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Abstract

This paper studies the problem of optimal switching for one-dimensional diffusion,

which may be regarded as sequential optimal stopping problem with changes of regimes.

The resulting dynamic programming principle leads to a system of variational inequa-

lities, and the state space is divided into continuation regions and switching regions.

By means of viscosity solutions approach, we prove the smoot-fit C1 property of the

value functions.
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1 Introduction

In this paper, we consider the optimal switching problem for a one dimensional stochastic

process X. The diffusion process X may take a finite number of regimes that are switched

at time decisions. The evolution of the controlled system is governed by

dXt = b(Xt, It)dt + σ(Xt, It)dWt,

with the indicator process of the regimes :

It =
∑

n

κn1τn≤t<τn+1 .

Here W is a standard Bronian motion on a filtred probability space (Ω,F , F = (Ft)t≥0, P ), b,

σ are given maps, (τn)n is a sequence of increasing stopping times representing the switching

regimes time decisions, and κn is Fτn-measurable valued in a finite set, representing the

new chosen value of the regime at time τn and until τn+1.

Our problem consists in maximizing over the switching controls (τn, κn) the gain func-

tional

E

[

∫ ∞

0
e−ρtf(Xt, It)dt −

∑

n

e−ρτngκn−1,κn

]

where f is some running profit function depending on the current state and the regime, and

gij is the cost for switching from regime i to j. We then denote by vi(x) the value function

for this control problem when starting initially from state x and regime i.

Optimal switching problems for stochastic systems were studied by several authors, see

[1], [4] or [7]. These control problems lead via the dynamic programming principle to a

system of second order variational inequalities for the value functions vi. Since the vi are

not smooth C2 in general, a first mathematical point is to give a rigorous meaning to these

variational PDE, either in Sobolev spaces as in [4], or by means of viscosity notion as in

[7]. We also see that for each fixed regime i, the state space is divided into a switching

region where it is optimal to change from regime i to some regime j, and the continuation

region where it is optimal to stay in the current regime i. Optimal switching problem may

be viewed as sequential optimal stopping problems with regimes shifts. It is well-known

that optimal stopping problem leads to a free-boundary problem related to a variational

inequality that divides the state space into the stopping region and the continuation region.

Moreover, there is the so-called smooth-fit principle for optimal stopping problems that

states the smoothness C1 regularity of the value function through the boundary of the

stopping region, once the reward function is smooth C1 or is convex, see e.g. [6]. Smooth-

fit principle for optimal stopping problems may be proved by different arguments and we

mention recent ones in [2] or [5] based on local time and extended Itô’s formula. Our main

concern is to study such smooth-fit principle in the context of optimal switching problem,

which has not yet been considered in the literature to the best of our knowledge.

Here, we use viscosity solutions arguments to prove the smooth-fit C1 property of the

value functions through the boundaries of the switching regions. The main difficulty with
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regard to optimal stopping problems, comes from the fact that the switching region for the

value function vi depend also on the other value functions vj for which one does not know a

priori C1 regularity (this is what we want to prove!) or convexity property. For this reason,

it is an open question to see how extended Itô’s formula and local time may be used to

derive such smooth-fit property for optimal switching problems. Our proof arguments are

relatively simple and does not require any specific knowledge on viscosity solutions theory.

The plan of this paper is organized as follows. In Section 2, we formulate our optimal

switching problem and make some assumptions. Section 3 is devoted to the dynamic

programming PDE characterization of the value functions by viscosity solutions, through

a system of variational inequalities. In Section 4, we prove the smooth-fit property of the

value functions.

2 Problem formulation and assumptions

We start with the mathematical framework for our optimal switching problem. The stochas-

tic system X is valued in the state space X ⊂ R assumed to be an interval with endpoints

−∞ ≤ ℓ < r ≤ ∞. We let Id = {1, . . . , d} the finite set of regimes. The dynamics of the

controlled stochastic system is modeled as follows. We are given maps b, σ : X × Id → R

satisfying a Lipschitz condition in x :

(H1) |b(x, i) − b(y, i)| + |σ(x, i) − σ(y, i)| ≤ C|x − y|, ∀x, y ∈ X , i ∈ Id,

for some positive constant C, and we require

(H2) σ(x, i) > 0, ∀x ∈ int(X ) = (ℓ, r), i ∈ Id.

We set bi(.) = b(., i), σi(.) = σ(., i), i ∈ Id, and we assume that for any x ∈ X , i ∈ Id, there

exists a unique strong solution valued in X to the s.d.e.

dXt = bi(Xt)dt + σi(Xt)dWt, X0 = x. (2.1)

where W is a standard Brownian motion on a filtered probability space (Ω,F , F = (Ft)t≥0, P )

satisfying the usual conditions.

A switching control α consists of a double sequence τ1, . . . , τn, . . . , κ1, . . . , κn, . . ., n ∈

N
∗ = N \ {0}, where τn are stopping times, τn < τn+1 and τn → ∞ a.s., and κn is Fτn -

measurable valued in Id. We denote by A the set of all such switching controls. Now, for

any initial condition (x, i) ∈ X × Id, and any control α = (τn, κn)n≥1 ∈ A, there exists a

unique strong solution valued in X × Id to the controlled stochastic system :

X0 = x, I0− = i, (2.2)

dXt = bκn
(Xt)dt + σκn

(Xt)dWt, It = κn, τn ≤ t < τn+1, n ≥ 0. (2.3)

Here, we set τ0 = 0 and κ0 = i. We denote by (Xx,i, Ii) this solution (as usual, we omit

the dependance in α for notational simplicity). We notice that Xx,i is a continuous process

and Ii is a cadlag process, possibly with a jump at time 0 if τ1 = 0 and so I0 = κ1.

We are given a running profit function f : X × Id → R, and we assume a Lipschitz

condition :
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(H3) |f(x, i) − f(y, i)| ≤ C|x − y|, ∀x, y ∈ X , i ∈ Id,

for some positive constant C. We also set fi(.) = f(., i), i ∈ Id. The cost for switching from

regime i to j is constant equal to gij . We assume that :

(H4) 0 < gik ≤ gij + gjk, ∀i 6= j 6= k 6= i ∈ Id.

This last condition means that the switching cost is positive and it is no more expensive to

switch directly in one step from regime i to k than in two steps via an intermediate regime

j.

The expected total profit of running the system when initial state is (x, i) and using the

switching control α = (τn, κn)n≥1 ∈ A is

J(x, i, α) = E

[

∫ ∞

0
e−ρtf(Xx,i

t , Ii
t)dt −

∞
∑

n=1

e−ρτngκn−1,κn

]

,

where κ0 = i. Here ρ > 0 is a positive discount factor, and we use the convention that

e−ρτn(ω) = 0 when τn(ω) = ∞. We shall see below in Lemma 3.1 that the expectation

defining J(x, i, α) is well-defined for ρ large enough (independent of x, i, α). The objective

is to maximize this expected total profit over all strategies α. Accordingly, we define the

function

v(x, i) = sup
α∈A

J(x, i, α), x ∈ X , i ∈ Id. (2.4)

and we denote vi(.) := v(., i) for i ∈ Id. The goal of this paper is to study the smoothness

property of the value functions vi. Our main result is the following :

Theorem 2.1 Assume that (H1), (H2), (H3) and (H4) hold. Then, for all i ∈ Id, the

value function vi is continuously differentiable on int(X ) = (ℓ, r).

3 Dynamic programming, viscosity solutions and system of

variational inequalities

We first show the Lipschitz continuity of the value functions vi.

Lemma 3.1 Under (H1) and (H3), there exists some positive constant C > 0 such that

for all ρ ≥ C, we have :

|vi(x) − vi(y)| ≤ C|x − y|, ∀x, y ∈ X , i ∈ Id. (3.1)

Proof. In the sequel, for notational simplicity, the C denotes a generic constant in different

places, depending on the constants appearing in the Lipschitz conditions in (H1) and (H3).

For any α ∈ A, the solution to (2.2)-(2.3) is written as :

Xx,i
t = x +

∫ t

0
b(Xx,i

s , Ii
s)ds +

∫ t

0
σ(Xx,i

s , Ii
s)dWs

Ii
t =

∞
∑

n=0

κn1τn≤t<τn+1 , (τ0 = 0, κ0 = i).

4



By standard estimate for s.d.e. applying Itô’s formula to |Xx,i
t |2 and using Gronwall’s

lemma, we then obtain from the linear growth condition on b and σ in (H1) the following

inequality for any α ∈ A :

E
∣

∣

∣
Xx,i

t

∣

∣

∣

2
≤ CeCt(1 + |x|2), t ≥ 0.

Hence, by linear growth condition on f in (H3), this proves that for any α ∈ A :

E

[
∫ ∞

0
e−ρt

∣

∣

∣
f(Xx,i

t , Ii
t)
∣

∣

∣
dt

]

≤ CE

[
∫ ∞

0
e−ρt(1 + |Xx,i

t |)dt

]

≤ C

∫ ∞

0
e−ρteCt(1 + |x|)dt

≤ C(1 + |x|),

for ρ larger than C. Recalling that the gij are nonnegative, this last inequality proves in

particular that for all (x, i, α) ∈ X × Id ×A, J(x, i, α) is well-defined, valued in [−∞,∞).

Moreover, by standard estimate for s.d.e. applying Itô’s formula to |Xx,i
t − Xy,i

t |2 and

using Gronwall’s lemma, we then obtain from the Lipschitz condition (H1) the following

inequality uniformly in α ∈ A :

E
∣

∣

∣
Xx,i

t − Xy,i
t

∣

∣

∣

2
≤ eCt|x − y|2, ∀x, y ∈ X , t ≥ 0.

From the Lipschitz condition (H3), we deduce

|vi(x) − vi(y)| ≤ sup
α∈A

E

[
∫ ∞

0
e−ρt

∣

∣

∣
f(Xx,i

t , Ii
t) − f(Xy,i

t , Ii
t)
∣

∣

∣
dt

]

≤ C sup
α∈A

E

[
∫ ∞

0
e−ρt

∣

∣

∣
Xx,i

t − Xy,i
t

∣

∣

∣
dt

]

≤ C

∫ ∞

0
e−ρteCt|x − y|dt ≤ C|x − y|,

for ρ larger than C. This proves (3.1). 2

In the rest of this paper, we shall now assume that ρ is large enough so that from the

previous Lemma, the expected gain functional J(x, i, α) is well-defined for all x, i, α, and

also the value functions vi are continuous.

The dynamic programming principle is a well-known property in stochastic optimal

control. In our optimal switching control problem, it is formulated as follows :

Dynamic programming principle : For any (x, i) ∈ X × Id, we have

v(x, i) = sup
(τn,κn)n∈A

E





∫ θ

0
e−ρtf(Xx,i

t , Ii
t)dt + e−ρθv(Xx,i

θ , Ii
θ) −

∑

τn≤θ

e−ρτngκn−1,κn



 ,(3.2)

where θ is any stopping time, possibly depending on α ∈ A in (3.2). This principle was

formally stated in [1] and proved rigorously for the finite horizon case in [7]. The arguments

for the infinite horizon case may be adapted in a straightforward way.
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The dynamic programming principle combined with the notion of viscosity solutions

are known to be a general and powerful tool for characterizing the value function of a

stochastic control problem via a PDE representation, see [3]. We recall the definition of

viscosity solutions for a P.D.E in the form

F (x, v,Dxv,D2
xxv) = 0, x ∈ O, (3.3)

where O is an open subset in R
n and F is a continuous function and noninceasing in its

last argument (with respect to the order of symmetric matrices).

Definition 3.1 Let v be a continuous function on O. We say that v is a viscosity solution

to (3.3) on O it it is

(i) a viscosity supersolution to (3.3) on O : for any x0 ∈ O and any C2 function ϕ in a

neighborhood of x0 s.t. x0 is a local minimum of v − ϕ and (v − ϕ)(x0) = 0, we have :

F (x0, ϕ(x0),Dxϕ(x0),D
2
xxϕ(x0)) ≥ 0.

and

(ii) a viscosity subsolution to (3.3) on O : for any x0 ∈ O and any C2 function ϕ in a

neighborhood of x0 s.t. x0 is a local maximum of v − ϕ and (v − ϕ)(x0) = 0, we have :

F (x0, ϕ(x0),Dxϕ(x0),D
2
xxϕ(x0)) ≤ 0.

We shall denote by Li the second order operator on the interior (ℓ, r) of X associated

to the diffusion X solution to (2.1) :

Liϕ =
1

2
σ2

i ϕ” + biϕ
′, i ∈ Id.

Theorem 3.1 Assume that (H1) and (H3) hold. Then, for each i ∈ Id, the value function

vi is a continuous viscosity solution on (ℓ, r) to the variational inequality :

min

{

ρvi − Livi − fi , vi − max
j 6=i

(vj − gij)

}

= 0, x ∈ (ℓ, r). (3.4)

This means that for all i ∈ Id, we have both supersolution and subsolution properties :

(1) Viscosity supersolution property : for any x̄ ∈ (ℓ, r) and ϕ ∈ C2(ℓ, r) s.t. x̄ is a local

minimum of vi − ϕ, vi(x̄) = ϕ(x̄), we have

min

{

ρϕ(x̄) − Liϕ(x̄) − fi(x̄) , vi(x̄) − max
j 6=i

(vj − gij)(x̄)

}

≥ 0, (3.5)

(2) Viscosity subsolution property : for any x̄ ∈ (ℓ, r) and ϕ ∈ C2(ℓ, r) s.t. x̄ is a local

maximum of vi − ϕ, vi(x̄) = ϕ(x̄), we have

min

{

ρϕ(x̄) − Liϕ(x̄) − fi(x̄) , vi(x̄) − max
j 6=i

(vj − gij)(x̄)

}

≤ 0, (3.6)
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Proof. The arguments of this proof are standard, based on the dynamic programming

principle and Itô’s formula. We defer the proof in the appendix. 2

For any regime i ∈ Id, we introduce the switching region :

Si =

{

x ∈ (ℓ, r) : vi(x) = max
j 6=i

(vj − gij)(x)

}

.

Si is a closed subset of (ℓ, r) and corresponds to the region where it is optimal to change

of regime. The complement set Ci of Si in (ℓ, r) is the so-called continuation region :

Ci =

{

x ∈ (ℓ, r) : vi(x) > max
j 6=i

(vj − gij)(x)

}

,

where one remains in regime i.

Remark 3.1 Let us consider the following optimal stopping problem :

v(x) = sup
τ stopping times

E

[
∫ τ

0
e−ρτf(Xx

t )dt + e−ρτh(Xx
τ )

]

. (3.7)

It is well-know that the dynamic programming principle for (3.7) leads to a variational

inequality for v in the form :

min {ρv −Lv − f , v − h} = 0,

where L is the infinitesimal generator of the diffusion X. Moreover, the state space domain

of X is divided into the stopping region

S = {x : v(x) = h(x)} ,

and its complement set, the continuation region :

C = {x : v(x) > h(x)} .

The smooth-fit principle for optimal stopping problems states that the value function v is

smooth C1 through the boundary of the stopping region, the so-called free boundary, once

h is C1 or convex.

Our aim is to state similar results for optimal switching problems. The main difficulty

comes from the fact that we have a system a variational inequalities, so that the switching

region for vi depend also on the other value functions vj which are not convex or known to

be C1 a priori.

4 The smooth-fit property

We first show, like for optimal stopping problems, that the value functions are smooth C2

in their continuation regions. We provide here a quick proof based on viscosity solutions

arguments.
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Lemma 4.1 Assume that (H1), (H2) and (H3) hold. Then, for all i ∈ Id, the value

function vi is smooth C2 on Ci and satisfies in a classical sense :

ρvi(x) − Livi(x) − fi(x) = 0, x ∈ Ci. (4.1)

Proof. We first check that vi is a viscosity solution to (4.1). Let x̄ ∈ Ci and ϕ a C2 function

on Ci s.t. x̄ is a local maximum of vi − ϕ, vi(x̄) = ϕ(x̄). Then, by definition of Ci, we have

vi(x̄) > maxj 6=i(vj − gij)(x̄), and so from the subsolution viscosity property (3.6) of vi, we

have :

ρϕ(x̄) − Liϕ(x̄) − fi(x̄) ≤ 0.

The supersolution inequality for (4.1) is immediate from (3.5).

Now, for arbitrary bounded interval (x1, x2) ⊂ Ci, consider the Dirichlet boundary linear

problem :

ρw(x) − Liw(x) − fi(x) = 0, on (x1, x2) (4.2)

w(x1) = vi(x1), w(x2) = vi(x2). (4.3)

Under the nondegeneracy condition (H2), classical results provide the existence and unique-

ness of a smooth C2 function w solution on (x1, x2) to (4.2)-(4.3). In particular, this smooth

function w is a viscosity solution of (4.1) on (x1, x2). From standard uniqueness results on

viscosity solutions (here for a linear PDE in a bounded domain), we deduce that vi = w

on (x1, x2). From the arbitrariness of (x1, x2) ⊂ Ci, this proves that vi is smooth C2 on Ci,

and so satisfies (4.1) in a classical sense. 2

We now state an elementary partition property on the switching regions.

Lemma 4.2 Assume that (H1), (H3) and (H4) hold. Then, for all i ∈ Id, we have Si =

∪j 6=iSij where

Sij = {x ∈ Cj : vi(x) = (vj − gij)(x)} .

Proof. Denote S̃i = ∪j 6=iSij. Since we always have vi ≥ maxj 6=i(vj − gij), the inclusion S̃i

⊂ Si is clear.

Conversely, let x ∈ Si. Then there exists j 6= i s.t. vi(x) = vj(x) − gij . We have two

cases :

⋆ if x lies in Cj, then x ∈ Sij and so x ∈ S̃i.

⋆ if x does not lie in Cj, then x would lie in Sj, which means that one could find some

k 6= j s.t. vj(x) = vk(x)− gjk, and so vi(x) = vk(x)− gij − gjk. From condition (H4) and

since we always have vi ≥ vk − gik, this would imply vi(x) = vk(x) − gik. Since cost gik is

positive, we also get that k 6= i. Again, we have two cases : if x lies in Ck, then x lies in Sik

and so in S̃i. Otherwise, we repeat the above argument and since the number of states is

finite, we should necessarily find some l 6= i s.t. vi(x) = vl(x)− gil and x ∈ Cl. This shows

finally that x ∈ S̃i. 2
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Remark 4.1 Sij represents the region where it is optimal to switch from regime i to

regime j and stay here for a moment, i.e. without changing instantaneously from regime j

to another regime.

We can finally prove the smooth-fit property of the value functions vi through the

boundaries of the switching regions.

Theorem 4.1 Assume that (H1), (H2), (H3) and (H4) hold. Then, for all i ∈ Id, the

value function vi is continuously differentiable on (ℓ, r). Moreover, at x ∈ Sij , we have

v′i(x) = v′j(x).

Proof. We already know from Lemma 4.1 that vi is smooth C2 on the open set Ci for all

∈ Id. We have to prove the C1 property of vi at any point of the closed set Si. We denote

for all j ∈ Id, j 6= i, hj = vj − gij and we notice that hj is smooth C1 (actually even C2)

on Cj.

1. We first check that vi admits a left and right derivative v′i,−(x0) and v′i,+(x0) at any

point x0 in Si = ∪j 6=iSij . We distinguish the two following cases :

• Case a) x0 lies in the interior Int(Si) of Si. Then, we have two subcases :

⋆ x0 ∈ Int(Sij) for some j 6= i, i.e. there exists some δ > 0 s.t. [x0 − δ, x0 + δ] ⊂ Sij .

By definition of Sij , we then have vi = hj on [x0 − δ, x0 + δ] ⊂ Cj, and so vi is differentiable

at x0 with v′i(x0) = h′
j(x0).

⋆ There exists j 6= k 6= i in Id and δ > 0 s.t. [x0 − δ, x0] ⊂ Sij and [x0, x0 + δ] ⊂ Sik.

We then have vi = hj on [x0 − δ, x0] ⊂ Cj and vi = hk on [x0, x0 + δ] ⊂ Ck. Thus, vi admits

a left and right derivative at x0 with v′i,−(x0) = h′
j(x0) and v′i,+(x0) = h′

k(x0).

• Case b) x0 lies in the boundary ∂Si = Si \ Int(Si) of Si. We assume that x0 lies in the

left-boundary of Si, i.e. there exists δ > 0 s.t. [x0 − δ, x0) ⊂ Ci (the other case where x0

lies in the right-boundary is dealt with similarly). Recalling that on Ci, vi is solution to :

ρvi − Lvi − fi = 0, we deduce that on [x0 − δ, x0), vi is equal to wi the unique smooth C2

solution to the o.d.e. : ρwi − Lwi − fi = 0 with the boundaries conditions : wi(x0 − δ) =

vi(x0 − δ), wi(x0) = vi(x0). Therefore, vi admits a left derivative at x0 with v′i,−(x0) =

w′
i(x0). In order to prove that vi admits a right derivative, we distinguish the two subcases :

⋆ There exists j 6= i in Id and δ′ > 0 s.t. [x0, x0 + δ′] ⊂ Sij . Then, on [x0, x0 + δ′], vi is

equal to hj . Hence vi admits a right derivative at x0 with v′i,+(x0) = h′
j(x0).

⋆ Otherwise, for all j 6= i, we can find a sequence (xj
n) s.t. xj

n ≥ x0, xj
n /∈ Sij and xj

n →

x0. By a diagonalization procedure, we construct then a sequence (xn) s.t. xn ≥ x0, xn /∈

Sij for all j 6= i, i.e. xn ∈ Ci, and xn → x0. Since Ci is open, there exists then δ′′ > 0 s.t.

[x0, x0 + δ′′] ⊂ Ci. We deduce that on [x0, x0 + δ′′], vi is equal to ŵi the unique smooth C2

solution to the o.d.e. ρŵi − Lŵi − fi = 0 with the boundaries conditions ŵi(x0) = vi(x0),

ŵi(x0 + δ′′) = vi(x0 + δ′′). In particular, vi admits a right derivative at x0 with v′i,+(x0) =

ŵ′
i(x0).

2. Consider now some point in Si eventually on its boundary. We recall again that from

Lemma 4.2, there exists some j 6= i s.t. x0 ∈ Sij : vi(x0) = hj(x0), and hj is smooth C1on

9



x0 in Cj . Since vj ≥ hj , we deduce that

vi(x) − vi(x0)

x − x0
≤

hj(x) − hj(x0)

x − x0
, ∀ x < x0

vi(x) − vi(x0)

x − x0
≥

hj(x) − hj(x0)

x − x0
, ∀ x > x0,

and so :

v′i,−(x0) ≤ h′
j(x0) ≤ v′i,+(x0).

We argue by contradiction and suppose that vi is not differentiable at x0. Then, in view

of the above inequality, one can find some p ∈ (v′i,−(x0), v
′
i,+(x0)). Consider, for ε > 0, the

smooth C2 function :

ϕε(x) = vi(x0) + p(x − x0) +
1

2ε
(x − x0)

2.

Then, we see that vi dominates locally in a neighborhood of x0 the function ϕε, i.e x0 is

a local minimum of vi − ϕε. From the supersolution viscosity property of vi to the PDE

(3.4), this yields :

ρϕε(x0) − Liϕε(x0) − fi(x0) ≥ 0,

which is written as :

ρvi(x0) − bi(x0)p − fi(x0) −
1

2ε
σ2

i (x0) ≥ 0.

Sending ε to zero provides the required contradiction under (H2). We have then proved

that for x0 ∈ Sij , v′i(x0) = h′
j(x0) = v′j(x0). 2

Appendix: Proof of Theorem 3.1

(1) Viscosity supersolution property.

Fix i ∈ Id. Consider any x̄ ∈ (ℓ, r) and ϕ ∈ C2(ℓ, r) s.t. x̄ is a minimum of vi − ϕ in a

neighborhood Bε(x̄) = (x̄−ε, x̄+ε) of x̄, ε > 0, and vi(x̄) = ϕ(x̄). By taking the immediate

switching control τ1 = 0, κ1 = j 6= i, τn = ∞, n ≥ 2, and θ = 0 in the relation (3.2), we

obtain

vi(x̄) ≥ vj(x̄) − gij , ∀j 6= i. (A.1)

On the other hand, by taking the no-switching control τn = ∞, n ≥ 1, i.e. Ii
t = i, t ≥ 0,

X x̄,i stays in regime i with diffusion coefficients bi and σi, and θ = τε ∧ h, with h > 0 and

τε = inf{t ≥ 0 : X x̄,i
t /∈ Bε(x̄)}, we get from (3.2) :

ϕ(x̄) = vi(x̄) ≥ E

[
∫ θ

0
e−ρtfi(X

x̄,i
t )dt + e−ρθvi(X

x̄,i
θ )

]

≥ E

[
∫ θ

0
e−ρtfi(X

x̄,i
t )dt + e−ρθϕ(X x̄,i

θ )

]
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By applying Itô’s formula to e−ρtϕ(X x̄,i
t ) between 0 and θ = τε ∧ h and plugging into the

last inequality, we obtain :

1

h
E

[
∫ τε∧h

0
e−ρt (ρϕ − Liϕ − fi) (X x̄,i

t )

]

≥ 0.

From the dominated convergence theorem, this yields by sending h to zero :

(ρϕ − Liϕ − fi)(x̄) ≥ 0.

By combining with (A.1), we obtain the required supersolution inequality (3.5).

(2) Viscosity subsolution property.

Fix i ∈ Id, and consider any x̄ ∈ (ℓ, r) and ϕ ∈ C2(ℓ, r) s.t. x̄ is a maximum of vi − ϕ

in a neighborhood Bε(x̄) = (x̄ − ε, x̄ + ε) of x̄, ε > 0, and vi(x̄) = ϕ(x̄). We argue by

contradiction by assuming on the contrary that (3.6) does not hold so that by continuity

of vi, vj, j 6= i, ϕ and its derivatives, there exists some 0 < δ ≤ ε s.t.

(ρϕ − Liϕ − fi)(x) ≥ δ, ∀x ∈ Bδ(x̄) = (x − δ, x + δ) (A.2)

vi(x) − max
j 6=i

(vj − gij)(x) ≥ δ, ∀x ∈ Bδ(x̄). (A.3)

For any α = (τn, κn)n≥1 ∈ A, consider the exit time τδ = inf{t ≥ 0 : X x̄,i
t /∈ Bδ(x̄)}. By

applying Itô’s formula to e−ρtϕ(X x̄,i
t ) between 0 and θ = τ1 ∧ τδ, we have by noting that

before θ, Xx,i stays in regime i and in the ball Bδ(x̄) ⊂ Bε(x̄) :

vi(x̄) = ϕ(x̄) = E

[
∫ θ

0
e−ρt(ρϕ − Liϕ)(X x̄,i

t )dt + e−ρθϕ(X x̄,i
θ )

]

≥ E

[
∫ θ

0
e−ρt(ρϕ − Liϕ)(X x̄,i

t )dt + e−ρθvi(X
x̄,i
θ )

]

. (A.4)

Now, since θ = τδ ∧ τ1, we have

e−ρθv(X x̄,i
θ , Ii

θ) −
∑

τn≤θ

gκn−1,κn = e−ρτ1
(

v(X x̄,i
τ1

, κ1) − giκ1

)

1τ1≤τδ
+ e−ρτδvi(X

x̄,i
τδ

)1τδ<τ1

≤ e−ρτ1
(

vi(X
x̄,i
τ1

) − δ
)

1τ1≤τδ
+ e−ρτδvi(X

x̄,i
τδ

)1τδ<τ1

= e−ρθvi(X
x̄,i
θ ) − δe−ρτ11τ1≤τδ

,

where the inequality follows from (A.3). By plugging into (A.4) and using (A.2), we get :

vi(x̄) ≥ E





∫ θ

0
e−ρtfi(X

x̄,i
t )dt + e−ρθv(X x̄,i

θ , Ii
θ) −

∑

τn≤θ

gκn−1,κn





+ δ E

[
∫ θ

0
e−ρtdt + e−ρτ11τ1≤τδ

]

. (A.5)

We now claim that there exists some positive constant c0 > 0 s.t. :

E

[
∫ θ

0
e−ρtdt + e−ρτ11τ1≤τδ

]

≥ c0, ∀α ∈ A.
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For this, we construct a smooth function w s.t.

max {ρw(x) − Liw(x) − 1 , w(x) − 1} ≤ 0, ∀x ∈ Bδ(x̄) (A.6)

w(x) = 0, ∀x ∈ ∂Bδ(x̄) = {x : |x − x̄| = δ}(A.7)

w(x̄) > 0. (A.8)

For instance, we can take the function w(x) = c0

(

1 − |x−x̄|2

δ2

)

, with

0 < c0 ≤ min







(

ρ +
2

δ
sup

x∈Bδ(x̄)
|bi(x)| +

1

δ2
sup

x∈Bδ(x̄)
|σi(x)|2

)−1

, 1







.

Then, by applying Itô’s formula to e−ρtw(X x̄,i
t ) between 0 and θ = τδ ∧ τ1, we have :

0 < c0 = w(x̄) = E

[
∫ θ

0
e−ρt(ρw − Liw)(X x̄,i

t )dt + e−ρθw(X x̄,i
θ )

]

≤ E

[
∫ θ

0
e−ρtdt + e−ρτ11τ1≤τδ

]

,

from (A.6), (A.7) and (A.8). By plugging this last inequality (uniform in α) into (A.5), we

then obtain :

vi(x̄) ≥ sup
α∈A

E





∫ θ

0
e−ρtfi(X

x̄,i
t )dt + e−ρθv(X x̄,i

θ , Ii
θ) −

∑

τn≤θ

gκn−1,κn



 + δc0,

which is in contradiction with the dynamic programming principle (3.2).
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