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A duality between g-multiplicities in tensor products and
g-multiplicities of weights for the root systems B, C or D

Cédric Lecouvey
lecouvey@math.unicaen.fr

Abstract

Starting from Jacobi-Trudi’s type determinental expressions for the Schur functions of types
B,C and D, we define a natural g-analogue of the multiplicity [V/(\) : M(u)] when M(u) is a
tensor product of row or column shaped modules defined by . We prove that these g-multiplicities
are equal to certain Kostka-Foulkes polynomials related to the root systems C' or D. Finally we
express the corresponding multiplicities in terms of Kostka numbers

1 Introduction

Given two partitions A and p of length n, the Kostka number K is equal to the dimension of
the weight space p in the finite dimensional irreducible sl - module V(M) of highest weight X. The
Schur duality is a classical result in representation theory establishing that K ;‘,Z is also equal to the
multiplicity of V(\) in the tensor products

V(,ulAl) (ORI V(,unAl) and V(Aull) (ORI V(Augn)

where p/ = (u}, ..., ul,) is the conjugate partltlon of  and the A;’s i = 1,...,n—1 are the fundamental
weights of sl 1. Another way to define K is to use the Jacobi-Trudi identity which gives a determi-
nantal expression of the Schur function s, = char(V(u)) in terms of the characters hy = char(V (kA1))
of the k-th symmetric power representation. This formula can be rewritten

Sp = H (1= Rij)hy (1)
1<i<j<n

where h,, = hy, ----h,, and the R;; are the raising operators (see B.9). Then one can prove that it
makes sense to write

hy = H (1= Rij)'su (2)

1<i<j<n
which gives the decomposition of h, on the basis of Schur functions. From this decomposition we
derive the following expression for K A

K = Z (=) P (a(A+p) = (1 + p)) (3)

O'ESn

where S,, is the symmetric group of order n and P4~ the ordinary Kostant’s partition function defined

from the equality:
An
[ - S

« positive root



with  running on the set of nonnegative integral combinations of positive roots of si,,.
There exists a g-analogue K fz(q) of K ;\42 obtained by replacing the ordinary Kostant’s partition

function P4» by its g-analogue 77&4" satisfying

I e = P

1 (1 — ga>
o positive root

So we have

Kn(a) = Y (~D)'OP(a(A+p) = (n+p)) (4)
o€Sn

which is a polynomial in ¢ with nonnegative integer coefficients [§], [B]. In [[I]], Nakayashiki and
Yamada have shown that K ;\4 Z(q) can also be computed from the combinatorial R matrix corresponding

to Kashiwara’s crystals associated to some Uq(s/l\n)—modules.

For g = 802,11, SPan OF 802, there also exist expressions similar to (B]) for the multiplicities K f’u
of the weight p in the finite dimensional irreducible module V(A) but a so simple duality as for si,
does not exist although it is possible to obtain certain duality results between multiplicities of weights
and tensor product multiplicities of representations by using duals pairs of algebraic groups ([{]).
This implies that the quantifications of weight multiplicities and tensor product multiplicities can
not coincide for the root systems B,,C, and D,,. The Kostka-Foulkes polynomials K i M(q) are the
g-analogues of K iu defined as in (f]) by quantifying the partition function corresponding to the root
system associated to g (see R.9). In [[J], Hatayama, Kuniba, Okado and Takagi have introduced for
type C, a quantification sz(q) of the multiplicity of V(A) in the tensor product

W(piA) @ -+ - @ W (unAy)
where for any i =1, ...,n,
W(pil1) = V(i) @ V((1i — 2)A1) & - - - @ V((nimod2)Ay).

This quantification is based on the determination of the combinatorial R matrix of some U, é (g)-crystals
in the spirit of [[]. Note that there also exist g-multiplicities for the spp-module V()) in a tensor
product

V(A1)®k ® V(A2)®l

where k, [ are positive integers obtained by Yamada [[[7).
In this paper we first use Jacobi-Trudi’s type determinantal expressions for the Schur functions
associated to g to introduce g-analogues of the multiplicity of V()) in the tensor products

() £ B(1) = V(uiA) - & V(ah), H) = W(iAr) - & W (pinhs)
(i) o) = V(M) ©- - @ V(A ), €(n) = W(Ay) @ & W(A,, ) with n > ||

where
{ Wpih1) = V(pid1) @ V(i — 2)A1) @ - - - @ V((nimod2) Ay )
W(AR) =V(Ap) ©V(Ap—2) & & V(Akmod2)
With the condition n > |u| for (ii), these multiplicities are independent of the Lie algebra g of type

B,,,C, or D, considered. When ¢ = 1, we recover a remarkable property already used by Koike
and Terada in [f]. Next we prove that these g-multiplicities are in fact equal to Kostka-Foulkes



polynomials associated to the root systems of types C' and D. It is possible to extend the definition
(@) of the Kostka-Foulkes polynomials associated to the root system A, by replacing p by v € N”
where 7 is not a partition. In this case K /‘\42 (¢) may have nonnegative coefficients but K fz(l) is equal
to the dimension of the weight space v in V()). Now if we extend (f]) by replacing A by £ € N",
the polynomial K?Z (q) is equal up to a sign to a Kostka-Foulkes polynomial Klfﬂ (q) where v is a
partition. We obtained two expressions of the g-multiplicities defined above respectively in terms of the
polynomials K fz(q) and K ?Z(q) By specializing at ¢ = 1, this yields expressions of the corresponding
multiplicities in terms of Kostka numbers.

In section 1 we recall the background on the root systems B,,C, and D, and the corresponding
Kostka-Foulkes polynomials. We review in section 2 the determinantal identities for Schur functions
that we need in the sequel and we introduce the formalism suggested in [f[] to prove the expressions
of Schur functions in terms of raising and lowering operators implicitly contain in [[[§]. Thank to
this formalism we are able to obtain expressions for multiplicities similar to (f). We quantify these
multiplicities to obtain the desired g-analogues in section 3. We prove in Section 4 two duality theo-
rems between our g-analogues and certain Kostka-Foulkes polynomials of types C and D. Finally we
establish formulas expressing the associated multiplicities in terms of Kostka numbers.

Notation: In the sequel we frequently define similar objects for the root systems B,, C,, and D,.
When they are related to type B, (resp. Cy, D), we implicitly attach to them the label B (resp. the
labels C, D). To avoid cumbersome repetitions, we sometimes omit the labels B,C and D when our
definitions or statements are identical for the three root systems.

Note: While writing this work, I have been informed that Shimozono and Zabrocki [1§] have introduced
independently and by using creating operators essentially the same tensor power multiplicities. Thanks
to this formalism they recover in particular Jacobi-Trudi’s type determinantal expressions of the Schur
functions associated to the root systems B, C and D which constitute the starting point of this article.

2 Background on the root systems B,,,C, and D,

2.1 Convention for the positive roots

Consider an integer n > 1. The weight lattice for the root system C, (resp. B, and D,) can be
identified with Pg, = Z™ (resp. Pp, = Pp, (%)n) equipped with the orthonormal basis ¢;, ¢ =
1,...,n. We take for the simple roots

af" =¢e, and af” =g —¢€i+1, 1 = 1,...,n — 1 for the root system B,

;" =¢€ —¢€it1, i =1,...,n — 1 for the root system C, . (5)

=&, +6&,-1 and alp" =g —¢€i+1, 1 = 1,...,n — 1 for the root system D,
Then the set of positive roots are

RJ]_gn ={ei —¢gj,ei+¢; with 1 <i < j<n}U{g with 1 <4 < n} for the root system B,
RJCrn ={e —¢gj,ei+¢e; with 1 <i < j <n}U{2, with 1 <i < n} for the root system Cp,
RJISn = {&; —¢gj,6i + g5 with 1 <7 < j < n} for the root system D,

Denote respectively by Pgn, Parn and Pgnthe sets of dominant weights of so09,11, sp2, and sog,.



Let A = (A1, ..., An) be a partition with n parts. We will classically identify A with the dominant weight
> i1 Aigi. Note that there exists dominant weights associated to the orthogonal root systems whose
coordinates on the basis ¢;, i = 1, ...,n are not positive integers (hence which can not be regarded as a
partition). For each root system of type By, C,, or D,, the set of weights having nonnegative integer
coordinates on the basis €1, ...,, can be identify with the set m of partitions of length n. For any
partition A, the weights of the finite dimensional so9, 11, Span Or sos,-module of highest weight A\ are
all in 7, = Z". For any « € 7, we write || = a1 + -+ - + .

The conjugate partition of the partition A is denoted A as usual. Consider A, i two partitions of length
n and set m = max(\1,p1). Then by adding to N and p’ the required numbers of parts 0 we will
consider them as partitions of length m.

The Weyl group Wp, = W¢, of soa,+1 and spa, is identified to the sub-group of the permutation
group of the set {m,...,2,1,1,2,...,n} generated by s; = (i,i+1)(i,i + 1),i = 1,...,n—1 and s, = (n,7)
where for a # b (a,b) is the simple transposition which switches a and b. We denote by (5 the length
function corresponding to the set of generators s;, i = 1,...n.

The Weyl group Wp, of soa, is identified to the sub group of Wg, generated by s; = (i,i+1)(7,i + 1),
i=1,..,n—1and s, = (n,n—1)(n — 1,7). We denote by Ip the length function corresponding to
the set of generators s/, and s;, i =1,..n — 1.

Note that Wp, € Wg, and any w € Wp, verifies w(i) = w(i) for i € {1,...,n}. The action of w on

B= (B, 3n) € P, is given by
w- (61”“’ﬁn) = (ﬂiv,aﬁ}@v)

where 3" = B,,(;) if o(i) € {1,...,n} and G}’ = —Bw(;) otherwise.
The half sums pp,, pc, and pp, of the positive roots associated to each root system B,,,C,, and D,
verify:

1 3 1

pB, = (n — 3 g 5),/)0” =(n,n—1,..,1) and pp, = (n —1,n —2,...,0).

In the sequel we identify the symmetric group &,, with the sub group of Wp, or Wp, generated by
the s;’s, i =1,...,n — 1.
2.2 Schur functions and Kostka-Foulkes polynomials

We now briefly review the notions of Schur functions and Kostka-Foulkes polynomials associated
to the roots systems B,,C, and D, and refer the reader to [E] for more details. For any weight

B=(B1,...,3,) € T, we set z = xfl .- 2" where z1, ..., Ty are fixed indeterminates. We set
Bn l(o
B = 3 (1) o)
U)EWBn

where w - z#* = 2", The Schur function sg" is defined as in [[[Z] by

B,
a
SB"— B+pB,
8 — 4B :
PBn



When v € 7}, sB7 is the Weyl character of V (1) the finite dimensional irreducible module with highest

n’» v

weight v. For any w € Wpg,, the dot action of w on 3 € 7, is defined by

wofB=w-(6+pB,) — PB,-

We have the following straightening law for the Schur functions. For any g8 € m,, sg" = 0 or there
exists a unique v € " such that sﬁB” = (=1)"®)sBn with w € Wp, and v = wo 3. Set K = Z[q, ¢ !]
and write K[m,] for the K-module generated by the 25, 8 € m,. Set Cp, = K[r,]"V5» = {f € K[m,],
w- f=fforany w € Wg,}. Then {sB"},v € 7} is a basis of K[r,]"V5x.
We define sg” and sg " belonging to C¢,, = Cp,, and Cp,, in the same way and we obtain similarly that
{s§n v emt} and {sD» v € m}} are respectively bases of Cc, and Cp, .

The g-analogue PqB" of Kostant’s partition function corresponding to the root system B, is defined
by the equality

Note that Pf" (8) = 0 if 8 is not a linear combination of positive roots of REnWith nonnegative
coefficients. We write similarly ch » and 73(? » for the g-partition functions associated respectively to
the root systems C,, and D,,. Given X\ and u two partitions of length n, the Kostka-Foulkes polynomials
of types B,,C, and D, are then respectively defined by

Kyi@= Y (~D)"P(a(A+pp,) = (n+pB,)),

O'EWBn

K@) = Y (=)' OPI(0(A+ po,) — (n+ pc,)),
O'EWCn

En(g) = Y (=)"OP(a(A +pp,) = (n+ pp,.)).
O'EWDn

Remarks:

(i) : We have K} ,(¢q) = 0 when |A] < |p].

(ii) : When |A| = |y, Kfz(q) = ng(q) = ng(q) = Kf,:[l(q) that is, the Kostka-Foulkes polyno-
mials associated to the root systems B,,, C,, and D,, are Kostka-Foulkes polynomials associated to the

root system A,_1.

3 Determinantal identities and multiplicities of representations

3.1 Determinantal identities for Schur functions

Consider k € Z. When k is a nonnegative integer, write (k),, = (k,0, ...,0) for the partition of length
n with a unique non-zero part equal to k. Then set

B, _ _Bn Cn _ Ch Dn _ _Dn
hy; _s(k)n’hk _S(k)n’hk = Sk)n

and
Hem =ht + 4 hhoans Hy " =" + by -+ hhoq o

Dy _ 3Dy Dy Dy
Hm =hm + "+ hoqs:



When £k is a negative integer we set hf“ = hkC" = th” =0 and H,f" = HkC" = H,?” = 0.
For any o = (o, ..., ) € Z" define

B B B B B
};041 hOég—f—l + };oqn—l .......... hag—l—n—l + hag_n+1
B ha;_l ha2" + h(m"_Q .......... hozgn-i-n—Q + hagnfn
u,™ = det e i (6)
B B B B, ., .B
hoz:LL—n-i-l hoz:LL—n—f—Q + hasfn """"" hozn + has—2n+2

By using the equalities hf "=H ,f "—H ,ff2 and simple computations on determinants we have also

B B B, By B, Bn
Haln o Ha1—2 Ha1+1 - Hoq—l """"" Ha1+n—1 - }Iﬂ‘él—n—1
B B B B B B
B Ha;;l - Ha2n73 Ha2n - Ha2n74 .......... Ha2n+n72 _ Ha2n7n72
u," = det . e .
B B B B B B
Ha:fnJrl - Ha,?fnfl Ha:7n+2 - Ha:fnf2 """"" Ha: - Ha:f2n72

We define ug" and uPnsimilarly by replacing th " respectively by hkC" and th .
Consider p and n two integers such that n > 1. When p is nonnegative and n > p, write (17),, =
(1,...,1,0,...,0) for the partition of length n having p non zero parts equal to 1. We set

B, _ .Bn W _ Cn D, _ Dn

e, = Sgp)n, eyt = sgp)n, e, = S%P)" if0<p<n

B N n C J— n Dn J— n 3

ey =€) et =g e =€yt ifn+1<p<2n
ef” =€, = 65" = 0 otherwise

and

B =e" +e g+t enoan By =t Hely T+ € moa
Dy _ Dn Dy L Dy
Em=em e+ erhodn

For any 3 = (B4, ..., 0n) € Z™ define

B"’L B"’L Bn .......... Bn Bn
%31 eﬁ};rl + eBﬁlfl €B14+n—1 + €68, —n+1
n n T e e e e e e e e n n
B €81 €8, + €8,—2 €B824+n—2 + €8y—n
vg" = det . .
Bn B"’L Bn .......... Bn Bn
65n7n+1 eﬁn7n+2 + eﬁnfn eﬁn + eﬁn72n+2

By using the equalities ;" = EE " — EE:LQ and simple computations on determinants we have also

B B B B B, B,
%31 —_ E51372 Eﬁ}y;rl _ E];ﬁlfl .......... EBngLnfl _ Eﬁéfnfl
, Eﬁf—l _ E52n_3 Eﬁ; _ E52n_4 .......... Eﬁ2n+n—2 _ Eﬁ;_n_Q
vﬁ” = det . P .
By By B B, B, Bn
Eﬁn—n—I—l — Eﬁn—n—l Eﬁn—n—I—Q _ Eﬁn—n—Q .......... Eﬁn _ Eﬁn—Zn—2

The determinants vg",vé) " are defined similarly.



Proposition 3.1.1 (seef}]) Consider \ a partition of length n and suppose that X' = (N}, ..., \,,) is a
partition of length m. Then uy = sy and vy = S).

Lemma 3.1.2 (straightening law for u, and vg)
Consider o € m, then

" — (=1 uy if there exists 0 € S, and X\ € w7 such that o o o = \
* | 0 otherwise

Consider (8 € my, then

o — (=1)"@)a,, if there exists 0 € Sy, and v € ), such that coa = v
7 0 otherwise

Proof. By commuting the rows i and i + 1 in the determinant () we see that us,0q = —ugs. This
implies that Uy en = (—1)l(0)ua for any o € S,,. Then it follows from the definition of the dot action
that u, = 0 or there exists v € m, and o € S, such that v; > --- > 7, and 7 = ¢ o a. In this last case
we have u, = (—1)1(")u7. Now if there exists a negative 7;, w, = 0 since all the Hj, which appear in
the lowest row of ([f) are equal to 0. Thus 7 is a partition. The proof is similar for vg. W

3.2 Determinantal identities in terms of raising and lowering operators

Let £, = K][x1, xfl, <ey T, T, ']] be the ring of formal series in the indeterminates 1, xfl, ey Ty T

consider the two following determinants

~1 We

n

« a1+1 a1—1 a1+n—1 a1—n+1
l‘ll l'11+ +x11 .......... l'11+ +x11 +
52 92 + 3532—2 .......... xgﬁn—? S
(Sn(a) = det . e e e . and
xa" n+1 xan_n+2 _|_ x%n_n .......... l‘%n _|_ x%n_2n+2
a1 o] —2 a1+1 a1—1 a1+n—1 a;—n—1
xl 1— :L‘l 3 :L‘l :L‘l 4 ---------- :L‘l + 2 1 2
oo — g — a2 g — a2+n a2 —n—
:L‘2 x2 :L‘2 —_— x2 ---------- :L‘2 2
An(a) = det . e e
—n—+1 —n—1 Qn—n+2 — —2n—2
x%" n+ _|_ x%" n l‘nn n — x%n noo e x%n — l‘%n n

From a simple computation we derive the equalities:

)= [[ 0-%) I (1—:6;j)xa and Au(0) = [[ (-2 I (1-—) (8)

2 Z; gy Zj Lilj
1<i<j<n 1<r<s<n 1<i<j<n 1<r<s<n

We set hq = hqy -+ ha,, Ho = Ho, - Ho,yeq =€qy -+ - €q,, and By = By, -+ - By,

Remarks

(i) : For any partition p of length n, hy, is the character of h(p) = V(A1) ®@--- @ V(A1) and H), is
the character of () = W(u1A1) ® - - - @ W(punAy) where for any k € N, W(ky) = V(kA) @ V((k —
2)A1) @ - - @ V((kmod2)Ay).

(ii) : For any partition g of length n such that p’ is of length m, e, is the character of e(u) =
V(Ay)®- - ®V(Ay ) and Ey is the character of €(u) = W(A, ) ® - - ® W(A,, ) where for any
k € N with k£ < n, W(Ak) = V(Ak) S5) V(Ak,Q) ©---D V(Akmod2)-



For the root system B, we introduce six linear maps hp, ,Hp, ,up, and ep,,Ep, ,vp, as follows:

{ hp, : L, — Cpg, {HBn:EnHCBn {uBn:EnHCBn and
% hBn 7 %+ HBn ’ % > ubn
{ ep, : L, — Cp, { Ep, : L, —Cp, { vp, : L, — Cp,
T s eBn ’ T s EBn ’ s pBn

Note that these maps are not ring homomorphisms. For the roots systems C, and D, we define
respectively the maps he,,He, ,uc,,ec,,Ec,,ve, and hp, ,Hp, ,up,,ep,,Ep,,vp, similarly.
Let w, and €Q,, be the endomorphisms of £, corresponding respectively to the multiplication by

f— H (1_ﬁ) H (1—wi1xj)and<1>n: H (1_ﬁ) H (1—%1%).

44 T - € g
1<i<j<n 1<r<s<n 1<i<j<n 1<r<s<n

Since ¢, ! and ®,! belong to L,, w, and Q, are the automorphisms of £, corresponding to the
multiplication by ¢, ! and @, 1.

Proposition 3.2.1 We have
1. u, =h, w, and v, = H, - Q,,
2. v, =¢e, -wy and v, = E,, - Q.

Proof. 1: We have seen that h,, is not a ring-homomorphism. Nevertheless we have by definition
of the h,
hy (2%) = hn(27) - - hn(237) = hay - - - hay, -

n

More generally if Py, ..., P, are polynomials respectively in the indeterminates x1, ..., z,, we have

hy (Pr(z1) -+ Pa(2n)) = hn(Pi(21)) - - hy(Po(zn))

by linearity of h,,. We can write

bul) = D (~1)Oa oW (e dGITE e ey (ol gon Sl
geSy

and by the previous argument
hn(én(a)) = Z (_1)1(0) ha1—0(1)+1(h042—0(2)+2 + hozg—a(Q)) o (han—a(n)—l—n + hozn—a(n)—n—l—Z) = Uq
0ESy

where the last equality follows from (). By (§) we have 8, (o) = w,,(z®). Thus by applying h,, to this
equality we obtain h,,(wy,(z%)) = us = u,(z®). Hence u,, = h,, -w,. We derive the equality u,, = H, -,
in a similar way starting from

o a1—o(1)+1 as—o(1)—1 an—o(n)+n an—o(n)—n
An(a) = Z (_1)1( )(%(11) 1)+ "‘%?1) 1) )...(xo(n) (n)+ +aln (n) ).
O’GSn

2 : The arguments are the same than in 1 once replacing the characters h and H respectively by
the characters e and E. m

Consider a = (o, ..., ay,) € 7, and two integers 4, j such that 1 <14 < j < n. The raising operator
R;; and the lowering operator L;; are respectively defined on 7, by R;;(a) = a + & — ¢; and
L; j(a) = a — ¢; — ;. From the previous lemma we obtain:



Corollary 3.2.2 For any partition p = (p1, ..., in) we have

su=| JI O-Ry) JI QO-Leo) | bwsu=| JI O-Ry) J[ @-Les)]| H,

1<i<j<n 1<r<s<n 1<i<j<n 1<r<s<n
S, = II 0-Ry JI O-Lio)|ew, sp= II a-Rry J[ 0-L.|Es
1<i<j<m 1<r<s<m 1<i<j<m 1<r<s<m
where p' = (ph, ..., u,) is the conjugate partition of .

Proof. Let us write

o= II -2 I (1—xi1xj):2a(a)ma.

1<i<j<n J 1<r<s<n

Then by 1 of Proposition B.2.1), we have for any u € ./,

w,(2) = b, (Z a(a)xa+“> = Y a(@hasy = 1 = 5

QETY QETY

where the last equality follows from Proposition B.1.1. This is exactly equivalent to

su=| JI O-Riy) JI Q=Les)]|

1<i<j<n 1<r<s<n

The arguments are essentially the same for the other equalities. m

3.3 Expressions for the multiplicities of representations

Write
ot = Z f(a)z® and @, = Z F(a)z®.

QaETY QaETy

From Lemma we deduce that h,, = u, ow; ! and H,, = u, o Q!. By applying these identities to
xH where p is a partition of length n with y/ of length m we obtain as in Corollary

1 1 1 1
h, = —_ — | sy, H, = — Sp
H 1<H 1- Rz’,j H 1- Lr,s . H 1- Rz’,j H 1- Lr,s a
<i<j<n 1<r<s<n 1<i<j<n 1<r<s<n
1 1 1 1
Ot = H 1—- R, . H 1— T sy and By = H 1—-R. . H — L S
1<i<j<m bl 1<r<s<m ™S 1<i<j<m bI 1<r<s<m ™8

These relations must be understood as a short way to write

hy, = Z fl)uyra, Hy = Z F(a)upta,

Q€T QaEmy
ey = Z f(a)vuurg and £,y = Z F(OZ)UHUrB-
Beﬂ'm ,6€7Tm

For any positive integer n write p; = (n,n —1,...,1).



Proposition 3.3.1 Consider a partition p of length n such that p' has length m. Then for the three
roots systems By, C, and D, we have:

() ZAQWL Zaesn( 1)l )f(O'()\ + pn) A pn)u)\
H Z)\EW: ZJES ( 1)l ) (U()‘ + pn) — M= pn)u)\ ’

i) : 4 G = Zeverh Zuoesn D' f(o(v+ pm) = 1 = pm)vy
B =Eens Coes, (CV O F (0w + pm) = 1 = pm)vy

Proof. (i) : Note first that the above relations do not depend on the root system considered. Indeed
for any nonnegative integer n, we have pp,, = p, — (%, vens 2) pc, = pn and pp,, = pn—(1,...,1). Thus
o(A+pB,) =1 —pB, =0(A+pc,) —p—pc, = oA+ pp,) — = pp, = 0(A+ pn) — . — pn. We have

hy =Y F(@)upya-

QaETy

From Lemma we deduce that for any o € m, we have u,,, = 0 or there exits a partition A such
that 1+ a = (A + pp) — pn and uyia = (—1)"Duy. By setting o = (X + pp) — 1t — py, in the above
sum we obtain hy, = >\ desn(_l)l(o)f(g()\ + pn) — pt— prn)uy. The arguments are similar for the
other assertions. m

From relations (i) and by using the fact that uy = s, for any partition A\ of length n, we derive the

equalities
hy = Z uy sy and H, = Z U uSx

AETR AETR
where
u)\,,u = Z (_1)l(a)f(0()‘ + pn) — K= Pn) and UA,;L = Z (_1)I(O)F(U()‘ + pn) — K= Pn) (9)
0€ESH oESH

are respectively the multiplicities of V() in h(u) and $(u). Note that uy, = 0 and Uy, = 0 unless
Il > .

For the relations (ii) the situation is more complicated since the partitions v obtained by applying
straightening laws to the v,/ 45 yields polynomials v, where v € m} is a partition of length m so can
not be necessarily regarded as the conjugate partition of a partition A € m,7. The straightening law of
Lemma implies that |v| = |¢/| . Since |u| = |¢/|, this problem disappear if we suppose n > |u| for
we will have 11 < |v| < n and thus v/ € . We can then set v = ' with A € 7, and obtain

ey = Z vauSy and By = Z Vi uSa-

AETR AETR
We deduce that
vap =tng = Y (=D fo(N + pm) — 1 — pm) (10)
O'ESm
Vap=Uxvpw= Y (=D FoN +pm) — 1 = pm) (11)
oESm

are respectively the multiplicities of V() in the tensor products e(y) and &(u) when n > |pl.
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4 Quantification of the multiplicities

4.1 The functions f, and F,
Set

o= TI G- I (1—xlij)and<1>n(q)= T a-¢& I (1‘;5;)-

X
1<i<j<n I 1<r<s<n 1<i<j<n I 1<r<s<n

The functions f, and F, are obtained by considering the formal series expansions of ¢,'(q) and
®,1(g). Namely we have

on' (@)= D fola)a® and &M (q) = D Fyla)a®. (12)

QETY QaETy

4.2 Some g-analogues of multiplicities of V() in h(u), H(p), e(u) or E(u)
Given A and p two partitions of length n, let ¢y ,(¢q) and C) ,(¢q) be the two polynomials defined by

unu(@) = D (=D folo A+ pu) — = pa) and Upu(g) = D (=)D Fy(o(A + pa) — 11 = pu)-
0ESH 0ESH

Then from the equalities (), (L0) and ([L1]) we obtain:
Proposition 4.2.1 Let A and p be two partitions of length n. Then
1. uy,(q) and Uy ,(q) are g-analogues of the multiplicity of the representation V(X) in b(u) and
)
2. vau(q) = urrw(q) and Vy ,(q) = Ux v (q) are g-analogues of the multiplicity of the representation
V(A) in e(p) and E(pn) when the condition n > |u| is satisfied.
The following example is obtained from the explicit computation of the function f, when n = 2.

Example 4.2.2 Consider pu a partition of length 2 and set £, = {\ € 77;, A= (pu1+r—s,pug—r—s),
s €{0,...;uz}, r € {0,...,u2 — s}}. Then for any partition \ of length 2 we have:

B q‘“_)‘1 ifAeé&,
uru(e) = { 0 otherwise

Remarks

(i) : It follows from the definition of the g-functions f, and Fj, that uy ,(q) = Uy ,(q) = 0 if |A| > [p].
(ii) : It is not trivial from the very definitions that wy,(¢) and U ,(q) are polynomials in ¢ with
nonnegative integer coefficients. This property will be proved in Section [] as a corollary of Theorem
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5 The duality theorems

5.1 A duality theorem for the ¢-multiplicities in h(u) and H(u)

For any nonnegative integer n, set k, = (1,...,1) € m,.

Lemma 5.1.1 Consider A\, u two partitions of length n such that |\ > |u|. Let k be any integer such
that k > LQM Then we have

Ktk ik, (@) = 3 (=1 OPy(c(X+ pn) = (1 + pn)) (13)
ocESnh

where the sum is indexed by the elements of the symmetric group Sy.

Proof. Since Py(a) = 0 if « is not a linear combination of positive roots with nonnegative
coefficients, we have Py(a) = 0 for any o € 7, such that || < 0. Consider § = (41, ...,d,) € m, and
w € Wy. Write w(d) = (6y,...,6}) and denote by Ey, 5 = {i1,...,3,} the set of the indices i such
that d;, and 4/ have opposite signs. Define the sum S, 5 = ZikeEw,g .- Then |w(d)| = |0] — 2Sy6-
Now consider k a nonnegative integer and set § = (A + pn + kky). We have [w(\ + pp, + kky)| =
|(A =+ pn + kkp)| = 2Sy,5. But Sy s = Swr+p, + kp. Thus we obtain

WA+ pn + kkp) — (14 pn + ki) = [(A 4 pn + kkn)| — 2Swatp, — |(0+ pn + kkp)| — 2kp =
[Nl = i = 28w 3+p, — 2Kp.

When w ¢ S,,, we have p > 1 and Sy a4, > 1 since the coordinates of A + p,, are all positive. Hence

|[w(A + pn + kkpn) — (18 + pn + kkn)| < |A| — || — 2k and is negative as soon as k > w For such
an integer k the sum defining Ky, ks, (¢) Rormally running on W, can be restricted to ([3) and
we obtain

Kotttk (@) = Z (_1)l(0)73q(0(>‘ + pn + kkn) = (B + pn + kEp)).
oESy

Since o € S,,, we have o(kk,) = kky,. Thus

K tkrn pthnn (@) = Z (_1)l(0)73q(0()‘ + pn) — (1 + pn))-
gESy

We define the involution I on 7, by I(aq,...,an) = (—an, ..., —aq) for any a = (aq, ..., ap) € mp.
Lemma 5.1.2 For any o = (aq, ..., ) € T, we have
fola) = Py (I(a)) and Fy(a) = Py (I(a))

where PqB” and PqD » are the g-partition functions associated respectively to the root systems B, and
D,.

12



Proof. By abuse of notation we also denote by I the ring automorphism of £,, defined by I(z®) =
/(@) The image of the root systems C,, and D,, by I are respectively

{ {ei —€j,—ei —¢gj with 1 <i < j <n}U{-2¢ with 1 <i <n} for the root system Cp, (14)

{e; —€j,—ei —¢g; with 1 <i < j < n} for the root system D,

By applying I to the equality

a€RY Bemn
we obtain ) )
- I Chn I(B)
H 1-q%) H 1--2) " qu (B)a".
1<i<j<n Tj’ 1<r<s<n TrTs BETR

Set a = I((). The equality becomes

¢, '(q) = Y Py(I(e)z®

QaETy

and from the definition (see [[J) of the function Fy, we obtain PS™ (I(r)) = Fy(c). The assertion with
fq is proved in the same way by considering the root system D,,. m

Given ¢ € §,, denote by ¢* the permutation defined by
o*(k)=0(n—k+1).
For any i € {1,...,n — 1}, we have s} = s,,_;. The following Lemma is straightforward:

Lemma 5.1.3 The map 0 — o* is an involution of the group S,. Moreover we have o(I(f)) =
I(c*(8)) and l(o) = I(c*) for any B € Ty, 0 € S,,.

Lemma 5.1.4 Let A\, u two partitions of length n and o € S,,. Then

(=)@ fo(o A+ pn) = (p+ pa)) = (1) TIPP (0" (L(N) + pu) = (L(1) + pn)) and
(—)" @ Fy(o(A+ pn) = (u+ p)) = (=1)!CIPF (0" (LX) + pn) — (L(1) + pu)).

Proof. Since I(c) = l(c*), it suffices to prove the equalities

faloO+ pn) = (1 + pn)) = PP (0*(I(N) + pn) — (I(1) + pn)) and
FQ(U()‘ + pn) —(n+ Pn)) = chn (U*(I()‘) + pn) - (I(:U') + pn))

Set P =P (a*(I(A) + pn) — (I(11) + pn))- From the above Lemma we deduce
P =Py (I(a(A) + 0 (pn) = (1) = pn)-
Now an immediate computation shows that o*(p,) — pn = I[(0(pn) — prn)- Thus we derive
P =P (I(o(A+ pn) = 1= pn)) = Fy(o(A+ pn) = 4 = pn)

where the last equality follows from Lemma f.1.3.
We obtain the equality fy(o(A+ pn) = (114 pn)) = PP (0 (I(A) + pn) — (I() + pn)) in a similar way.
|
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Theorem 5.1.5 Consider \,u two partitions of length n and set m = max(Aj,p1). Let k be any
integer such that k > @ Then X\ = (m— A, ...,m—X\1) and i = (M — i, ..., m— 1) are partitions
of length n and

J— Dn
{ uru(q) = Kxgmn,fwknn@
U)\vﬂ(q) - K/)\\:kﬁnyﬁ“i’knn(Q)

Proof. First \ and i are clearly partitions of length n since m = max(Ay, u1). It follows from the
definition of Uy ,(q) and the above lemma that

Unu(@) = Y (DO F 0N+ pn) == pa) = Y (=D)"TIPF (0 (LX) + pn)) = (1) + pn)-

€S o*eSn

Then by Lemma we obtain

Unu@) = Y (=D OP(0(I(N) + pa)) = (L (1) + pu)-

O'ESn

We have o(I(X) + pp + mky) = o(I(N) + pn) + mk, since o € S,,. So we can write

Unu(@) = Y (=1)!OPI(a(I(N) + miin + pn)) — (I(1) + mbin + pp))-
oSy

Since A = I(\) + mk, and 7i = I(p) + mk, we derive

Urla) = D (' OPT 0N+ ) = Gt o)) = K57 (g
O'ESn

by Lemma p.1.1.

We obtain similarly the equality uy ,(q) = K Drn

. ﬁ+knn(Q) by replacing 735” by 735”. [ |

Example 5.1.6 Consider p = (4,2,1) and X\ = (2,1,0). We have m = 4, u = (3,2,0) and X =
(4,3,2). We choose k = 2. Then we obtain the equalities

uxu(q) = K§%74)7(574,2)(Q) = ¢+ ¢
UA,M(Q) = K(67574)7(574,2))(Q) = q5 + 2q4 + 3q3 + 2q2

By using the fact that the Kostka-Foulkes polynomials have nonnegative integer coefficients [§ we
obtain the following corollary.

Corollary 5.1.7 The polynomials uy ,(q) and Uy ,(q) have nonnegative integers coefficients.

We also recover a property of the Kostka-Foulkes polynomials associated to the root system A, 1
proved in [§.

Corollary 5.1.8 Consider \, u two partitions of length n such that || = |u| and set m = max (A1, pu1).
Then the Kostka-Foulkes polynomials associated to the root system A,_1 verifies

Ap— An—
K ) = K a)

where X = (m = An, ..om — A1) and i = (m — fin, ...y — f11).
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Proof. Suppose that 3 is a linear combination of I (Rgn) with nonnegative coefficients such that
|B] = 0. Then f3 is necessarily a linear combination of the roots €; —¢;,1 < i < j < n with nonnegative
coefficients (see ([4)) that is, a linear combination with nonnegative coefficients of the positive roots
associated to the root system A,,_1. This implies that

f4(B) = Fy(B) = Pi(B)
An—1

where P, is the g-partition function associated to the root system A,_i. For any o € S,,, we have
lo(A+ pn) — (1 + pn)| = 0 since |A| = |p|. Thus

fa@N+ pn) = (4 pn)) = Fo(o (A + pn) = (+ pn)) = Py (0(A+ pn) = (1 + pn))

and the multiplicities uy ,(q) and Uy ,(q) coincide with the Kostka-Foulkes polynomial K v '(q)
when |A| = \,u\ Moreover by applying Theorem p.1.5 with |[A| = |u| and k& = 0, we obtain UA“( ) =
KAZ( ) = KA "~*(q) where the last equality is due to the fact that the Kostka-Foulkes polynomials

of types Bn,C’n or D, are Kostka-Foulkes polynomials associated to the root system A, _; when
IA| = |u]. So we derive the equality K;‘Z’l(q) = Kﬁ”’l(q). [

We have seen that Uy ,(¢) can be regarded as a g-analogue of the multiplicity of the representation
V()\) in § (). In [L3], Hatayama, Kuniba, Okado and Takagi have introduced another quantification

X u(q) of this multiplicity based on the determination of the combinatorial R matrix of the Ué(C,Sl))—
crystals By. Considered as the crystal graph of the U, (Cy)-module My, By, can be identify with

where for any i € {k,k—2, ...,k mod 2}, B( kA;) is the crystal graph of the irreducible finite dimensional
U,(Cp)-module of highest weight kA;. Note that the character of My, is equal to H kC ",
Recall that the combinatorial R-matrix associated to crystals By is equivalent to the description of
the crystal graph isomorphisms
B ® By = B, ® B;

{ b1 ® by — bl @ 1)
together with the energy function H on B; ® Bj. The multiplicity of V(A ) in .?_)C"( ) is then equal to
the number of highest weight vertices of weight A in the crystal B, = B, - ® By,,. Then X ,(q)
is defined by

Xl (g Z q20<1<3<n H(b;®b ZH))
bEEy

where E) is the set of highest weight vertices b = by ® - - - ® b, in B,, of highest weight A, bgi) is
determined by the crystal isomorphism
B ®B ® By ® - ® By — Bui ® By; ® Buyyy -
bi®bz+1®"'®bj —>b§»2)®bg®---®b;-,1

-®B

Hit1 Hj—1

and for any j =1,...,n, H(by ® bgl)) depends only on b§1).
Many computations suggest the following conjecture

Conjecture 5.1.9 For any partition A and p of length n with |u| > |A|
Unpu(a) = ¢* "X, ().

Note that the conjecture is in particular true for all the examples given in the tables of [[[J].
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5.2 A duality theorem for the ¢g-multiplicities in ¢(x) and &(u)

Consider A, i two partitions of length | such that I > |u| > |A|. Write n = max(A1, u1). Then by
adding to A and ' the required numbers of parts 0 we can consider them as partitions of length
n. Set m = max(\], i}). We define the partitions A and zz belonging to 7, by A = (m—X,,....m — )
and g = (m —pul,....,m—pu}).

Theorem 5.2.1 With the above notations, we have for any integer k > w

(i) r vaule) = KA:an7ﬁ+an(Q)
(i) s aul) = K57 (0)

Mk, pt+kkn

Proof. Since | > |u|, we have by Proposition {l.2.1] the equality v ,(q) = uy . (q). Moreover we
have m > max(\}, p}) and k > Wl X for |)\’| = |)\| and |p/| = |u| . Hence by applylng Theorem-

we obtain vy ,,(q) = Kﬁiknn,u +lmn( q) where N = (m—X,,...,m—\,) =X and = (m—pl,y.ym —

wh) = . So (i) is proved. We obtain (ii) similarly. m

Example 5.2.2 For A = (2,1,0,0,0) and u = (2,2,1,0,0) we have l = 5,n = 2. Moreover N = (2,1),
w = (3,2) and m =3. So A =(2,1) and = (1,0). Hence for k =1

(i) : UA,;L(Q) = K£§)7(271)(Q) =4q

(ii) : V)\,M(Q) = K(372)7(271)(Q) = q2 +4q

Remark When A, i1 are considered as weights associated to the root system Cj, the above theorem is
essentially the quantification of a duality result explicited by Foulle [f]] from results of [f for the dual

pair (Sp(2l), Sp(2n)).

6 Identities for the ¢-multiplicities U) ,(¢) and u, ,(q)

6.1 A relations between g-partition functions

Consider a nonnegative integer k and define the finite sets
{ C]? = {ﬁ € Wnaﬁ = Zlﬁrésén 67’,8(57’ + 68) with €r.s >0 and |ﬂ| = 2k}
Dy ={B € Tn, B =3 1<pcs<n Crs(er + ) with e, 5 > 0 and |B| = 2k}

Note that each 8 € C}! (resp. 3 € Dy) verifies [8] =23 ..., ers (vesp. [B] =237 ., <, €rs). This
implies that

[ T ddeim J[ =3 5 e

1<r<s<n (1 — > n 1<r<s<n (1 — > n
<r<s<n ( T, ) k>0 BeCy <r<s<n ( T2 ) k>0 peCy;

where cg” (resp. cg") is the number of ways to decompose 8 as 8 = > . <.p €rs(er +€s) (resp.

8= 21§r<s§n ers(er +€5)) with e, ¢ > 0.

Lemma 6.1.1 For any ( € m, with || = 2k > 0, we have

Z cs kPA” (B4 0) and f4(5 Z cs kPA" (B+9).

secy oDy
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Proof. We have:

11 (1_71(11_) I1 ﬁ =) i (a0

1<i<j<n 1<r<s<n Irxs NETH §ETH

which implies the equality Fy(8) =, s_s¢ g"ql‘sl/QP(j‘" (n). Since P:in(n) = 0 when || # 0, we can
suppose |n| = 0 and |0| = |5 ] in the previous sum. Then § € C}! and the result follows immediately.
The proof for f,(3) is similar. m

6.2 Expressions of the multiplicities u, , and U, , in terms of Kostka numbers

Suppose that & and v belong to 7,. Then we can define the polynomial

K& () = 3 (=) OPA1 (06 + pa) — (v + o).

UGSn

Note that the coefficients of K?;L_l (¢) may be negative. When & = \ is a partition, K:\L‘Z‘l = Kf:‘l (1)

is equal to the dimension of the weight space of weight v in V(\). When v = p is a partition, we have

Kéz_l(Q) = (= )l(T) “!(q) if ¢ =70 (v) with 7 € S,, and v a partition
0 otherwise

Proposition 6.2.1 Consider A,y two partitions of length n such that k = |u| — |A\| > 0. Then

DL A, L lul=IAl A,
(OWAC Z ;g 2 KT s(a Z Cs'q 2 )\+6M(Q) and
seDp seDp
B Cn IS 1 c. \m Al .
U)\vll(q) - ¢ q 2 ,u (5 Z )\-:(SM(Q)
secy secp

Proof. By definition we have
Uniu(@) = Y (=D Fy(o(X + pn) — (11 + pn))-
geSy

Hence from the above lemma we derive

Unpl@) = 3 §g2 37 (=1} OPAnt (0(A + pp) = (1 = 5+ pu)) (15)

secy ocES

which yields the first desired equality since KA”‘1 (q) = ves, (=)D (A4 pn) — (11— 6+ pn)).
For any o0 € S,,, we have o(C}}) = C}! and coc(”) = 05” Thus ([[§) can also be rewritten

- oA =l A,
Unpu(@) = ¢ 37 (1) 37§ Pt (oA + pn +0) = (n+pn)) = D g 2~ K5 (a)-
€S secy secy

The proof is similar for uy ,(¢g). =
By setting ¢ = 1 in the above relations we obtain the following expressions of the multiplicities U) ,
and uy , in terms of Kostka numbers.
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Corollary 6.2.2

An—l An—l

_ C, Anfl _ C, Anfl
{ U = Dseep €5 " K jims = 2oseer G " Eaisp
Uhp = Zaepg " Ky —s = Zaebg ¢ Koisp
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