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We study theoretically and experimentally the quantum properties of a type II frequency degener-
ate optical parametric oscillator below threshold with a quarter-wave plate inserted inside the cavity
which induces a linear coupling between the orthogonally polarized signal and idler fields. This orig-
inal device provides a good insight into general properties of two-mode gaussian states, illustrated
in terms of covariance matrix. We report on the experimental generation of two-mode squeezed
vacuum on non-orthogonal quadratures depending on the plate angle. After a simple operation,
the entanglement is maximized and put into standard form, i.e. quantum correlations and anti-
correlations on orthogonal quadratures. A half-sum of squeezed variances as low as 0.33±0.02, well
below the unit limit for inseparability, is obtained and the entanglement measured by the entropy
of formation.

PACS numbers: 03.67.Mn, 42.65.Yj, 42.50.Dv, 42.50.Lc

I. INTRODUCTION

The dynamic and promising field of quantum infor-
mation with continuous variables aroused a lot of inter-
est and a large number of protocols has been proposed
and implemented [1]. Continuous variable entanglement
plays a central role and constitutes the basic requisite
of most of these developments. Such a ressource can be
generated by mixing on a beam-splitter two independent
squeezed beams produced for instance by type-I OPAs
[2, 3] or by Kerr effect in a fiber [4]. The use of a light
field interacting with a cloud of cold atoms in cavity has
also been recently reported [5]. Another way is to use
a type-II OPO below threshold – with vacuum [6, 7] or
coherent injection [8] – which directly provides orthogo-
nally polarized entangled beams.

We propose here to explore the quantum properties
of an original device – called a ”self-phase-locked OPO”
– which consists of a type-II OPO with a quarter-wave
plate inserted inside the cavity [9]. The plate – which
can be rotated relative to the principal axis of the crystal
– adds a linear coupling between the orthogonally polar-
ized signal and idler fields. It has been shown that such a
device above threshold opens the possibility to produce
frequency degenerate bright EPR beams thanks to the
phase-locking resulting from the linear coupling induced
by the rotated plate [10, 11]. Such a device can also be
operated below threshold and exhibits a very rich quan-
tum behavior. The paper is devoted to this below thresh-
old regime from a theoretical and experimental point of
view. The properties are interpreted in terms of covari-
ance matrix and give an interesting insight into the non-
classical properties of two-mode gaussian states – such as
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squeezing, entanglement and their respective links. The
strongest EPR entanglement to date is then reported.

The paper is organized as follows. In Sec.II, we de-
scribe the quantum state generated by a self-phase-locked
type II OPO below threshold. The correlated quadra-
tures and the amount of entanglement depend on the
angle of the wave-plate. Different regimes are identified
and a necessary operation to maximize entanglement is
described and interpreted in terms of covariance matrix
and logarithmic negativity. The experimental setup is
presented in Sec.III and a detection scheme relying on
two simultaneous homodyne detections is detailed. Sec-
tion IV is devoted to the experimental results. In Sec.V,
the main conclusions of the experimental work are sum-
marized and the extension to the above threshold regime
discussed.

II. THEORY OF SELF-PHASE-LOCKED OPO

BELOW THRESHOLD

In this section, we present a theoretical analysis of the
quantum properties of the self-phase-locked OPO below
threshold by the usual linearization technique [12]. Indi-
vidual quantum noise properties of the signal and idler
modes as well as their correlations are derived.

A. Linearized equations with linear coupling

The self-phase-locked type II OPO is sketched in Fig.
1. A quarter-wave plate and a type-II phase matched χ(2)

crystal are both inserted inside a triply resonant linear
cavity. The plate can be rotated by an angle ρ with
respect to the crystal neutral axes. In this paper, we will
restrict ourselves to small values of ρ.

mailto:coudreau@spectro.jussieu.fr
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FIG. 1: Linear cavity OPO with a quarter-wave plate. When
rotated relatively to the principal axes of the type-II phase-
matched crystal, this plate adds a linear coupling between
orthogonally polarized signal and idler fields. Vacuum fluctu-
ations can enter the system through the output mirror or the
various losses.

The damping rate is assumed to be the same for the
signal and idler modes. As the finesse is high, we note r =
1−κ the amplitude reflection coefficient for these modes,
with κ≪ 1. The intensity transmission coefficient is thus
approximatively equal to 2κ. To take into account the
additional losses undergone by the signal and idler modes
(crystal absorption, surface scattering), we introduce a
generalized reflection coefficient r′ = 1−κ′ = 1− (κ+µ).
For the sake of simplicity, all coefficients are assumed to
be real and the phase matching will be taken perfect. The
influence of different reflection phase-shifts on the cavity
mirrors for the interacting waves has been detailed in
Ref. [10] in the above threshold regime and will not be
considered here.

We assume that the signal and idler modes are close
to resonance and note ∆1 and ∆2 their small round trip
phase detunings. The equations of motion for the clas-
sical field amplitudes – which are noted A1 and A2 for
the signal and idler modes and A0 for the pump – can be
written as

τ
dA1

dt
= A1(−κ′ + i∆1) + gA0A

∗
2 + 2iρei(θ−ψ)A2

τ
dA2

dt
= A2(−κ′ + i∆2) + gA0A

∗
1 + 2iρei(ψ−θ)A1 (1)

where τ stands for the cavity round-trip time, Ain0 for the
input pump amplitude and g for the parametric gain. θ
and ψ are respectively the birefringent phase shift intro-
duced by the crystal and by the waveplate. The last term
of these equations corresponds to the linear coupling in-
duced by the rotated plate.

We will only consider the case where ∆1 = ∆2 = 2ρ
and θ = ψ. At this operating point the threshold is
minimum [10]. In this case, the equations of motion are
simpler and are written

τ
dA1

dt
= A1(−κ′ + 2iρ) + gA0A

∗
2 + 2iρA2

τ
dA2

dt
= A2(−κ′ + 2iρ) + gA0A

∗
1 + 2iρA1 (2)

A non-zero stationary solution exists if and only if the
pump power A0, taken real, exceeds the threshold power

equal to κ′

g . We define a reduced pumping parameter

σ equal to the input pump amplitude normalized to the
threshold. The below threshold regime corresponds to
σ < 1.

These equations are linearized around the stationary
values by setting Ai = Ai + δAi. In the below thresh-
old regime, the mean value of A1 and A2 are zero. The
linearized equations can then be written

− τ

κ′
d(δA1)

dt
= δA1(1 − ic) − σδA∗

2 − icδA2

−
√

2κ

κ′
δAin1 −

√
2µ

κ′
δBin1

− τ

κ′
d(δA2)

dt
= δA2(1 − ic) − σδA∗

1 − icδA1

−
√

2κ

κ′
δAin2 −

√
2µ

κ′
δBin2 (3)

where c = 2ρ
κ′

. δAini and δBini correspond to the vacuum
fluctuations entering the cavity due respectively to the
coupling mirror and to the losses.

One can note that the fluctuations of the pump are
not coupled to the signal and idler modes in the be-
low threshold regime. It is obviously not the case above
threshold and this point can explain in particular why
the experimental observation above threshold of phase
anti-correlations below the standard quantum limit is a
difficult task [13].

B. Variances

The fluctuations can be evaluated by taking the
Fourier transform of the previous equations which leads
to algebraic equations. We introduce the parameter
Ω = ωτ

2κ′
= ω

Ωc

, which is the noise frequency normalized
to the cavity bandwidth Ωc. In the Fourier domain, the
equations become

(1 − ic+ 2iΩ)δÃ1(Ω) − σδÃ∗
2(−Ω) − icδÃ2(Ω)−√

2κ

κ′
δÃin1 (Ω) −

√
2µ

κ′
δB̃in1 (Ω) = 0

(1 − ic+ 2iΩ)δÃ2(Ω) − σδÃ∗
1(−Ω) − icδÃ1(Ω)−√

2κ

κ′
δÃin2 (Ω) −

√
2µ

κ′
δB̃in2 (Ω) = 0 (4)

From these equations and their conjugates, one can
determine the variance spectra of the signal and idler
modes and their correlations. We define the fluctuations
of the modes Ai for a given quadrature angle ϕ and a
given noise frequency Ω by

pi(ϕ) = δÃi(Ω)e−iϕ + δÃ∗
i (−Ω)eiϕ (5)

The equation of motion for the fluctuations can thus
take the following form

(1 + 2iΩ)p1(ϕ) − σp2(−ϕ) + c(p1(ϕ+ π/2)
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+p2(ϕ+ π/2)) −
√

2κ

κ′
pin1 −

√
2µ

κ′
pin

′

1 = 0

p2(−ϕ)(1 + 2iΩ)− σp1(ϕ) + c(p2(−ϕ+ π/2)

−p1(−ϕ+ π/2)) −
√

2κ

κ′
pin2 −

√
2µ

κ′
pin

′

2 = 0(6)

where pini and pin
′

i correspond to the phase-insensitive
vacuum fluctuations entering the system.

When c = 0, these equations are identical to the ones
of a traditional type II OPO below threshold where only
the quadratures with phases ±ϕ can interact. When the
plate is rotated, the phase dependence becomes more
complicated since orthogonal quadratures are coupled.
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FIG. 2: Angle of the minimal noise quadrature and corre-
sponding normalized variance as a function of the coupling
parameter. Close to c = 0, the noise diverges and is phase-
insensitive. Ω = 0, σ = 0.9, κ = κ′.

By introducing the simplified notations

p1 = p1

(
ϕ1

)
q1 = p1

(
ϕ1 +

π

2

)

p2 = p2

(
ϕ2

)
q2 = p2

(
ϕ2 +

π

2

)
(7)

with ϕ1 = π/2 and ϕ2 = −π/2, the equations of motion
can be rewritten in the form

(1 + 2iΩ)p1 − σp2 + c(q1 − q2)

−
√

2κ

κ′
pin1 −

√
2µ

κ′
pin

′

1 = 0

p2(1 + 2iΩ)− σp1 + c(q2 − q1)

−
√

2κ

κ′
pin2 −

√
2µ

κ′
pin

′

2 = 0

q1(1 + 2iΩ) + σq2 + c(p2 − p1)

−
√

2κ

κ′
qin1 −

√
2µ

κ′
qin

′

1 = 0

q2(1 + 2iΩ) + σq1 + c(p1 − p2)

−
√

2κ

κ′
qin2 −

√
2µ

κ′
qin

′

2 = 0 (8)

The system made up of these 4 equations and the 4 equa-
tions obtained by changing Ω in −Ω gives the intra-cavity
fluctuations. The fluctuations of the output modes are
obtained by the boundary condition on the output mirror

pouti (Ω) =
√

2κpi(Ω) − pini (9)

The variances of a component pouti is then derived from

Spout

i

(Ω) =< pouti (Ω) pouti (−Ω) > (10)

The variances of the uncorrelated vacuum contributions
entering the system are normalized to 1.

C. Signal and idler fluctuations

When the plate is not rotated (c = 0), the signal and
idler modes exhibit phase-insensitive excess noise. The
single-beam noise spectrum for the signal (or the idler)
can be written

Sp1 = Sq1 = 1 +
8σ2

(4Ω2 + (σ − 1)2)(4Ω2 + (σ + 1)2)

κ

κ′
(11)

It is not the case when the plate is rotated. The noise
becomes phase-sensitive and the noise spectrum is given
by

S(ϕ) = Sp1 cos(ϕ)2 + Sq1 sin(ϕ)2 + α cos(2ϕ) (12)

with

Sp1 = 1 +
8σ(σ((σ − 1)2 + 4Ω2) − c2(4Ω2 − 4(1 + c2) + (σ + 1)2)

(4Ω2 + (σ − 1)2)(16Ω2 + (4Ω2 − 4c2 + σ2 − 1)2)

κ

κ′

Sq1 = 1 +
8σ(σ((σ + 1)2 + 4Ω2) + c2(4Ω2 − 4(1 + c2) + (σ − 1)2)

(4Ω2 + (σ + 1)2)(16Ω2 + (4Ω2 − 4c2 + σ2 − 1)2)

κ

κ′

α =
−8σc

16Ω2 + (4Ω2 − 4c2 + σ2 − 1)2
κ

κ′
(13)

Figure 2 shows the evolution of the minimal noise quadrature angle and of the corresponding noise power
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as a function of the coupling parameter. When the cou-
pling parameter c increases, this quadrature rotates. For
strong coupling, the minimal noise quadrature is closer
and closer to the quadrature q1 and q2 and the noise can
be squeezed well below the standard quantum limit.

D. Correlations and anti-correlations

After considering the individual fluctuations of signal
and idler modes, we study here the intermodal correla-
tions.

Let us introduce the superposition modes oriented
±45◦ from the axes of the crystal

A+ =
A1 +A2√

2
and A− =

A1 −A2√
2

It should be stressed that considering the noise spectrum
of the sum or difference of signal and idler fluctuations
is equivalent to considering the noise spectrum of the
rotated modes. If signal and idler exhibit correlations
or anti-correlations, these two modes can have squeezed
fluctuations as their noise spectra are given by

SA+
(ϕ) =

1

2
Sp1(ϕ)+p2(ϕ) and SA−

(ϕ) =
1

2
Sp1(ϕ)−p2(ϕ)

The amount of entanglement between signal and idler
can be directly inferred from the amount of squeezing
available on these superposition modes.

The expressions for the anti-correlations between sig-
nal and idler modes coincide with the ones obtained in
the case of a standard OPO below threshold

Sq1+q2 = 1 − 4σ

4Ω2 + (σ + 1)2
κ

κ′

Sp1+p2 = 1 +
4σ

4Ω2 + (σ − 1)2
κ

κ′
(14)

The combination (q1 + q2) is always squeezed below the
standard quantum limit while (p1 + p2) is very noisy.
Perfect anti-correlations are found at exact threshold in
the absence of additional losses (κ = κ′) and at zero
frequency.

In contrast with the anti-correlations, the correlations
largely depend on the presence of the plate. The variance
spectrum is found to be

SA−
(ϕ) = Sp1−p2 cos(ϕ)2 + Sq1−q2 sin(ϕ)2 + 2α cos(2ϕ)(15)

where α has been defined in Eq. (13) and

Sp1−p2 = 1 − 4σ(4Ω2 − 4c2 + (σ − 1)2)

16Ω2 + (4Ω2 − 4c2 + σ2 − 1)

κ

κ′

Sq1−q2 = 1 +
4σ(4Ω2 − 4c2 + (σ + 1)2)

16Ω2 + (4Ω2 − 4c2 + σ2 − 1)

κ

κ′
(16)

In a standard OPO below threshold – without a linear
coupling – the correlated quadratures are orthogonal to

the anti-correlated ones. It is not anymore the case when
a coupling is introduced. The evolution is depicted in
Fig. 3. When the plate angle increases, the correlated
quadratures rotates and the correlations are degraded.

A+

A-

q

A+
A-

q

A+

A-

FIG. 3: Fresnel representation of the noise ellipse of the ±45◦

rotated modes when the plate angle is increased. Without
coupling, squeezing is predicted on orthogonal quadratures.
The noise ellipse of the −45◦ mode rotates and the noise re-
duction is degraded when the coupling increases while the
+45◦ rotated mode is not affected.

We can derive from Eqs (15) and (16) a simple expres-
sion for the tilt angle θ of the noise ellipse

tan(2θ) =
4c

4Ω2 − 4c2 + σ2 + 1
(17)

Figure 4 gives the tilt angle of the noise ellipse and the
noise variance of the squeezed quadrature as a function
of the coupling parameter.
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FIG. 4: Angle θ of the minimal noise quadrature and cor-
responding normalized variance as a function of the coupling
parameter c. Ω = 0, σ = 0.9, κ = κ′.

As a first conclusion, optimal correlations and anti-
correlations are observed on non-orthogonal quadratures
depending on the plate angle. In order to maximize the
entanglement between the signal and idler modes, the
optimal quadratures have to be made orthogonal [14].
Such an operation consists in a phase-shift of A− rela-
tive to A+. This transformation is thus ”non-local” in
the sense of the EPR argument: it involves the two con-
sidered modes, signal and idler, and therefore has to be
performed before spatially separating them.
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ΓA1A2
=




181.192 0 179.808 −0.255
0 0.386 −0.255 −0.383

179.808 −0.255 181.192 0

−0.255 −0.383 0 0.386


 =⇒ Γ′

A1A2
=




180.839 0 180.161 0

0 0.739 0 −0.736

180.161 0 180.839 0

0 −0.736 0 0.739




ΓA+A−
=




361 0 0 0

0 0.00277 0 0

0 0 1.383 −0.256

0 0 −0.256 0.770


 =⇒ Γ′

A+A−
=




361 0 0 0

0 0.00277 0 0

0 0 0.677 0

0 0 0 1.476




FIG. 5: Numerical example of covariance matrix of the A1/A2 modes and the A+/A− modes before and after the non-local
operation for a coupling parameter c = 1.5. (σ = 0.9, Ω = 0, κ = κ′)

E. In terms of covariance matrix

The behavior of the system and the optimization of
the degree of entanglement can be formulated in terms
of covariance matrix. We recall that a two-mode gaus-
sian state with zero mean value is fully described by the
covariance matrix ΓAB defined as

ΓAB =

(
γA σAB
σTAB γB

)
(18)

γA and γB are the covariance matrix of the individ-
ual modes while σAB describes the intermodal correla-
tions. The elements of the covariance matrix are writ-
ten Γij = 〈δRiδRj + δRjδRi〉/2 where R{i,i=1,..,4} =
{XA, YA, XB, YB}. X and Y corresponds to an arbitrary
orthogonal basis of quadratures.

In order to measure the degree of entanglement of
Gaussian states, a simple computable formula of the log-
arithmic negativity EN has been obtained in Ref. [15]
(see also [16] for a general overview). EN can be easily
evaluated from the largest positive symplectic eigenvalue
ξ of the covariance matrix which can be obtained from

ξ2 =
1

2
(D −

√
D2 − 4 det ΓAB ) (19)

with

D = det γA + det γB − 2 detσAB (20)

The two-mode state is entangled if and only if ξ < 1.
The logarithmic negativity can thus be expressed by
EN = − log2(ξ). This measurement is monotone and can
not increase under LOCC (local operations and classical
communications). The maximal entanglement which can
be extracted from a given two-mode state by passive op-
erations is related to the two smallest eigenvalues of Γ,
λ1 and λ2, by EmaxN = − log2(λ1λ2)/2 [14].

Phase-shifting of A+ and A− into A+ e
iθ/2 and

A− e
−iθ/2 corresponds to a transformation of the signal

and idler modes A1 and A2 described by the matrix

M =

(
cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

)

The angle θ is given by Eq.(17). Such a transformation
couples the signal and idler modes.

We give here a numerical example for realistic ex-
perimental values c = 1.5, σ = 0.9 and Ω = 0. The
covariance matrix for the A1/A2 modes and also for the
A+/A− modes are given in Fig. 5 with and without
the phase-shift. The matrix of the A+/A− modes are
well-suited to understand the behavior of the device. At
first, the intermodal blocks are zero, showing that these
two modes are not at all correlated and consequently
are the most squeezed modes of the system. There
is no way to extract more squeezing. But one can
also note that the diagonal blocks are not diagonalized
simultaneously. This corresponds to the tilt angle θ
of the squeezed quadrature of A− and given by Eq.
(17). A phase-shift of the angle θ permits to diagonalize
simultaneously the two blocks and to obtain squeezing
on orthogonal quadratures. From the matrix on the
A1/A2 modes, one can quantify the degree of entangle-
ment by the logarithmic negativity EN . Thanks to the
non-local operation, EN goes from 4.06 to 4.53. The
maximal entanglement available has been extracted as
EmaxN = − log2(λ1λ2)/2 = 4.53. Let us finally note that
due to the strong coupling the signal and idler modes
are entangled but also slightly squeezed.

A self-phase locked OPO below threshold can gener-
ate very strong entangled modes when the plate angle
is small enough. The quantum behavior of the device is
very rich and gives a good insight into two-mode gaus-
sian state properties and entanglement characterization.
The previous interpretation in terms of covariance ma-
trix establishes a link between the optimal entanglement
that can be extracted and the eigenvalues of the matrix.
The way to find it by a non-local operation is developed.
The next section is devoted to the experimental study of
this original device.
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FIG. 6: Experimental setup. A continuous-wave frequency-doubled Nd:YAG laser pumps below threshold a type II OPO with
a λ/4 plate inserted inside the cavity. The generated two-mode vacuum state is characterized by two simultaneous homodyne
detections. The infrared output of the laser is used as local oscillator after filtering by a high-finesse cavity. The two couples
{λ/4, λ/2} on each path are used to make arbitrary phase shift between orthogonal components of polarization. PD Lock:
FND-100 photodiode for locking of the OPO. PD Split: split two-element InGaAs photodiode for tilt-locking of the filtering
cavity.

III. EXPERIMENTAL SETUP

Our experimental setup is based on a frequency degen-
erate type II OPO below threshold. A λ/4 plate inserted
within the OPO adds a linear coupling between the sig-
nal and idler modes which depends on the angle of the
plate relative to the principal axes of the crystal . Two
simultaneous homodyne detections are implemented.

A. OPO and linear coupling

The experimental setup is shown in Fig. 6. A continu-
ous frequency-doubled Nd:YAG laser (”Diabolo” without
”noise eater option”, Innolight GmbH) pumps a triply
resonant type II OPO, made of a semi-monolithic linear
cavity : in order to increase the mechanical stability and
reduce the reflection losses, the input flat mirror is di-
rectly coated on one face of the 10mm-long KTP crystal
(θ = 90◦, ϕ = 23.5◦, Raicol Crystals Ltd.). The re-
flectivities for the input coupler are 95% for the pump
(532nm) and almost 100% for the signal and idler beams
(1064nm). The output coupler (R=38mm) is highly re-
flecting for the pump and its transmission is 5% for
the infrared. At exact triple resonance, the oscillation
threshold is less than 20 mW, very close to the thresh-
old without the plate [17]. The OPO is actively locked
on the pump resonance by the Pound-Drever-Hall tech-
nique: a remaining 12MHz modulation present in the
laser is detected by reflection and the error signal is sent
to a home-made PI controller. The crystal temperature
is thoroughly controlled within the mK range. The OPO

can operate stably during more than one hour without
mode-hopping.

The birefringent plate inserted inside the cavity is cho-
sen to be exactly λ/4 at 1064 nm and almost λ at the 532
nm pump wavelength. As birefringence and dispersion
are of the same order, this configuration is only possi-
ble by choosing multiple-order plate: we have chosen the
first order for which exact λ/4 at 1064 nm is obtained, i.e.
4.75λ at 1064 nm and 9.996λ at 532 nm. Very small rota-
tions of this plate around the cavity axis can be operated
thanks to a rotation mount controlled by piezo-electric
actuator (New Focus Model 8401 and tiny pico-motor).

B. Two simultaneous homodyne detections

The coherent 1064 nm laser output is used as local
oscillator for homodyne detection. This beam is spatially
filtered and intensity-noise cleaned by a triangular-ring
45 cm-long cavity with a high finesse of 3000. This cavity
is locked on the maximum of transmission by the single-
pass tilt-locking technique [18] and 80% of transmission
is obtained. The homodyne detections are based on pairs
of balanced high quantum efficiency InGaAs photodiodes
(Epitaxx ETX300 with a 95% quantum efficiency) and
the fringe visibility reaches 0.97. The shot noise level
of all measurements is easily obtained by blocking the
output of the OPO.

Orthogonally polarized modes are separated on the
first polarizing beam splitter at the output of the OPO.
A half-wave plate inserted before this polarizing beam
splitter enables us to choose the fields to characterize:
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the signal and idler modes which are entangled, or the
±45◦ rotated modes which are squeezed.

One main requirement of our experiment is to be able
to characterize simultaneously two modes with the same
phase reference. The difference photocurrents of the ho-
modyne detections are sent into two spectrum analyzers
(Agilent E4411B) which are triggered by the same signal.
The two homodyne detections are calibrated in order to
be in phase: if one send into each detection a state of light
with squeezing on the same quadrature, the noise powers
registered on the spectrum analyzers must have in-phase
variations while scanning the local oscillator phase. Two
birefringent plates, λ/2 and λ/4, inserted in the local os-
cillator path are rotated in order to compensate residual
birefringence due in particular to defects associated to
polarizing beam splitter. In others words, after this cor-
rection, the polarization of the local oscillator is slightly
elliptical. To facilitate this tuning, the OPO is operated
above threshold in the locking zone where frequency de-
generacy occurs. A polarizing beam splitter inserted at
the OPO output and a λ/2 plate rotated by 22.5◦ per-
mit to send into the two homodyne detections states of
light with opposite phase. Then, we look at the DC in-
terference fringes which have to be in opposition. We
check this calibration by sending into the homodyne de-
tections a squeezed vacuum. When scanning the local
oscillator phase, the noise variance measured in each ho-
modyne detection follow simultaneous variations. A λ/4
plate can be added on the beam exiting the OPO, just
before the homodyne detections: when this plate is in-
serted, the homodyne detections are in quadrature. In
such a configuration, two states of light with squeezing
on orthogonal quadratures give in-phase squeezing curves
on the spectrum analyzers.

IV. EXPERIMENTAL ENTANGLEMENT

In this section, we report on the experimental results
obtained for different values of the coupling parameter.
As underlined before, we characterize the noise of the
±45◦ rotated modes which have squeezed fluctuations.

A. Without linear coupling

In a first series of experiments, the plate angle is ad-
justed to be almost zero. This tuning can be done by
looking at the individual noises which should be in that
case phase-insensitive. Squeezing of the rotated modes
is thus expected on orthogonal quadratures, as it is well-
known for a standard OPO. Typical spectrum analyser
traces while scanning the local oscillator phase are shown
on Fig. 7. Normalized noise variances of the ±45◦ vac-
uum modes at a given noise frequency of 3.5 MHz are
superimposed for in-phase and in-quadrature homodyne
detections. One indeed observes, as expected, correla-

tions and anti-correlations of the emitted modes on or-
thogonal quadratures.
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FIG. 7: Normalized noise variances at 3.5 MHz of the ±45◦

modes while scanning the local oscillator phase. The first plot
corresponds to in-phase homodyne detections and the second
one in-quadrature. Squeezing is well observed on orthogonal
quadratures. The resolution bandwidth is set to 100 kHz and
the video bandwidth to 1 kHz.

Figure 8 gives the simultaneous measurement of the
noise reductions for a locked local oscillator phase.
−4.3±0.3 dB and −4.5±0.3 dB below the standard quan-
tum limit are obtained for the two rotated modes. After
correction of the electronic noise, the amounts of squeez-
ing reach −4.7± 0.3 dB and −4.9± 0.3 dB. These values
have to be compared to the theoretical value expressed
in Eq. (14). By taking σ = 0.9, Ω = 0.1, κ = 0.025
and κ′ = 0.03, the expected value before detection is
−7.5 dB. The detector quantum efficiency is estimated
to 0.95, the fringe visibility is 0.97 and the propagation
efficiency is evaluated around 0.99. These values give an
overall detection efficiency of 0.95 · 0.972 · 0.99 = 0.88.
After detection, the expected squeezing is thus reduced
to −5.5 dB. The small discrepancy with the experimen-
tal values can be due to the presence of walk-off which
limits the modes overlap, a critical point for two-mode
squeezing.

From the electronic noise corrected squeezing values,
one can infer the Duan and Simon inseparability crite-
rion defined as the half sum ∆ of the squeezed variances
[19, 20]. For a symmetric gaussian two-mode state, this
criterion is a necessary and sufficient condition of non-
separability. We obtained a value of ∆ = 0.33 ± 0.02
well below the unit limit for inseparability. It is worth
noting that the simultaneous double homodyne detection
permits a direct and instantaneous verification of this cri-
terion by adding the two squeezed variances.

The EPR criterion is related to an apparent violation
of a Heisenberg inequality [21]: the information extracted
from the measurement of the two quadratures of one
mode provides values for the quadratures of the other
mode that violate the Heisenberg inequality. This crite-
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FIG. 8: Normalized noise variances at 3.5 MHz of the ±45◦

modes and inseparability criterion for signal and idler modes.
The homodyne detections are in-quadrature. After correc-
tion of the electronic noise, the inseparability criterion reaches
0.33 ± 0.02. The resolution bandwidth is set to 100 kHz and
the video bandwidth to 300 Hz.

rion is related to the product of conditional variances:
VP1|P2

VQ1|Q2
< 1 where Pi et Qi are two conjugate

quadratures and VX1|X2
the conditional variance of X1

knowing X2. The knowledge of the previous squeezed
quadratures and of the individual noise of the entangled
modes give the conditional variances. The noise of signal
and idler modes are phase-insensitive and reach 8.2± 0.5
dB above shot noise (fig. 11). We obtained thus a prod-
uct of conditional variances equal to 0.42 ± 0.05, which
confirms the EPR character of the measured correlations.

The entanglement can be quantified by the entropy
of formation – or entanglement of formation EOF – for
symmetric gaussian states introduced in Ref.[22], which
represents the amount of pure state entanglement needed
to prepare the entangled state. This entropy can be di-
rectly derived from the inseparability criterion value ∆
by

EOF = c+ log2(c+) − c− log2(c−) (21)

with

c± = (∆−1/2 ± ∆1/2)2/4 (22)

From this expression, we calculate an entanglement of
formation value of EOF = 1.1± 0.1 ebits. To the best of
our knowledge, our setup generates the best EPR entan-
gled beams to date produced in the continuous variable
regime. Let us note that such a degree of entanglement
should correspond to a fidelity equal to 0.75 in a unity
gain teleportation experiment.

This non-classical behavior exists also without the
plate and we have obtained in that case almost the same
degree of entanglement. The first experimental demon-
stration of continuous variable EPR entanglement was
obtained with such a type II OPO below threshold [6].

However, the linear coupling – even for a plate rotated
by a very small angle – can make easier the finding
of experimental parameters for which entanglement is
observed. Furthermore, the degenerate operation with
bright beams above threshold makes possible to match
the homodyne detection without infrared injection of the
OPO.

The entanglement of the generated two-mode state is
preserved for very low noise frequencies, down to 50 kHz.
In the experimental quantum optics field, non-classical
properties are generally reported in the MHz range – as
it is the case in this paper up to now – due to large
classical excess noise at lower frequencies. Experimental
details and possible applications of this low frequency
results are reported in [24].
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FIG. 9: Normalized noise variances at 3.5 MHz of the ±45◦

modes while scanning the local oscillator phase for different
coupling parameters: (a) c = 0, (b) c = 0.35, (c) c = 0.85
and (d) c = 1.8. Dark lines correspond to the A− mode and
light ones to the A+ mode. The homodyne detections are in-
quadrature. The resolution bandwidth is set to 100 kHz and
the video bandwidth to 1 kHz.
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FIG. 10: Measured tilt angle θ and noise variance as a function of the coupling parameter c, for the A− mode. The black lines
give theoretical predictions calculated from Eq. (17) and (15) for σ = 0.9 and Ω = 0.1.

B. Results as a function of the linear coupling

The two-mode state generated by the self-phase-locked
OPO is then characterized for different angles of the
plate. We use the in-quadrature setup of the homodyne
detections for which squeezing on orthogonal quadratures
is observed simultaneously on the triggered spectrum an-
alyzers. When the coupling increases, the squeezing is
not obtained on orthogonal quadratures anymore. Fig-
ure 9 gives for four increasing coupling parameters the
normalized noise variances of the rotated modes while
scanning the local oscillator phase. In Fig. 10, we give
the experimentally measured tilt angle θ and associated
noise variance as a function of the coupling parameter c.
One can check on the figure the validity of the theoret-
ical expression of θ given in Eq. (17). We observe that
the squeezing of the A− mode decreases but more slowly
than expected. We also note that the squeezing of the
A+ mode slightly decreases while this noise reduction is
theoretically independent of the coupling.

The noise of the signal and idler modes also depends
on the presence of the plate as demonstrated in Sec. II.
The individual noises become phase-sensitive, and even
squeezed below the standard quantum limit, when the
coupling increases. Figure 11 gives the phase dependance
of the signal and idler modes for the same four coupling
parameters than in Fig. 9.

C. Optimization of EPR entanglement by

polarization adjustement

When the plate is rotated, squeezing is not observed
on orthogonal quadratures anymore. Thus, as shown in
Sec.II, the EPR entanglement is not the maximal avail-
able one. In order to extract the maximal entangle-
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FIG. 11: Normalized noise variances at 3.5 MHz of the signal
and idler modes while scanning the local oscillator phase for
different coupling parameters: (a) c = 0, (b) c = 0.35, (c)
c = 0.85 and (d) c = 1.8. The black dotted lines correspond
to the noise power on the difference of the two modes. The
homodyne detections are in-phase. The resolution bandwidth
is set to 100 kHz and the video bandwidth to 1 kHz.
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ment, one has to perform a phase-shift of the A+ and
A− modes. Such an arbitrary phase-shift can be done
thanks to a couple of a λ/2 and a λ/4 plates added at
the output of the OPO (Fig.6).

Figure 12 gives the normalized noise variances of the
rotated modes for a coupling parameter c = 0.35, before
and after the phase-shift. The homodyne detections are
operated in quadrature so that squeezing on orthogonal
quadratures is observed simultaneously on the spectrum
analyzers. After the operation performed, squeezing is
obtained on orthogonal quadratures as in a standard type
II OPO without coupling.
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FIG. 12: Normalized noise variances at 3.5 MHz of the rotated
modes while scanning the local oscillator phase for a coupling
parameter c = 0.35, before and after the non-local operation.
The homodyne detections are in-quadrature. After this oper-
ation, squeezing is observed on orthogonal quadratures. The
resolution bandwidth is set to 100 kHz and the video band-
width to 1 kHz.

V. CONCLUSION

A self-phase-locked type II OPO associates to the usual
non-linear coupling between the signal and idler modes
a linear mixing by the way of a rotated quarter-wave
plate inserted inside the optical cavity. We have demon-
strated theoretically and confirmed experimentally that
this original device generates a two-mode non-classical
state that exhibits a very rich and interesting behavior
in terms of squeezing and correlation properties. Quan-
tum correlations and anti-correlations of the signal and

idler modes are obtained on non-orthogonal quadratures
depending on the angle of the plate. Furthermore, by a
suitable change of polarization, the entanglement can be
maximized and put into standard form, i.e. correlations
and anti-correlations on orthogonal quadratures. The ob-
served entanglement has been characterized in terms of
covariance matrix and logarithmic negativity.

The experimental investigation of this original device
required the setup of two simultaneous homodyne detec-
tions. We have detailed the operation of the system as a
function of the coupling parameter – for the signal and
idler modes which are entangled as well for the ±45◦

rotated modes which have squeezed fluctuations – and
found the experimental behavior consistent with the the-
ory. In the case of a very small coupling, we have reported
what is to our knowledge the best entangled beams ever
produced in the continuous variable regime. A value of
the inseparability criterion as low as 0.33± 0.02, well be-
low the limit of unity, is obtained. This entanglement cor-
responds to a value of the entanglement of formation of
1.1± 0.1 ebits. We also achieved EPR entanglement and
squeezing at very low noise sideband frequencies down to
50 kHz [24].

The next step is the characterization of the quantum
properties of this system operated above threshold. The
linear coupling induced by the plate results in a phase-
locking of the signal and idler fields at frequency degener-
acy, which permits to access the phase fluctuations of the
bright twin beams. The predicted quantum properties of
the system are similar and should open the possibility
to generate bright entangled beams [11]. Up to now,
phase-locking and intensity correlations below the stan-
dard quantum limit have been observed but the phase
anticorrelations are still slightly above shot noise [13].
Improvements of the setup are currently in progress.
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