c) \big|_{x=1} \) is a nonnegative real number, and thus \(\det C \) also. The same holds for any principal minor of \(C \), since such a minor is \(\chi(c') \big|_{x=1} \) where \(c' \) is the restriction of some \(s_{i_1} \ldots s_{i_k} \) to \(< r_{i_1}, \ldots, r_{i_k} > \).

The quadratic form defined by \(C \) is thus positive, and as \(\det C \neq 0 \) it is positive definite (cf. [1, §7, exercice 2]).

We now digress about the Cartan matrix of two reflections \(s_1 \) et \(s_2 \). Such a matrix is of the form \(\begin{pmatrix} 2 & a \\ b & 2 \end{pmatrix} \). If \(a = 0 \) and \(b \neq 0 \) or \(a \neq 0 \) and \(b = 0 \) then \(s_1s_2 \) is of infinite order. Otherwise, the number \(ab \) is a complete invariant of the conjugacy class of \((s_1, s_2) \) restricted to \(< r_1, r_2 > \), and \(s_1s_2 \) restricted to this subspace is of finite order \(m \) if and only if there exists \(k \) prime to \(m \) such that \(ab = 4 \cos^2 k\pi/m \).

Since \(C \) is symmetric and since the restriction of \(s_is_j \) to \(< r_i, r_j > \) is of finite order, there exists prime integer pairs \((k_{i,j}, m_{i,j}) \) such that \(C_{i,j} = \pm 2 \cos k_{i,j} \pi/m_{i,j} \). If \(K \) is the cyclotomic subfield containing the \(\text{lcm}(2m_{i,j}) \)-th roots of unity, and if \(O \) is the ring of integers of \(K \), we get that all coefficients of \(C \) lie in \(O \). It follows, if \(G \) is the group generated by the \(s_i \), that in the \(r_i \) basis we have \(G \subset \text{GL}(O^n) \).

We now apply Vinberg’s argument as in [3, 1.4.2]. Let \(\sigma \in \text{Gal}(K/Q) \). Then \(\sigma(C) \) is again positive definite: all arguments used to prove that \(C \) is positive definite still apply for \(\sigma(C) \): it is real, symmetric, invertible and the Hurwitz orbit of \((\sigma(s_1), \ldots, \sigma(s_n)) \) is still finite. Since \(G \subset O(C) \), which is compact, the entries of the elements of \(G \) in the \(r_i \) basis are of bounded norm. Since \(O(\sigma(C)) \) is also compact for any \(\sigma \in \text{Gal}(K/Q) \), we get that entries of elements of \(G \) are elements of \(O \) all of whose complex conjugates have a bounded norm. There is a finite number of such elements, so \(G \) is finite. \(\square \)

References