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August 26, 2004

Abstract

In this paper our aim is to provide tools for easily calculating the maxisets of several
procedures. Then we apply these results to perform a comparison between several Bayesian
estimators in a non parametric setting. We obtain that many Bayesian rules can be described
through a general behavior such as being shrinkage rules, limited, and/or elitist rules. This
has consequences on their maxisets which happen to be automatically included in some
Besov or weak Besov spaces, whereas other properties such as cautiousness imply that their
maxiset conversely contains some of the spaces quoted above.

We compare Bayesian rules taking into account the sparsity of the signal with priors
which are combination of a Dirac with a standard distribution. We consider the case of
Gaussian and heavy tail priors. We prove that the heavy tail assumption is not necessary to
attain maxisets equivalent to the thresholding methods. Finally we provide methods using
the tree structure of the dyadic aspect of the multiscale analysis, and related to Lepki’s
procedure, achieving strictly larger maxisets than those of thresholding methods.

1 Introduction

Our aim in this paper is twofold. First, we provide tools for easily calculating the maxisets
of several procedures, then we apply these results to perform a comparison between several
Bayesian estimators in a non parametric setting.

Let us first briefly recall the definitions of maxisets. We consider a sequence of models
En = {Pn

θ , θ ∈ Θ}, where the Pn
θ ’s are probability distributions on the measurable spaces Ωn,

and Θ is the set of parameters. We also consider a sequence of estimates q̂n of a quantity q(θ)
associated with this sequence of models, a loss function ρ(q̂n, q(θ)), and a rate of convergence αn

tending to 0. Then, we define the maxiset associated with the sequence q̂n, the loss function
ρ, the rate αn and the constant T as the following set:

MS(q̂n, ρ, αn)(T ) = {θ ∈ Θ, sup
n
En

θ ρ(q̂n, q(θ))(αn)−1 ≤ T}
∗Key Words and Phrases: minimax, maxiset, nonparametric estimation, bayesian methods.

AMS 2000 Subject Classification: 62G05, 62G07, 62G20.
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In various parametric cases, we can easily prove in regular sequences of models and if ρ is a
norm that we have

MS(q̂n, ρ, n−1/2)(T ) = Θ

for various homogeneous loss functions and large enough constant T . Although it might be
useful and interesting to investigate more precisely the domains where the rate is precisely not
n−1/2 (domains of superefficiency, or underefficiency), the focus in this domain has mainly be
on the nonparametric situation. Instead of a priori fixing a (functional) set such as a Hölder,
Sobolev or Besov ball as it is the case in a minimax framework, we choose to settle the problem
in a very wide context: The parameter set Θ can be very large, such as the set of bounded,
measurable functions. Then, the maxiset is associated with the procedure in a genuine way. The
comparison of procedures using maxisets is not as famous as minimax comparison. However
the results that have been obtained up to now are very promising since they generally show
that the maxisets of well-known procedures are spaces which are well established and easily
interpretable. For instance, it has been established in [Kerkyacharian and Picard, 1993] that
the maxisets of most kernel linear methods are in fact Besov spaces, whereas the maxisets of
thresholding estimates (see [Cohen et al., 2001b]) are Lorentz spaces reflecting extremely well
the practical observation that wavelet thresholding performs well when the number of wavelet
coefficients is small. It has also been observed (see [Kerkyacharian and Picard, 2002]) that there
is a deep connection between oracle inequalities and maxisets.

Although looking for the maxiset of a procedure is something different from looking at
minimax rates and proving that the procedure is asymptotically minimax, still there is a deep
parallel between maxisets and minimax theory. For instance, facing a particular situation,
the standard procedure to prove that a set B is the maxiset usually consists (exactly as in
minimax theory ) in two steps: first showing that B ⊂ MS(q̂n, ρ, αn)(T ), but this is generally
obtained using similar arguments as for proving upper bound inequalities in minimax setting
since it is simply needed to prove that if θ ∈ B then En

θ ρ(q̂n, q(θ)) ≤ Tαn. The second inclusion
MS(q̂n, ρ, αn)(T ) ⊂ B is of the same nature as lower bound inequalities in the minimax setting,
but often much simpler.

In sections 3 and 4, we will precisely provide conditions ensuring that the maxiset of a
procedure is necessarily larger than some fixed space, and conversely prove that other conditions
restrict the procedure to have its maxiset smaller than a fixed space. This study will be
performed on the class of shrinkage procedures in a white noise model. Among these procedures
we will investigate the consequences for a procedure to be limited, elitist, cautious... (see the
definitions in section 2.)

Moreover, it is important to notice that this study can obviously be generalized to different
models (since the conditions on the model are in fact not very restrictive), and one can easily
imagine conditions on kernel methods (for instance) translating the notions of shrinkage, limited,
elitist, cautious or hereditary although it is certainly less natural. (see in section 6 the discussion
establishing a link with Lepski procedure.)

The second part of the paper uses the results of the first one to perform a comparison among
Bayesian estimates.

We chose to focus on Bayes rules precisely because Bayesian techniques have now become
very popular to estimate signals decomposed on wavelet bases. From the practical point of view,

2



many authors have built Bayes estimates that outperform classical procedures and in particu-
lar thresholding procedures. See for instance, [Chipman et al., 1997], [Abramovich et al., 1998],
[Clyde et al., 1998], [Johnstone and Silverman, 1998], [Vidakovic, 1998], [Clyde and George, 1998]
or [Clyde and George, 2000] who discussed the choice of the Bayes model to capture the spar-
sity of the signal to be estimated and the choice of the Bayes rule (and among others, pos-
terior mean or median). We also refer the reader to the very complete review paper of
[Antoniadis et al., 2001] who provide descriptions and comparisons of various Bayesian wavelet
shrinkage and wavelet thresholding estimators.
From the minimax point of view, recent works have proved that Bayes rules can achieve optimal
rates of convergence. [Abramovich et al., 2004] investigated theoretical performance of the pro-
cedures introduced by [Abramovich et al., 1998]. More precisely, they considered a prior model
based on a combination of a point mass at zero and a normal density. For the mean squared
error, they proved that the non adaptive posterior mean and posterior median achieve optimal
rates up to a logarithmic factor on the Besov space Bs

p,q when p ≥ 2. When p < 2, these estima-
tors can achieve only the best possible rates for linear estimates. As [Abramovich et al., 2004],
[Johnstone and Silverman, 2004a] and [Johnstone and Silverman, 2004b] investigated minimax
properties of Bayes rules, but the prior is based on heavy-tailed distributions and they consider
an empirical Bayes setting. In this case, the posterior mean and median are optimal. Other
more sophisticated results concerning minimax properties of Bayes rules have been established
by [Zhang, 2002].
The goal of section 5 is to study some Bayesian procedures from the maxiset point of view in
the light of the results of sections 3 and 4. To capture the sparsity of the signal, we introduce
the following prior model on the wavelet coefficients:

βjk ∼ πj,εγj,ε + (1− πj,ε)δ(0), (1)

where 0 ≤ πj,ε ≤ 1, δ(0) is a point mass at zero and the βjk’s are independent. The nonzero
part of the prior γj,ε is assumed to be the dilation of a fixed symmetric, positive, unimodal and
continuous density γ:

γj,ε(βjk) =
1

τj,ε
γ

(
βjk

τj,ε

)
,

where the dilation parameter τj,ε is positive. The parameter πj,ε can be interpreted as the
proportion of non negligible coefficients. We also introduce the parameter

wj,ε =
πj,ε

1− πj,ε
.

When the signal is sparse, most of the wj,ε are small. These priors or very close forms have
extensively been used by the authors cited above and especially [Abramovich et al., 2004],
[Johnstone and Silverman, 2004a] and [Johnstone and Silverman, 2004b]. To complete the def-
inition of the prior model, we have to fix the hyperparameters τj,ε and wj,ε and the density
γ. The most popular choice for γ is the normal density. However priors with heavy tails have
proved also to work extremely well. One of our results will be to show that if some Bayesian
procedures using Gaussian priors behave quite unwell (in terms of maxisets) compared to those
with heavy tails, it is nevertheless possible to attain a maxiset as good as thresholding estimates,
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among procedures based on Gaussian priors, under the condition that the hyperparameter τj,ε

is “large”. Under this assumption, the density γj,ε is then more spread around 0, which enables
us to avoid considering heavy-tailed densities.

Now, a natural question arises. Does there exist a non linear procedure that outperforms
the thresholding procedures in terms of maxiset comparisons? We will see in section 6 that
the answer is yes. By making use of the dyadic structure of the wavelet bases (which has not
been used before in fact) and performing algorithm with tree properties, we can prove that this
provides a way of enlarging the maxisets.

2 Model, Shrinkage rules.

2.1 Model

We will consider a white noise setting: Xε(.) is a random measure satisfying on [0, 1] the
following equation:

Xε(dt) = f(t)dt + εW (dt)

where 0 < ε < 1/e is the noise level and f is a function defined on [0, 1], W (.) is a Brownian
motion on [0, 1]. As usual, to connect with the standard framework of sequences of experiments
we put ε = n−1/2.
Let {ψjk(·), j ≥ −1, k ∈ Z} be a compactly supported wavelet basis of L2([0, 1]), such that any
f ∈ L2([0, 1]) can be represented as:

f =
∑

j≥−1

∑

k

βjkψjk

where βjk = (f, ψjk)L2 . (As usual, ψ−1k denotes the translations of the scaling function.) The
model is reduced to a sequence space model if we put: yjk = Xε(ψjk) =

∫
fψjk + εZjk where

Zjk are i.i.d N (0, 1). Let us note that at each level j ≥ 0, the number of non-zero wavelet
coefficients is smaller than or equal to 2j + lψ − 1, where lψ is the maximal size of the supports
of the scaling function and the wavelet. So, there exists a constant Sψ such that at each level
j ≥ −1, there are less than or equal to Sψ × 2j coefficients to be estimated. In the sequel, we
shall not distinguish between f and β = (βjk)jk its sequence of wavelet coefficients.

2.2 Classes of Estimators

Let us first consider the following very general class of shrinkage estimators:

Fε =



f̂ε(.) =

∑

j≥−1

∑

k

γjkyjkψjk(.); γjk(ε) ∈ [0, 1], measurable



 .

Let us observe here that the γjk may be constant (linear estimators) or data dependent. Among
this class, we’ll particularly focus on the following classes of estimators:
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Definition 1. We say that f̂ε ∈ Fε is a limited rule if there exist a determinist function of
ε, λε, and a constant a ∈ [0, 1[ such that, for any j, k,

γjk > a =⇒ 2−j > λε.

We note f̂ε ∈ L(λε, a).

The simplest example to illustrate limited rules is provided by the projection estimator:

γjk(ε) = γ
(1)
j (λε) = I{2−j > λε},

which obviously belongs to L(λε, 0). But, more generally, the class of linear shrinkage estimates
provides natural limited procedures. For instance, linear estimates associated with Tikhonov-
Phillips weights:

γjk(ε) = γ
(2)
j (λε) =

1
1 + (2jλε)α

, α > 0,

or with Pinsker weights:

γjk(ε) = γ
(3)
j (λε) = (1− (2jλε)α)+, α > 0,

are limited rules respectively belonging to L(λε, 1/2) and L(λε, 0).
To detail other examples, let us introduce

tε = ε
√

log(ε−1)
jε ∈ N, 2−jε ≤ t2ε < 21−jε .

This will be denoted in the sequel by 2jε ∼ t−2
ε . We recall the hard thresholding f̂T and the

soft thresholding f̂S rules respectively defined by

f̂T =
∑

−1≤j<jε

∑

k

yjkI{|yjk| > mtε}ψjk, (2)

f̂S =
∑

−1≤j<jε

∑

k

(
1− mtε

|yjk|
)

I{|yjk| > mtε}yjkψjk, (3)

where m is a positive constant. It is obvious that these procedures belong to L(t2ε , 0). In sections
5 and 6, we shall provide many more examples of limited rules.

Definition 2. We say that f̂ε ∈ Fε is an elitist rule if there exist a determinist function of ε,
λε, and a constant a ∈ [0, 1[ such that, for any j, k

γjk > a =⇒ |yjk| > λε.

In the sequel, we note f̂ε ∈ E(λε, a).

Remark: This definition generalizes the notion of elitist rules introduced by [Autin, 2003] in
density estimation. 3

To give some examples of elitist rules, consider f̂T and f̂S defined in (2) and (3) that belong
to E(mtε, 0). Other examples of elitist rules will be given in section 5 by considering Bayesian
procedures.
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Definition 3. We say that f̂ε ∈ Fε is a cautious rule if there exist a determinist function of
ε, λε and a constant a ∈]0, 1] such that, for any j < jε and any k

γjk ≤ a =⇒ |yjk| ≤ λε,

where 2jε ∼ λ−2
ε . In the sequel, we note f̂ε ∈ C(λε, a).

Remark: For instance, f̂T and f̂S defined in (2) and (3) belong respectively to C(mtε,
1
2) and

C(2mtε,
1
2). 3

Until now, the dyadic aspect of the procedure has not been used. We’ll see in section 6 that
this can be taken into account with profit by, for instance, introducing the following notion
of heredity. In the sequel we say that, for j ∈ N, I is a j-dyadic interval if and only if
I = Ijk = [ k

2j , k+1
2j ]. In this case, we shall note yI (rep. βI) instead of yjk (rep. βjk) and shall

set |I| = 2−j , its length. Note that for any j-dyadic interval Ijk and any j′ ≥ j, there exist at
most 2(j′−j) j′-dyadic intervals included in Ijk.

Definition 4. Let f̂ε ∈ Fε. We say that f̂ε is a hereditary rule if there exist a determinist
function of ε, λε, and a constant a ∈ [0, 1[ such that for any j < jε and any k

γjk > a =⇒ ∃I ′ ⊂ Ijk / |I ′| > λ2
ε and |yI′ | > λε,

where 2jε ∼ λ−2
ε . In the sequel, we note f̂ε ∈ H(λε, a).

Some examples of hereditary rules are given in subsection 6.1.

Remark: The limited rules as well as the elitist rules and the hereditary rules are forming a
non decreasing class with respect to a. The cautious rules are forming a non increasing class
with respect to a. We also have that any of the classes introduced above are convex. So they
are obviously stable if we consider aggregation of procedures or as in learning algorithms, if we
build a procedure averaging the opinions of different experts all belonging to one of the previous
class. 3

3 Ideal maxisets for classes of estimators.

Proving lower bound inequalities in minimax theory consists in showing that if we consider the
class of all estimators on a functional spaces, there exists a best achievable rate αn. In this
section our tactic will be of the same spirit, but somewhat different since we will fix the rate
αn, consider classes of procedures and prove that they have a best achievable maxiset. More
precisely, we will prove that when a procedure belongs to one of the classes considered above,
its maxiset is necessarily smaller than a simple functional class. Here, for simplicity, we shall
restrict to the case where ρ is the square of the L2 norm, even though if a large majority of the
following results can be extended to more general norms.
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3.1 Functional spaces

We recall the definitions of the following functional spaces. They will play an important role
in the sequel. Note that, here, they appear with definitions depending on the wavelet basis.
However, as has been remarked in [Meyer, 1990] and [Cohen et al., 2001b], most of them also
have different definitions proving that this dependence in the basis is not crucial at all. Here
and later we set for all λ > 0, 2jλ ∼ λ−2.

Definition 5. Let s > 0. We say that a function f ∈ L2([0, 1]) belongs to the Besov space
Bs

2,∞, if and only if:

sup
J≥−1

22Js
∑

j≥J

∑

k

β2
jk < ∞.

We denote by Bs
2,∞(R) the ball of radius R in this space.

Definition 6. Let 0 < r < 2. We say that a function f belongs to the weak Besov space Wr if
and only if:

‖f‖Wr := [sup
λ>0

λr−2
∑

j≥−1

∑

k

β2
jkI{|βjk| ≤ λ}]1/2 < ∞.

We denote by Wr(R), the ball of radius R in this space.

Definition 7. Let 0 < r < 2. We say that a function f belongs to the space W ∗
r if and only if:

‖f‖W ∗
r

:= [ sup
0<λ<1

λr[log(
1
λ

)]−1
∑

−1≤j<jλ

∑

k

I{|βjk| > λ}]1/2 < ∞.

Remark: If ( denotes the strict inclusion between two functional spaces, for all 0 < r < 2, it
is easy to see using Markov inequality that Bs

2,∞(Wr as soon as s ≥ 1
r − 1

2 and Wr(W ∗
r . 3

Definition 8. Let 0 < r < 2. We say that a function f belongs to the tree-Besov space W
T

r if
and only if:

‖f‖
W

T
r

:= [sup
λ>0

λr−2
∑

0≤j<jλ

∑

k

β2
jkI{∀I ′ ⊂ Ijk / |I ′| > λ2, |βI′ | ≤ λ

2
}]1/2 < ∞.

Remark: Obviously, Wr ⊂ W T
r . These spaces taking account of the dyadic structure of

the wavelet bases are very close to the oscillation spaces introduced in [Jaffard, 1998] and
[Jaffard, 2004]. 3

For sake of simplicity, the result presented in the following section emphasizes the cases where
the rate of convergence is linked in a direct way to either the limitation or to the threshold
bound for elitist or cautious rules. This constraint can be relaxed. For instance, there are
many cases where either the threshold bound or the rate contain logarithmic factors. In these
cases the link is not so direct. Results can also be obtained in these cases, which may be less
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aesthetic, but still useful. These results are given in Appendix.
Notation: For A, a given normed space, the following notations:

MS(f̂ε, ‖.‖2
2, λ

2s
ε ) ⊂ A

(resp.) A ⊂ MS(f̂ε, ‖.‖2
2, λ

2s
ε )

will mean in the sequel

∀ M ∃ M ′, MS(f̂ε, ‖.‖2
2, λ

2s
ε )(M) ⊂ A(M ′)

(resp.) ∀ M ′ ∃ M, A(M ′) ⊂ MS(f̂ε, ‖.‖2
2, λ

2s
ε )(M),

where M and M ′ respectively denote the radii of balls of MS(f̂ε, ‖.‖2
2, λ

2s
ε ) and A. 3

3.2 Ideal Maxisets for limited rules

In this section, we study the ideal maxisets for limited procedures. For this purpose, let us give
a sequence (λε)ε going to 0 as ε tending to 0.

Theorem 1 (Ideal maxiset for limited rules). Let σ > 0 and f̂ε be a limited rule in L(λε, a),
with a ∈ [0, 1[. Then, if λε is a non decreasing, continuous function such that λ0 = 0,

MS(f̂ε, ‖.‖2
2, λ

2σ
ε ) ⊂ Bσ

2,∞

(with M ′ =
√

2M
(1−a) .)

Proof: Let f ∈ MS(f̂ε, ‖.‖2
2, λ

2σ
ε )(M). If we observe that if 2−j ≤ λε then γjk ≤ a, we have:

(1− a)2
∑

j,k

β2
jkI{2−j ≤ λε}

= 2(1− a)2
∑

j,k

β2
jk [P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{2−j ≤ λε}

≤ 2E
∑

j,k

[
(γjkyjk − βjk)2I{βjk ≥ 0}+ (γjkyjk − βjk)2I{βjk < 0}] I{2−j ≤ λε}

≤ 2E
∑

j,k

(γjkyjk − βjk)2

≤ 2M λ2σ
ε .

So, using the continuity of λε in 0, we deduce

sup
J≥−1

22Jσ
∑

j≥J

∑

k

β2
jk ≤ 2M

(1− a)2
,

and f belongs to Bσ
2,∞. 2

We have proved here that Bσ
2,∞ is a good candidate for an ideal maxiset among limited rules.

We will prove in section 4 that it is reached by standard and well known limited procedures.
So, as a consequence, Bσ

2,∞ is the ideal maxiset among limited rules with the relation between
the limiting parameter and the rate of convergence above prescribed.
In the next subsection, we focus on elitist procedures.
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3.3 Ideal maxisets for elitist rules

Theorem 2 (Ideal maxiset for elitist rules). Let f̂ε be an elitist rule in E(λε, a) with
a ∈ [0, 1[. Then, if λε is a non decreasing, continuous function such that λ0 = 0, and 0 < r < 2
is a real number,

MS(f̂ε, ‖.‖2
2, λ

2−r
ε ) ⊂ Wr

(with M ′ =
√

2M
(1−a) .)

Remark: It is important to notice that this inclusion will be mostly used for λε = tε,
r = 2

1+2s , 2− r = 4s
1+2s , where we find back the usual rates of convergence. 3

Proof: Let f ∈ MS(f̂ε, ‖.‖2
2, λ

2−r
ε )(M). If we observe that if |yjk| ≤ λε then γjk ≤ a, we have:

(1− a)2
∑

j,k

β2
jkI{|βjk| ≤ λε}

= 2(1− a)2
∑

j,k

β2
jk [P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{|βjk| ≤ λε}

≤ 2E
∑

j,k

[
(βjk − γjkyjk)2I{βjk ≥ 0}+ (βjk − γjkyjk)2I{βjk < 0}] I{|βjk| ≤ λε}

≤ 2E
∑

j,k

(βjk − γjkyjk)2

≤ 2M λ2−r
ε .

So, using the continuity of λε in 0, we deduce that

sup
λ>0

λr−2
∑

j≥−1

∑

k

β2
jkI{|βjk| ≤ λ} ≤ 2M

(1− a)2
,

and f belongs to Wr. 2

In the next subsection, we focus on cautious procedures.

3.4 Ideal maxisets for cautious rules

Theorem 3 (Ideal maxiset for cautious rules). Let f̂ε be a cautious rule in C(λε, a) with
a ∈]0, 1]. Let us suppose that 0 < r < 2 is a real number and λε is a non decreasing, continuous
function such that λ0 = 0. Suppose that

∃ c > 0, ∀ ε > 0,
λε√

log( 1
λε

)
≤ cε. (4)

Then
MS(f̂ε, ‖.‖2

2, λ
2−r
ε ) ⊂ W ∗

r

(with M ′ = 2c
√

2M
a .)
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Remark: Note that the case λε = tε (resp. λε = ε) satisfies (4) with c =
√

2 (resp. c = 1)3
Proof: It is a consequence of the following lemma:

Lemma 1. Let ε > 0 and suppose that |βjk| > λε and sign(βjk)yjk < |βjk|. Then,

a|βjk − yjk| ≤ 2|βjk − γjkyjk|.
Proof of the lemma: We only prove the case βjk > λε and yjk < βjk since the case βjk < −λε

and yjk > βjk can be proved with the same arguments.
It is clear that,

a) if yjk ≥ 0, then, a(βjk − yjk) ≤ a(βjk − γjkyjk)

b) if yjk < −λε, then, because the rule is cautious, γjk > a and a(βjk−yjk) ≤ γjk(βjk−yjk) ≤
(βjk − γjkyjk)

c) if −λε ≤ yjk < 0, then a(βjk − yjk) ≤ 2aβjk ≤ 2a(βjk − γjkyjk).

Since 0 < a < 1 we deduce from a) b) and c) that a(βjk − yjk) ≤ 2(βjk − γjkyjk).
2

Let f ∈ MS(f̂ε, ‖.‖2
2, λ

2−r
ε )(M). Using (4),

a2λ2
ε

[
log(

1
λε

)
]−1 ∑

j<jε,k

I{|βjk| > λε} ≤ a2c2ε2
∑

j<jε,k

I{|βjk| > λε}.

Now, let us recall that if X is a zero-mean Gaussian variable with variance ε2, then

E(X2I{X<0}) = E(X2I{X>0}) =
ε2

2
.

So, from Lemma 1

a2c2ε2
∑

j<jε,k

I{|βjk| > λε}

= a2c2ε2
∑

j<jε,k

[I{βjk > λε}+ I{βjk < −λε}]

= 2a2c2 E
∑

j<jε,k

(βjk − yjk)2 [I{yjk − βjk < 0}I{βjk > λε}+ I{yjk − βjk > 0}I{βjk < −λε}]

≤ 8c2 E
∑

j<jε,k

(βjk − γjkyjk)2

≤ 8c2M λ2−r
ε .

So, using the continuity of λε in 0, we deduce that

sup
λ>0

λr

[
log(

1
λ

)
]−1 ∑

j<jλ,k

I{|βjk| > λ} ≤ 8c2M

a2

and f belongs to W ∗
r . 2

In the next subsection, we focus on hereditary procedures.
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3.5 Ideal maxisets for hereditary rules

Theorem 4. Let f̂ε be a hereditary rule that belongs to H(λε, a) with a ∈ [0, 1[. Let 0 < r < 2
be a real number and λε be a non decreasing, continuous function with λ0 = 0 such that there
exists a constant C > 0 which satisfies for any ε > 0,

P(|Z| > λε

2ε
) ≤ Cλ4

ε (5)

with Z ∼ N (0, 1). Then
MS(f̂ε, ‖.‖2

2, λ
2−r)
ε ) ⊂ W

T

r

(with M ′ =
√

2(M+C)

1−a .)

Remark: For instance, for λε = mtε, condition (5) is satisfied for any m ≥ 4
√

2. 3

Proof: Let 2jε ∼ λ−2
ε and f ∈ MS(f̂ε, ‖.‖2

2, λ
2−r
ε )(M). Denote

• |ȳjk(λε)| := max{|yI |; I ⊂ Ijk and |I| > λ2
ε},

• |β̄jk(λε)| := max{|βI |; I ⊂ Ijk and |I| > λ2
ε}.

• |δ̄jk(λε)| := max{|yI − βI |; I ⊂ Ijk and |I| > λ2
ε}.

We have the following lemma:

Lemma 2. If λε satisfies (5) then, for any 0 ≤ j < jε and any k:

P(|ȳjk(λε)| > λε)I{|β̄jk(λε)| ≤ λε

2
} ≤ P(|δ̄jk(λε)| > λε/2) ≤ 2C λ2

ε .

Proof of the lemma: Let Z ∼ N (0, 1). We have for any 0 ≤ j < jε and any k:

P(|ȳjk(λε)| > λε)I{|β̄jk(λε)| ≤ λε

2
} ≤ P(|δ̄jk(λε)| > λε/2)

≤
∑

I⊂Ijk and |I|>λ2
ε

P(|yI − βI | > λε

2
)

≤ 2jεP(|Z| > λε

2ε
)

≤ 2λ−2
ε P(|Z| > λε

2ε
)

≤ 2C λ2
ε

2

11



Now, using the fact that the rule is hereditary and Lemma 2:

(1− a)2
∑

0≤j<jε,k

β2
jkI{∀I ′ ⊂ Ijk, / |I ′| > λ2

ε , |βI′ | ≤ λε

2
}

= (1− a)2
∑

0≤j<jε,k

β2
jkI{|β̄jk(λε)| ≤ λε

2
}

= 2(1− a)2
∑

0≤j<jε,k

β2
jk [P(yjk − βjk < 0)I{βjk > 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{|β̄jk(λε)| ≤ λε

2
}

≤ 2(1− a)2E
∑

0≤j<jε,k

β2
jk [I{yjk − βjk < 0}I{βjk > 0}+ I{yjk − βjk > 0}I{βjk < 0}] I{|ȳjk(λε)| ≤ λε}

+2E
∑

0≤j<jε,k

β2
jkP(|ȳjk(λε)| > λε)I{|β̄jk(λε)| ≤ λε

2
}

≤ 2 E
∑

0≤j<jε,k

(βjk − γjkyjk)2I{|ȳjk(λε)| ≤ λε}+
λ2

ε

2

∑

0≤j<jε,k

P(|ȳjk(λε)| > λε}I{|β̄jk(λε)| ≤ λε

2
}

≤ 2 E
∑

j,k

(βjk − γjkyjk)2 + 2Cλ2
ε

≤ 2(M + C) λ2−r
ε .

So, using the continuity of λε in 0, we deduce that

sup
λ>0

λr−2
∑

0≤j<jλ,k

β2
jkI{∀I ⊂ Ijk, / |I| > lψλ2, |βI | ≤ λ

2
} ≤ 2(M + C)

(1− a)2
.

It comes that f ∈ W
T

r . 2

4 Rules ensuring that their maxiset contains a prescribed sub-
set

In this section we prove three types of conditions ensuring that the maxiset of a given shrinkage
rule contains either a Besov space, a weak Besov space or a tree-Besov space. This part
is obviously strongly linked with upper bounds inequalities in minimax theory. Indeed, our
technique of proof here will be to show that some classes of estimators satisfy an upper bound
inequality associated with the considered subset.

4.1 When does the maxiset contain a Besov space?

We have the following result, which is a converse result to Theorem 1 with respect to the ideal
maxiset result for limited rules:

12



Theorem 5. Let s > 0 and (γj(ε))jk a non increasing sequence of weights lying in [0, 1] such
that β̂L

ε = (γj(ε)yjk)jk belongs to L(λε, a), with a ∈ [0, 1[, λε is continuous and λ0 = 0. If there
exist C1 and C2 in R such that, with γ−2 = 1, ∀ ε > 0,

∑

j≥−1

(γj−1 − γj)(1− γj)2−2jsI{2j < λ−1
ε } ≤ C1λ

2s
ε

∑

j≥−1

2jγj(ε)2 ≤ C2 ε−2 λ2s
ε

then,
Bs

2,∞ ⊂ MS(β̂L
ε , ‖.‖2

2, λ
2s
ε ).

Proof: This result is a simple consequence of Theorem 2 of [Rivoirard, 2004]. A more general
result is established in Appendix. 2

Combining Theorems 1 and 5, by straightforward computations, we obtain:

Corollary 1. If we consider linear estimates associated with the weights γ
(1)
j (λε), γ

(2)
j (λε) with

α > (s ∨ 1/2) or γ
(3)
j (λε) with α > s (see section 2.2), then for i ∈ {1, 2, 3}

MS((γ(i)
j (λε)yjk)jk, ‖.‖2

2, λ
2s
ε ) = Bs

2,∞,

as soon as (ε2λ−(1+2s)
ε )ε is bounded. In particular, for the polynomial rate ε4s/(1+2s), correspond-

ing to λε = ε2/(1+2s), Bs
2,∞ is exactly the maxiset of these estimates.

Remark: [Rivoirard, 2004] extended these results for a more general statistical model: the het-
eroscedastic white noise model that naturally appears in the literature of inverse problems. This
last result illustrates the strong link between linear procedures (and more generally limited pro-
cedures) and Besov spaces. This has already been pointed out by [Kerkyacharian and Picard, 1993]
who studied maxisets for linear procedures for the model of density estimation. 3

4.2 When does the maxiset contain a weak Besov space?

We have the following result, which is a converse result to Theorems 1 and 2 with respect to
the ideal maxiset results for limited and elitist rules:

Theorem 6. Let s > 0 and γjk(ε) a sequence of random weights lying in [0, 1]. We assume
that there exist positive constants c, m and K(γ) such that for any ε > 0

β̂(ε) = (γjk(ε)yjk)jk ∈ L(t2ε , 0) ∩ E(mtε, ctε), (6)

(1− γjk(ε)) ≤ K(γ)
(

tε
|yjk| + tε

)
, a.e. ∀ j < jε, ∀ k. (7)

Then, as soon as m ≥ 8,

B
s

1+2s

2,∞ ∩W 2
1+2s

⊂ MS(f̂ε, ‖.‖2
2, t

4s/(1+2s)
ε ).

13



Remark: It is worthwhile to note that (7) is a condition implying that the procedure belongs
to C(tε, Dtε), and can be considered as a refinement of the cautiousness condition.
It is enough to verify condition (7) for ε small enough without modifying the conclusion of the
theorem. This remark will be useful in sections 5.2 and 5.3, where we apply Theorem 6 to
Bayesian procedures. 3

This theorem, is an obvious consequence of the following two propositions concerning functional
spaces inclusions and general upper bound results for shrinkage procedures.

Proposition 1. Let 0 < r < 2, C > 0 and f ∈ Wr. Then,

sup
λ>0

λr
∑

j,k

I{|βjk| > λ} ≤ 22−r‖f‖2
Wr

1− 2−r
.

The proof of this proposition is standard, see for instance in [Kerkyacharian and Picard, 2000],
where it is proved that the condition above is in fact equivalent to the fact that f ∈ Wr.

Proposition 2. Under the conditions of Theorem 6, we have the following inequality:

E‖f̂ε − f‖2
2 ≤

[
4c2Sψ + 4(1 + K(γ)2)‖f‖2

2 + 4
√

3Sψ + 2(2
4s

1+2s + 2
−4s
1+2s )m

4s
1+2s ‖f‖2

W 2
1+2s

+

+ 8m−2/1+2s

(1−2−2/1+2s)
(1 + 8K(γ)2)‖f‖2

W 2
1+2s

+ ‖f‖2

B
s

1+2s
2,∞

]
t

4s
1+2s
ε .

Proof: Let f ∈ B
s

1+2s

2,∞ ∩W 2
1+2s

. Obviously, using the limitation assumption, we have for jε such

that 2jε ∼ t−2
ε

E‖f̂ε − f‖2
2 = E‖

∑

j<jε,k

(γjk(ε)yjk − βjk)ψj,k‖2
2 +

∑

j≥jε,k

β2
jk.

The second term is a bias term bounded by t
4s

1+2s
ε ‖f‖2

B
s

1+2s
2,∞

, by definition of the Besov norm.

We split E
∑

j<jε,k
(γjk(ε)yjk − βjk)2 into 2(A + B) with

A = E
∑

j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|yjk| ≤ mtε},

B = E
∑

j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|yjk| > mtε}.

Again, we split A into A1+A2, and using β̂(ε) ∈ E(mtε, ctε), we have on {|yjk| ≤ mtε}, γjk ≤ ctε.
So,

A1 = E
∑

j<jε,k

γjk(ε)2(yjk − βjk)2 I{|yjk| ≤ mtε}

≤ c2Sψ2jεt2εε
2

≤ 2c2Sψt2ε .
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A2 = E
∑

j<jε,k

(1− γjk(ε))2β2
jk I{|yjk| ≤ mtε}

≤ E
∑

j<jε,k

β2
jk I{|yjk| ≤ mtε}[I{|βjk| ≤ 2mtε}+ I{|βjk| > 2mtε}]

≤ (2mtε)4s/1+2s‖f‖2
W 2

1+2s

+
∑

j<jε,k

β2
jkP(|βjk − yjk| ≥ mtε)

≤ (2mtε)4s/1+2s‖f‖2
W 2

1+2s

+ ‖f‖2
2
εm2/2

≤ (2mtε)4s/1+2s‖f‖2
W 2

1+2s

+ ‖f‖2
2
t2ε .

We have used here the concentration property of the Gaussian distribution and the fact that
m2 ≥ 4.

B := B1 + B2

= E
∑

j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|yjk| > mtε}[I{|βjk| ≤ mtε/2}

+I{|βjk| > mtε/2}].
For B1 we use the Schwartz inequality:

E(yjk − βjk)2I{|yjk − βjk| > mtε/2} ≤ (P(|yjk − βjk| > mtε/2))1/2(E(yjk − βjk)4)1/2.

Now, observing that E(yjk − βjk)4 = 3ε4 and that P(|yjk − βjk| > mtε/2) ≤ ε
m2

8 , we have for
m2 ≥ 32:

B1 ≤
√

3
∑

j<jε,k

ε2I{|βjk| ≤ mtε/2}εm2

16 +
∑

j<jε,k

β2
jkI{|βjk| ≤ mtε/2}

≤ 2
√

3Sψt2ε +
(m

2
tε

)4s/1+2s
‖f‖2

W s
1+2s

.

For B2, we use Proposition 1,

B2 = E
∑

j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|yjk| > mtε}I{|βjk| > mtε/2}

≤
∑

j<jε,k

[ε2I{|βjk| > mtε/2}+ B3

≤ 4m−2/1+2s

(1− 2−2/1+2s)
‖f‖2

W 2
1+2s

t4s/1+2s
ε + B3.

B3 :=
∑

j<jε,k

E(1− γjk(ε))2β2
jk I{|yjk| > mtε}I{|βjk| > mtε/2}[I{|yjk| ≥ |βjk|/2}+ I{|yjk| < |βjk|/2}]

:= B′
3 + B”3.

B”3 ≤
∑

j<jε,k

β2
jkP(|yjk − βjk| ≥ mtε/4)

≤ ‖f‖2
2
t2ε .
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since m2 ≥ 64. We have used in the line above the concentration property of the Gaussian
distribution. Now using (7) and Proposition 1, we get,

B′
3 ≤

∑

j<jε,k

Eβ2
jk(1− γjk(ε))2I{|yjk| ≥ |βjk|/2}I{|βjk| > mtε/2}I{|yjk| ≥ mtε}]

≤
∑

j<jε,k

Eβ2
jkK(γ)2

(
tε
|yjk| + tε

)2

I{|yjk| ≥ |βjk|/2}I{|βjk| > mtε/2})

≤ K(γ)2
32m−2/1+2s

1− 2−2/1+2s
‖f‖2

W 2
1+2s

t4s/1+2s
ε + 2K(γ)2‖f‖2

2t
2
ε .

2

We deduce as a corollary the following results.

Corollary 2. The Hard thresholding f̂T and the Soft thresholding f̂S rules as defined in (2)
and (3) with m ≥ 8 are satisfying:

MS(f̂ε, ‖.‖2
2, t

4s/(1+2s)
ε ) = Bs/1+2s

2,∞ ∩W 2
1+2s

.

The proof of this corollary is an elementary consequence of Theorems 1, 2 and 6. It proves that
these procedures are optimal in the maxiset sense among elitist rules which are limited.

4.3 When does the maxiset contain a tree-Besov space?

In this paragraph, we give a converse result to Theorems 1 and 4 with respect to the ideal
maxiset results for limited and hereditary rules. This result suppose that the chosen wavelet
basis is the Haar one.

Theorem 7. Let s > 0, m > 0, c > 0 and γjk(ε) a sequence of weights lying in [0, 1] such that
β̂(ε) = (γjk(ε)yjk)jk belongs to L((mtε)2, 0) ∩H(mtε, ctε). Suppose in addition that there exists
a constant K(γ) such that for any ε > 0, any 0 ≤ j < jε and any k

max{|yI |; I ⊂ Ijk and |I| > m2t2ε} > mtε =⇒ (1− γjk(ε)) ≤ K(γ)[
ε

|yjk| ∨mtε
+ tε], a.e.

(8)
where 2jε ∼ (mtε)−2. Then, as soon as m ≥ 4

√
3,

MS(f̂ε, ‖.‖2
2, t

4s/(1+2s)
ε ) ⊇ Bs/1+2s

2,∞ ∩W
T

2
1+2s

.

The proof of this theorem is parallel to the previous one. It follows from the following two
propositions.

Proposition 3. For any 0 < r < 2 and any f ∈ B(2−r)/4
2,∞ ∩W

T

r , then

sup
0<λ<1/e

λr

[
log(

1
λ

)
]−1 ∑

0≤j<jλ,k

I{∃I ′ ⊂ Ijk / |I ′| > λ2 and |βI′ | > λ

2
} ≤

26−r

(
‖f‖2

W T
r

+ ‖f‖2

B(2−r)/4
2,∞

)

(1− 2−r) log(2)
. (9)
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Moreover, we have the following inclusion spaces

Wr⊂W
T

r and B(2−r)/4
2,∞ ∩W

T

r ⊂B(2−r)/4
2,∞ ∩W ∗

r .

Proof: The inclusion Wr⊂W
T

r is easy to prove using the definitions of Wr and W
T

r . The
second inclusion B(2−r)/4

2,∞ ∩W
T

r ⊂B(2−r)/4
2,∞ ∩W ∗

r is just a consequence of (9) which will be proved

now. Let f ∈ B(2−r)/4
2,∞ ∩ W

T

r and 0 < λ < 1/e. We recall 2jλ ∼ λ−2 and set for any u ∈ N,
2jλ,u ∼ (21+uλ)−2. Observing that, for any j ≥ 0, any k there exist exactly j +1 dyadic interval
I containing Ijk, we have

∑

0≤j<jλ,k

I{∃I ′ ⊂ Ijk / |I ′| > λ2 and |βI′ | > λ

2
}

≤
∑

0≤j<jλ,k

(j + 1)I{|βjk| > λ

2
, ∀I ′ ( Ijk, / |I ′| > λ2, |βI′ | ≤ λ

2
}

≤
∑

0≤j<jλ,k

(j + 1)I{|βjk| > λ

2
, ∀I ′ ( Ijk, / |I ′| > λ2, |βI′ | ≤ |βjk|}

≤
∑

u≥0

∑

0≤j<jλ,k

(j + 1)I{2u−1λ < |βjk| ≤ 2uλ, ∀I ′ ( Ijk, / |I ′| > λ2, |βI′ | ≤ 2uλ}

≤ jλ

∑

u≥0

∑

0≤j<jλ,k

I{2u−1λ < |βjk| ≤ 2uλ, ∀I ′ ⊂ Ijk, / |I ′| > λ2, |βI′ | ≤ 2uλ}

≤ 24

log(2)
log(

1
λ

)
∑

u≥0

(2uλ)−2
∑

0≤j<jλ,k

β2
jkI{∀I ′ ⊂ Ijk, / |I ′| > 41+uλ2, |βI′ | ≤ 2uλ}

≤ 24

log(2)
log(

1
λ

)
∑

u≥0

(λ2u)−2
∑

0≤j<jλ,u,k

β2
jkI{∀I ′ ⊂ Ijk, / |I ′| > 41+uλ2, |βI′ | ≤ 2uλ}

+
24

log(2)
log(

1
λ

)
∑

u≥0

(λ2u)−2
∑

j≥jλ,u,k

β2
jk

≤ 26−r

(1− 2−r) log(2)

(
‖f‖2

W T
r

+ ‖f‖2

B(2−r)/4
2,∞

)
log(

1
λ

)λ−r.

The last inequalities use the fact that f ∈ B(2−r)/4
2,∞ ∩W

T

r . This ends the proof of the proposition.
2

Proposition 4. Under the conditions of Theorem 7, we have the following inequality:

E‖f̂ε − f‖22 ≤ t
4s

1+2s
ε

[
4c2

m2 + 2( 2
m2 + 1 + 2K(γ)2)‖f‖22 + 4

√
6

m3 + 2(4
4s

1+2s + 1)m
4s

1+2s ‖f‖2W 2
1+2s

+ 27−2/1+2sm−2/1+2s

(1−2−2/1+2s) log(2)
(1 + 8K(γ)2)(‖f‖2W 2

1+2s

+ ‖f‖2
B

s
1+2s
2,∞

) + m
4s

1+2s (1 + 2× 4
4s

1+2s )‖f‖2
B

s
1+2s
2,∞

]
.
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Proof of the proposition. Obviously because of the limitation assumption, we have for 2jε ∼
(mtε)−2,

E‖f̂ε − f‖2
2 = E‖

∑

j<jε,k

(γjk(ε)yjk − βjk)ψj,k‖2
2 +

∑

j≥jε,k

β2
jk.

The second term can be bounded by (mtε)4s/1+2s‖f‖2

B
s

1+2s
2,∞

, by using the definition of the Besov

norm.
Let us recall, for any λ > 0

• |ȳjk(λ)| := max{|yI |; I ⊂ Ijk and |I| > λ2},

• |β̄jk(λ)| := max{|βI |; I ⊂ Ijk and |I| > λ2},

• |δ̄jk(λ)| := max{|yI − βI |; I ⊂ Ijk and |I| > λ2}.

The term E
∑

0≤j<jε,k

(γjk(ε)yjk − βjk)2 can be bounded by 2(A + B), where

A + B = E
∑

0≤j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|ȳjk(mtε)| ≤ mtε}

+ E
∑

0≤j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|ȳjk(mtε)| > mtε}

Again we split A into A1 + A2, and because of the condition H(mtε, ctε), we have that, on
{|ȳjk(mtε)| ≤ mtε}, γjk ≤ ctε. So,

A1 = E
∑

0≤j<jε,k

γjk(ε)2(yjk − βjk)2 I{|ȳjk(mtε)| ≤ mtε}

≤ c22jεt2εε
2

≤ 2c2

m2
t2ε .

As for the proof of Proposition 3, and using lemma 2, we obtain

A2 ≤ E
∑

0≤j<jε,k

β2
jk I{|ȳjk(mtε)| ≤ mtε}[I{|β̄jk(mtε)| ≤ 2mtε}+ I{|β̄jk(mtε)| > 2mtε}]

≤ (4mtε)4s/1+2s(‖f‖2

WT
2

1+2s

+ ‖f‖2

B
s/1+2s
2,∞

) +
∑

0≤j<jε,k

β2
jkP(|δ̄jk(mtε)| > mtε)

≤ (4mtε)4s/1+2s(‖f‖2

WT
2

1+2s

+ ‖f‖2

B
s/1+2s
2,∞

) + 2jε‖f‖2
2
εm2/2

≤ (4mtε)4s/1+2s(‖f‖2

WT
2

1+2s

+ ‖f‖2

B
s/1+2s
2,∞

) +
2‖f‖2

2

m2
t2ε
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We have used the fact that m2 ≥ 8.

B = E
∑

0≤j<jε,k

[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2
jk] I{|ȳjk(mtε)| > mtε}[I{|β̄jk(mtε)| ≤ mtε/2}

+I{|β̄jk(mtε) > mtε/2}]
:= B1 + B2

For B1 we use the Schwartz inequality:

E(yjk − βjk)2I{|δ̄jk(mtε)| > mtε/2} ≤ (P(|δ̄jk(mtε)| > mtε/2)1/2(E(yjk − βjk)4)1/2

where E(yjk − βjk)4 = 3ε4 and P(|δ̄jk(mtε)| > mtε/2) ≤ εm2/8 (using lemma 2). So, choosing m
such that m2 ≥ 48,

B1 ≤ √
3 2

jε
2

∑
0≤j<jε,k

ε2I{|β̄jk(mtε)| ≤ mtε/2}εm2/16 +
∑

0≤j<jε,k
β2

jkI{|β̄jk(mtε)| ≤ mtε/2}
≤ √

3 2
3jε
2 t

2+m2/16
ε + ‖f‖2

W
T

2
1+2s

(mtε)4s/1+2s

≤ 2
√

6
m3 t2ε + ‖f‖2

W
T

2
1+2s

(mtε)4s/1+2s

For B2, we use, Proposition 3:

B2 = E
∑

0≤j<jε,k
[γjk(ε)2(yjk − βjk)2 + (1− γjk(ε))2β2

jk] I{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}
≤ ∑

0≤j<jε,k
[ε2I{|β̄jk(mtε)| > mtε/2}+ B3

≤ 26−2/1+2s

(1−2−2/1+2s) log(2)

(
‖f‖2

W
T

2
1+2s

+ ‖f‖2

Bs/1+2s
2,∞

)
ε2 log( 1

mtε
)(mtε)

− 2
1+2s + B3

≤ 26−2/1+2sm−2/1+2s

(1−2−2/1+2s) log(2)

(
‖f‖2

W
T

2
1+2s

+ ‖f‖2

Bs/1+2s
2,∞

)
t
4s/1+2s
ε + B3

B3 :=
∑

0≤j<jε,k

E(1− γjk(ε))2β2
jk I{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}

≤
∑

0≤j<jε,k

E(1− γjk(ε))2β2
jk I{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}I{|βjk| < |yjk|+ mtε}

+
∑

0≤j<jε,k

E(1− γjk(ε))2β2
jk I{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}I{|yjk − βjk| ≥ mtε}

≤
∑

0≤j<jε,k

E(1− γjk(ε))2β2
jk I{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}I{|βjk| < 2(|yjk| ∨mtε)}

+
∑

0≤j<jε,k

E(1− γjk(ε))2β2
jk I{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}I{|yjk − βjk| ≥ mtε}

:= B′
3 + B”3

B”3 ≤
∑

0≤j<jε,k

β2
jkP(|yjk − βjk| ≥ mtε) ≤ ‖f‖2

2
ε

m2

2 ≤ ‖f‖2
2
tε

2
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since m2 ≥ 4. Now, using (8) and Proposition 3 we get,

B′
3 ≤

∑

0≤j<jε,k

E(1− γjk(ε))2β2
jkI{|ȳjk(mtε)| > mtε}I{|β̄jk(mtε)| > mtε/2}I{|βjk| < 2(|yjk| ∨mtε)}

≤ K(γ)2
∑

0≤j<jε,k

E[tε +
ε

|yjk| ∨mtε
]2β2

jkI{|β̄jk(mtε)| > mtε/2}I{|βjk| < 2(|yjk| ∨mtε)}

≤ 2K(γ)2
[
t2ε‖f‖2

2
+

28−2/1+2sm−2/1+2s

(1− 2−2/1+2s) log(2)
(‖f‖2

W
T

2
1+2s

+ ‖f‖2

Bs/1+2s
2,∞

)t4s/1+2s
ε

]
.

In section 6, we will provide two examples of procedures satisfying (8) that are also optimal
among hereditary rules which are limited.

5 Maxisets for Bayesian procedures

In this section, we focus on the study of Bayes rules. We recall that we consider the prior model
defined in Introduction.

5.1 Gaussian priors: a first approach

Let us consider the Bayes model (1) where γ is the Gaussian density, which is the most classical
choice. In this case, we easily derive the Bayes rules of βjk associated with the l1-loss and the
l2-loss:

β̆jk = Med(βjk|yjk) = sign(yjk)max(0, ξjk),

β̃jk = E(βjk|yjk) =
bj

1 + ηjk
yjk,

where

ξjk = bj |yjk| − ε
√

bjΦ−1

(
1 + min(ηjk, 1)

2

)
,

bj =
τ2
j,ε

ε2 + τ2
j,ε

,

ηjk =
1

wj,ε

√
ε2 + τ2

j,ε

ε
exp

(
− τ2

j,εy
2
jk

2ε2(ε2 + τ2
j,ε)

)
,

and Φ is the normal cumulative distributive function. Both rules are then shrinkage rules. We
also note that β̆jk is zero whenever yjk falls in an implicitly defined interval [−λj,ε, λj,ε]. So it is
a thresholding rule. In the following, we study the maxisets of the previous estimates associated
with the following very classical form for the hyperparameters:

τ2
j,ε = c12−αj , πj,ε = min(1, c22−bj),
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where c1, c2, α and b are positive constants. This particular form for the hyperparameters
was suggested by [Abramovich et al., 1998] and then used by [Abramovich et al., 2004]. A nice
interpretation was provided by these authors who explained how α, b, c1 and c2 can be derived
for applications.

Remark: An alternative for eliciting these hyperparameters consists in using empirical Bayes
methods and EM algorithm (see [Clyde and George, 1998],
[Clyde and George, 2000] or [Johnstone and Silverman, 1998]). 3

In a minimax setting, [Abramovich et al., 2004] obtained the following result:

Theorem 8. Let β0 be β̆ or β̃. With α = 2s + 1 and any 0 ≤ b < 1, there exist two positive
constants C1 and C2 such that ∀ ε > 0,

C1(ε
√

log(1/ε))4s/(2s+1) ≤ sup
β∈Bs

2,∞(M)
E‖β0 − β‖2

2 ≤ C2 log(1/ε)ε4s/(2s+1).

Now, let us consider the maxiset setting. Both previous Bayesian procedures are lim-
ited. Indeed, as soon as τ2

j,ε ≤ ε2 we have bj ≤ 1/2. So, each of these procedures belongs
to L((c−1

1 ε2)1/α, 1/2). So, if α > 1, by using Theorem 1, for β0 ∈ {β̆, β̃},

MS(β0, ‖.‖2
2, ε

2(α−1)/α) ⊂ B(α−1)/2
2,∞ .

With s > 0 and α = 1 + 2s,

MS(β0, ‖.‖2
2, ε

4s/(1+2s)) ⊂ Bs
2,∞. (10)

Actually, we have the following theorem:

Theorem 9. For s > 0, α = 2s + 1, any 0 ≤ b < 1, and if β0 is β̆ or β̃,

1. for the rate ε4s/(1+2s),
MS(β0, ‖.‖2

2, ε
4s/(1+2s)) ( Bs

2,∞,

2. for the rate (ε
√

log(1/ε))4s/(1+2s),

MS(β0, ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)) ⊂ B∗s2,∞,

3. for the rate ε4s/(1+2s) log(1/ε),

Bs
2,∞ ⊂ MS(β0, ‖.‖2

2, ε
4s/(1+2s) log(1/ε)).

with

B∗s2,∞ =



f ∈ L2 : sup

J>0
22JsJ−2s/(1+2s)

∑

j≥J

∑

k

β2
jk < ∞



 .

21



Proof: The first point is a simple consequence of equation (10) and Theorem 8. The second
one is easily obtained by using similar arguments as for the proof of Theorem 1. Finally, the
proof of the last one is provided by Theorem 8. 2

If we consider limited procedures, this theorem shows that the maxiset of these Bayesian pro-
cedures is not the ideal one. The first point of Theorem 9 and Corollary 1 show that they
are also outperformed by linear estimates for polynomial rates of convergence. Furthermore,
these procedures do not achieve the same performance as classical non linear procedures, since,
obviously, Bs/(2s+1)

2,∞ ∩W 2
2s+1

is not included in B∗s2,∞. The following theorem even reinforces this
bad sentence by proving that these procedures are highly non robust with respect to the choice
of α, which is a serious drawback in practise since s is generally unknown.

Theorem 10. With the previous choice for the hyperparameters, for s > 0 and β0 ∈ {β̆, β̃},

• α > 2s + 1 implies Bs
p,∞ is not included in MS(β0, ‖.‖2

2, t
4s/(1+2s)
ε ) for any 1 ≤ p ≤ ∞.

• α = 2s + 1 implies Bs
p,∞ is not included in MS(β0, ‖.‖2

2, t
4s/(1+2s)
ε ) if p < 2,

where

Bs
p,∞ =

{
β : sup

j≥−1
2jp(s+ 1

2
− 1

p
)
∑

k

|βjk|p < ∞
}

.

Remark: Theorem 10 is established for the rate t
4s/(1+2s)
ε but it can be generalized for any rate

of convergence of the form ε4s/(1+2s)(log(1/ε))m, with m ≥ 0. 3

The proof of Theorem 10 is based on the following result:

Proposition 5. If β ∈ MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ) then there exists a constant C such that, for ε

small enough: ∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} ≤ Ct
4s

1+2s
ε (11)

Proof of the proposition:
Here we shall distinguish the cases of the posterior mean and median.
The posterior median can be written as follows:

β̆jk = sign(yjk)(bj |yjk| − g(ε, τj,ε, yjk)),

with 0 ≤ g(ε, τj,ε, yjk) ≤ bj |yjk|.
Let us assume that bj |yjk − βjk| ≤ (1− bj)|βjk|/2 and τ2

j,ε ≤ ε2, so bj ≤ 1/2.
First, let us suppose that yjk ≥ 0 so β̆jk ≥ 0. If βjk ≥ 0, then

|β̆jk − βjk| = |bj(yjk − βjk)− (1− bj)βjk − g(ε, τj,ε, yjk)|
= (1− bj)βjk − bj(yjk − βjk) + g(ε, τj,ε, yjk)

≥ 1
2
(1− bj)βjk

≥ 1
4
βjk.
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If βjk ≤ 0, then

|β̆jk − βjk| ≥ 1
4
|βjk|.

The case yjk ≤ 0 is handled by using similar arguments and the particular form of the posterior
median. So, we obtain:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2

jk P(bj |yjk − βjk| ≤ (1− bj)|βjk|/2)I{τ2
j,ε ≤ ε2}

≥ 1
16

β2
jk P(|yjk − βjk| ≤ |βjk|/2)I{τ2

j,ε ≤ ε2}.

So, we obtain:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2

jkP(|yjk − βjk| ≤ |βjk|/2)I{τ2
j,ε ≤ ε2}

≥ 1
16

β2
jk(1− P(|yjk − βjk| > |βjk|/2))I{τ2

j,ε ≤ ε2}

Using the large deviations inequalities for the Gaussian variables, we obtain for ε small enough:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2}I{|βjk| > tε} ≥ 1

16
β2

jk(1− P(|yjk − βjk| > tε/2))I{τ2
j,ε ≤ ε2}I{|βjk| > tε}

≥ 1
32

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε}

This implies (11).
For the posterior mean, we have:

E(β̃jk − βjk)2 = E
(

bj

1 + ηjk
(yjk − βjk)− (1− bj

1 + ηjk
)βjk

)2

≥ 1
4
E

(
(1− bj

1 + ηjk
)βjk

)2

I

{
bj

1 + ηjk
|yjk − βjk| ≤ (1− bj

1 + ηjk
)|βjk|/2

}

So, we obtain:

E(β̃jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2

jkP(|yjk − βjk| ≤ |βjk|/2)I{τ2
j,ε ≤ ε2}

≥ 1
16

β2
jk(1− P(|yjk − βjk| > |βjk|/2))I{τ2

j,ε ≤ ε2}

Finally, using similar arguments as those used for the posterior median, we obtain (11). Propo-
sition 5 is proved. 2

Now, let us prove Theorem 10. Let us first investigate the case α > 2s + 1.
Let us take β such that all the βjk’s are zero, except 2j coefficients at each level j that are equal
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to 2−j(s+ 1
2
). Then, β ∈ Bs

p,∞. Since τ2
j,ε = c12−jα, if we put 2Jα ∼ c

1
α
1 ε−

2
α and 2Js ∼ t

−2
2s+1
ε , we

observe that asymptotically Jα < Js. So, for ε small enough:
∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} =
∑

Jα≤j<Js

2−2js

≥ cε
4s
α ,

with c a positive constant. Using Proposition 5, β does not belong to MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ).

Let us then investigate the case α = 2s + 1.
Let us take β such that all the βjk’s are zero, except 1 coefficient at each level j that is equal to

2−j(s+ 1
2
− 1

p
)
. Then, β ∈ Bs

p,∞. Similarly, we put 2Jα ∼ c
1
α
1 ε−

2
α and 2J̃s ∼ t

−1/(s+ 1
2
− 1

p
)

ε , we observe
that asymptotically Jα < J̃s. So, for ε small enough:

∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} =
∑

Jα≤j<J̃s

2−2j(s+ 1
2
− 1

p
)

≥ c̃ε
4(s+ 1

2
− 1

p
)/α

,

with c̃ a positive constant. Using Proposition 5, β does not belong to MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ),

since p < 2. 2

The goal of the following subsections is to investigate a different choice for the hyperparam-
eters τj,ε and wj,ε and for the density γ. Indeed, as in [Johnstone and Silverman, 2004a] and
[Johnstone and Silverman, 2004b] in the minimax setting, we would like to point out posterior
Bayes estimates stemmed from the prior model (1) that achieve the same performance as non
linear ones in the maxiset approach. It is all the more natural since Bayesian procedures can
achieve better performances than classical non linear ones from a practical point of view. More
precisely, we investigate a choice for the hyperparameters and for the density γ that enables us
to obtain maxisets at least as large as Bs/(2s+1)

2,∞ ∩W 2
2s+1

. Two different ways will be investigated.
In section 5.2, we give up Gaussian densities and we consider heavy-tailed densities γ, as in
[Johnstone and Silverman, 2004a] and [Johnstone and Silverman, 2004b]. Not surprisingly, the
modified Bayesian procedures achieve very good performances. We show this result by proving
that the Bayesian procedures are both limited and elitist. Then, in section 5.3, we wonder
whether heavy-tailed priors are unavoidable and we consider, once more, Gaussian priors but
with a different choice for the hyperparameters.

5.2 Heavy-tailed priors

In this section, we still consider the prior model (1), but the density γ is no longer Gaussian.
We assume that there exist two positive constants M and M1 such that

sup
β≥M1

∣∣∣∣
d

dβ
log γ(β)

∣∣∣∣ = M < ∞. (12)

24



The hypothesis (12) means that the tails of γ have to be exponential or heavier. Indeed, under
(12), we have:

∀ u ≥ M1, γ(u) ≥ γ(M1) exp(−M(u−M1)).

In the minimax approach of [Johnstone and Silverman, 2004a] and [Johnstone and Silverman, 2004b],
the priors also verified (12). To complete the prior model, we assume that τj,ε = ε and wj,ε

depends only on ε with
wj,ε = w(ε) → 0, as ε → 0

and w a positive continuous function. Using these assumptions, the following proposition de-
scribes the properties of the posterior median and mean:

Proposition 6. We have:

1. The estimates β̆jk = Med(βjk|yjk) and β̃jk = E(βjk|yjk) are shrinkage rules:
for β0

jk ∈ {β̆jk, β̃jk}, yjk −→ β0
jk is antisymmetric, increasing on (−∞, +∞) and

0 ≤ β0
jk ≤ yjk, ∀ yjk ≥ 0.

2. β̆jk is a thresholding rule: there exists t̆ε such that

β̆jk = 0 ⇐⇒ |yjk| ≤ t̆ε,

where the threshold t̆ε verifies for ε small enough, t̆ε ≥ ε
√

2 log(1/w(ε)) and

lim
ε→0

t̆ε

ε
√

2 log(1/w(ε))
= 1.

3. There exists a positive constant C such that

β̃jk = γ̃jkyjk,

with

0 ≤ γ̃jk ≤ Cw(ε) exp(
y2

jk

2ε2
).

4. Let us consider the threshold t̆ε introduced previously. There exists a positive constant K
such that for β0

jk ∈ {β̆jk, β̃jk}

lim sup
ε→0

|ε−1yjk − ε−1β0
jk|I|yjk|>2t̆ε

≤ K. a.s.

Proof: The first point has been established by [Johnstone and Silverman, 2004a] and
[Johnstone and Silverman, 2004b]. The second point is an immediate consequence of Proposi-
tion 3 of [Rivoirard, 2003]. To prove the third point, we use Proposition 4 and Remark 1 of
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[Rivoirard, 2003] yielding that there exist two positive constants C1 and C2 and two positive
functions ẽ1 and ẽ2 such that

β̃jk = yjk ×
ẽ1(ε−1yjk)

1 + w(ε)−1 exp(−y2
jk

2ε2
)γ(ε−1yjk)−1ẽ2(ε−1yjk)

,

where
∀ x ≥ 0, C1 ≤ ẽ1(x), ẽ2(x) ≤ C2

So,

γ̃jk ≤ C2Γ
C1

w(ε) exp(
y2

jk

2ε2
),

where Γ is an upper bound for γ. The fourth point is easily derived by using Propositions 3
and 4 of [Rivoirard, 2003]. 2

Now, let us introduce the following procedures. Given the previous prior model, we set

f̆ε =
∑

j<jε

∑

k

β̆jkψjk, β̆jk = Med(βjk|yjk), (13)

and
f̃ε =

∑

j<jε

∑

k

β̃jkψjk, β̃jk = E(βjk|yjk), (14)

where jε is such that 2jε ∼ t−2
ε . Using the first three points of Proposition 6, we immediately

obtain:

Corollary 3. With C and t̆ε that have been introduced in Proposition 6, and a ∈]0, 1[, we have:

f̆ε ∈ L(t2ε , 0) ∩ E(t̆ε, 0),

f̃ε ∈ L(t2ε , 0) ∩ E(t̃ε, a),

as soon as t̃ε ≤ ε
√

2 log( a
Cw(ε)).

Remark: Proposition 6 also shows that the posterior median is a cautious procedure. Using a
proper choice of the hyperparameters, we can easily prove that the procedure associated with
the posterior mean is also cautious. 3

We have the following consequences on the maxisets of the procedures:

Theorem 11. Let s > 0. We suppose that there exist two positive constants ρ1 and ρ2 such
that for ε > 0 small enough,

ερ1 ≤ w(ε) ≤ ερ2 .

Then, we have:

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) = Bs/(2s+1)
2,∞ ∩W 2

2s+1
,

where f0
ε ∈ {f̃ε, f̆ε}, as soon as ρ2 ≥ 32 for the posterior median and ρ2 ≥ 33 for the posterior

mean.
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Proof: The inclusions

MS(f̆ε, ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)) ⊂ Bs/(2s+1)

2,∞ ∩W 2
2s+1

and
MS(f̃ε, ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) ⊂ Bs/(2s+1)
2,∞ ∩W 2

2s+1

are provided by Theorems 1 and 2 and Corollary 3.
The inclusions

Bs/(2s+1)
2,∞ ∩W 2

2s+1
⊂ MS(f̆ε, ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s))

and
Bs/(2s+1)

2,∞ ∩W 2
2s+1

⊂ MS(f̃ε, ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s))

are provided by the fourth point of Proposition 6, Corollary 3 and Theorem 6. 2

So, the adaptive Bayesian procedures based on heavy-tailed prior densities are optimal among
the class of limited and elitist procedures. We can also note that they outperform the Bayesian
procedures of section 5.1 from the maxiset point of view.

5.3 Gaussian priors with large variance

The previous subsection has shown the power of the Bayes procedures built from heavy-tailed
prior models in the maxiset setting. The goal of this section is then to answer the following
questions. Are heavy-tailed priors unavoidable? Can we simultaneously consider Gaussian
densities and ignore the empirical Bayes setting to build optimal Bayesian procedures? In
other words, if γ is the Gaussian density, does there exist a fixed and adaptive choice of the
hyperparameters πj,ε and wj,ε such that

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) = Bs/(2s+1)
2,∞ ∩W 2

2s+1
,

where f0
ε ∈ {f̆ε, f̃ε} (see (13) and (14))?

This is a very important issue since calculation using Gaussian priors are mostly direct and
obviously much easier than heavy tails priors.

The answers are provided by the following theorem:

Theorem 12. We consider the prior model (1), where γ is the Gaussian density. We assume
that τj,ε = τ(ε) and wj,ε = w(ε) are independent of j with w a continuous positive function. We
consider f̆ε and f̃ε introduced in (13) and (14). If

1 + ε−2τ(ε)2 = t−1
ε

and there exist q1 and q2 such that for ε small enough

εq1 ≤ w(ε) ≤ εq2 , (15)

we have:
MS(f0

ε , ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)) = Bs/(2s+1)

2,∞ ∩W 2
2s+1

,

where f0
ε ∈ {f̃ε, f̆ε} as soon as q2 > 63/2 for the posterior median and q2 ≥ 65/2 for the

posterior mean.
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Whereas we usually consider τ2
j,ε = ε2 or τ2

j,ε = 2−jα, here we impose a “larger” variance.
It is the key point of the proof of Theorem 12. In a sense, we re-create the heavy tails by
increasing the variance.

Before giving it, let us prove that both Bayesian procedures belong to the class of limited
and elitist procedures:

Proposition 7. Under the assumptions of Theorem 12, we have for any m > 0 and for ε small
enough,

• if q2 > m2−1
2 , f̆ε ∈ L(t2ε , 0) ∩ E(mtε, 0),

• if q2 ≥ m2+1
2 , f̃ε ∈ L(t2ε , 0) ∩ E(mtε, tε).

Proof: Using the definition of jε, each Bayesian procedure belongs to L(t2ε , 0). Now, let us
assume that |yjk| ≤ mtε. Then,

ηjk =
1

w(ε)

√
ε2 + τ(ε)2

ε
exp

(
− τ(ε)2y2

jk

2ε2(ε2 + τ(ε)2)

)

≥ 1
w(ε)

t−1/2
ε exp

(
−m2t2ε

2ε2

)

≥ ε
m2

2
− 1

2
1

w(ε)
(log(1/ε))−1/4.

If q2 > m2−1
2 , for ε small enough, ηjk ≥ 1 and β̆jk = 0. So, f̆ε ∈ E(mtε, 0).

If q2 ≥ m2+1
2 , for ε small enough, ηjk ≥ t−1

ε and bj

1+ηjk
≤ tε. So, f̃ε ∈ E(mtε, tε) ⊂ E(mtε, 1/2)

for ε < 1. 2

Now let us prove the theorem:
Proof of Theorem 12: The inclusion

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) ⊂ Bs/(2s+1)
2,∞ ∩W 2

2s+1

is a direct consequence of Proposition 7 and Theorems 1 and 2.
Now, let us prove that

Bs/(2s+1)
2,∞ ∩W 2

2s+1
⊂ MS(f0

ε , ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)).

For this purpose, let us prove (7). Let us fix a constant M ≥ √
6 + 4q1. We assume |yjk| > Mtε.

Then, for ε small enough,

ηjk =
1

w(ε)

√
ε2 + τ(ε)2

ε
exp

(
− τ(ε)2y2

jk

2ε2(ε2 + τ(ε)2)

)

≤ 1
w(ε)

√
ε2 + τ(ε)2

ε
ε

M2

4

≤ 1
w(ε)

t−1/2
ε ε

M2

4

≤ tε.

28



Let us prove (7) for β̆jk. Using the previous inequality, we have for ε small enough, and for any
j < jε and any k,

ε
√

bjΦ−1

(
1 + min(ηjk, 1)

2

)
≤ tε.

So,

|yjk − β̆jk| = |yjk − β̆jk|I{|yjk| > Mtε}+ |yjk − β̆jk|I{|yjk| ≤ Mtε}
≤ ((1− bj)|yjk|+ tε)I{|yjk| > Mtε}+ 2|yjk|I{|yjk| ≤ Mtε}
≤ tε|yjk|+ (1 + 2M)tε,

which implies the required inequlity. Now, let us deal with the posterior mean. For ε small
enough, and for any j < jε and any k,

|yjk − β̃jk| = |yjk − β̃jk|I{|yjk| > Mtε}+ |yjk − β̃jk|I{|yjk| ≤ Mtε}
≤

(
1− bj

1 + ηjk

)
|yjk|I{|yjk| > Mtε}+ 2|yjk|I{|yjk| ≤ Mtε}

≤ (1− bj + ηjk)|yjk|I{|yjk| > Mtε}+ 2|yjk|I{|yjk| ≤ Mtε}
≤ 2tε|yjk|+ 2Mtε,

which implies (7) for the posterior mean.
Now, using Proposition 7 and Theorem 6, we obtain the required inclusion. ¤
So, Theorem 12 provides optimal Bayesian procedures among limited and elitist procedures,
based on Gaussian priors, under the condition that the hyperparameter τj,ε is “large”. Under
this assumption, the density γj,ε is then more spread around 0, which enables us to avoid
considering heavy-tailed densities. Since the maxiset of these estimates is the intersection of
the Besov space Bs/(2s+1)

2,∞ and the Lorentz space W 2
2s+1

, they achieve the same performance as
thresholding ones. Now, a natural question arises: Does there exist a non linear procedure that
outperforms these procedures?

Another way of asking this question is the following : Up to now the largest maxiset that
we encountered is of the form Bs/(2s+1)

2,∞ ∩W 2
2s+1

. Is it the ’maxi’ maxiset?
The purpose of the following section is to prove that the answer to this question is no and

provide examples of procedures yielding larger maxisets.

6 Hereditary procedures and Lepski method

Still choosing for wavelet basis, the Haar basis, we focus now on hereditary rules. First of all,
we give two examples of such rules which satisfy conditions of Theorem 7. The first one (resp.
the second one) is based on hereditary constraints associated with hard (resp. soft) thresholds.
Combining Theorems 1, 4 and 7, we prove that these rules are optimal (in the maxiset sense
with the rate t

4s/1+2s
ε ) among hereditary and limited rules, since their maxiset is exactly the

ideal one described in section 3.
Then we point out certain likenesses between hereditary rules and Lepski’s procedure based on
local bandwith selection.
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6.1 Two examples of optimal hereditary rules

To give a first example of Hereditary rule, let us consider the following procedure (hard tree
rule) defined by:

f̃HT (t) = y−10ψ−10(t) +
∑

0≤j<jε

∑

k

γ
H

jkyjkψjk(t) (16)

where 2jε ∼ (mtε)−2, γ
H

jk = 1 if |ȳjk(mtε)| > mtε and γ
H

jk = 0 otherwise.
It is obvious that

f̃HT ∈ L((mtε)2, 0) ∩H(mtε, tε).

Remark: The definition of this hereditary rule is directly inspired from tree-methods in Ap-
proximation Theory (see [Cohen et al., 2001a]). Precisely, this procedure is a tree rule (see
[Engel, 1994]), since it satisfies the following hereditary constraints:

γ
H

jk = 1 =⇒ ∀I ⊃ Ijk, γ
H

I
= 1,

γ
H

jk = 0 =⇒ ∀I ⊂ Ijk, γ
H

I
= 0.

Notice that this rule is the smallest1 tree rule containing:

T (λε) = {(j, k); 0 ≤ j < jε, 0 ≤ k < 2j and |yjk| > λε}.

3

To point out a second example of hereditary rule, let us consider the following procedure
(soft tree rule) defined by:

f̃ST (t) = y−10ψ−10(t) +
∑

0≤j<jε

∑

k

γ
S

jkyjkψjk(t) (17)

where 2jε ∼ (mtε)−2, γ
S

jk = 1− ε
|ȳjk(mtε)| if |ȳjk(mtε)| > mtε and γ

S

jk = 0 otherwise.
It is obvious that

f̃ST ∈ L((mtε)2, 0) ∩H(mtε, tε).

We have:

Theorem 13. If m is large enough, hard tree and soft tree rules f̂ε as defined in (16) and (17)
are satisfying

MS(f̂ε, ‖.‖2
2, t

4s/(1+2s)
ε ) = Bs/1+2s

2,∞ ∩W
T

2
1+2s

.

The proof is an elementary consequence of Theorems 1, 4 and 7. It proves that these
procedures are optimal in the maxiset sense among limited and hereditary rules.

1 according to the number of empirical coefficients used in the reconstruction
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6.2 A connection with Lepski’s procedure

In this paragraph, we show that the hard tree rule can be viewed as the wavelet-version of the
local bandwith procedure of Lepski using kernel methods. Indeed let (f̂j)j∈N be the family of
estimators defined as follows:

• f̂0(t) = y−10ψ−10(t)

• f̂j+1(t) = f̂j(t) +
∑

k

yjkψjk(t).

For all 0 < ε < 1/e, it is clear that for any j, f̂j ∈ Fε. Let us denote Itj the j-dyadic interval
containing t and let us say that an integer j is t-admissible if:
either j = jε or, for all j ≤ j′ < jε, for all t′ ∈ Itj : |f̂j′+1(t′)− f̂j′(t′)| ≤ 2j′/2mtε.

Denote ĵ(t) = inf{j; j is t-admissible}. There are certain likenesses between the hard tree rule
and the local bandwidth selection procedure defined by Lepski who introduced admissibility for
kernel estimators. Indeed, we can easily observe that:

f̂ĵ(t)(t) = f̃HT (t)

when the wavelet is the Haar basis. In this sense, our procedure can be considered in this
particular case as a hybrid version of Lepski’s procedures, using wavelets.
Remark: Recall that [Kerkyacharian and Picard, 2002] pointed out another hybrid version f̂H

of local bandwidth selection using the following definition of admissibility:
j is t-admissible if, either j = jε or for all j ≤ j′ < jε, for all t′ ∈ Itj′ : |f̂j′+1(t′) − f̂j′(t′)| ≤
2j′/2mtε. The maxiset of this procedure for the rate (ε

√
log(ε−1))4s/1+2s has been shown to be

at least as large as Bs/1+2s
2,∞ ∩W 2

1+2s
, too. But [Autin, 2004] has proved that the maxiset of the

hard tree rule for the same rate is larger than the last one.3

7 Appendix

In the previous sections, for sake of simplicity, the choice of the rates of convergence was often
restricted. Indeed, the rate was linked in a direct way to either the limitation or to the threshold
bound for elitist or cautious rules. But generally, it is not necessary and we show in this section
how this constraint can be relaxed.

7.1 Maxisets for limited procedures

Definition 9. Let s > 0 and u be an increasing continuous map of R+ such that u(0) = 0. We
shall say that a function f ∈ L2([0, 1]) belongs to the space Bs

2,∞(u), if and only if:

sup
λ>0

(u(λ))−2s
∑

j

∑

k

β2
jkI{2−j ≤ λ} < ∞.
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Of course, when u(x) = x, Bs
2,∞(u) is the classical Besov space Bs

2,∞. In this section, we
study the ideal maxisets for limited procedures. We also provide estimates that are optimal
among the class of limited ones. For this purpose, let λε be a increasing continuous function
with λ0 = 0,

Theorem 14 (Ideal maxiset for limited rules). Let s > 0 and f̂ε be a limited rule belonging
to L(λε, a), with a ∈ [0, 1[. Then

MS(f̂ε, ‖.‖2
2, (u(λε))2s) ⊂ Bs

2,∞(u).

Proof: Let f ∈ MS(f̂ε, ‖.‖2
2, (u(λε))2s). We have:

(1− a)2
∑

j,k

β2
jkI{2−j ≤ λε}

= 2(1− a)2
∑

j,k

β2
jk [P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{2−j ≤ λε}

≤ 2E
∑

j,k

[
(γjkyjk − βjk)2I{βjk ≥ 0}+ (γjkyjk − βjk)2I{βjk < 0}] I{2−j ≤ λε}

≤ 2E
∑

j,k

(γjkyjk − βjk)2

≤ C (u(λε))2s,

where C is a positive constant. So, f belongs to Bs
2,∞(u). 2

Conversely, we have the following result:

Theorem 15. Let s > 0 and (γj(ε))jk be a non increasing sequence of weights lying in [0, 1]
such that β̂L

ε = (γj(ε)yjk)jk belongs to L(λε, a), with a ∈ [0, 1[. If there exist C1 and C2 in R
such that, with γ−2 = 1, ∀ ε > 0,

∑

j≥−1

(γj−1 − γj)(1− γj)(u(2−j))2sI{2j < λ−1
ε } ≤ C1(u(λε))2s (18)

∑

j≥−1

2jγj(ε)2 ≤ C2 ε−2 (u(λε))2s (19)

then,
Bs

2,∞(u) ⊂ MS(β̂L
ε , ‖.‖2

2, (u(λε))2s).
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Proof: With sl =
∑

j

∑
k β2

jkI{2−j ≤ 2−l}, we have, using (18) and (19):

∑

j,k

E(γjyjk − βjk)2 =
∑

j,k

E(γj(yjk − βjk)− (1− γj)βjk)2

=
∑

j,k

γ2
j ε2 +

∑

j,k

(1− γj)2β2
jk

≤ Sψε2
∑

j

2jγ2
j +

∑

j,k

β2
jkI{2−j ≤ λε}+

∑

j,k

(1− γj)2β2
jkI{2−j > λε}

≤ (SψC2 + M ′2) (u(λε))2s +
∑

j≥−1

(1− γj)2(sj − sj+1)I{2−j > λε}

≤ (SψC2 + M ′2) (u(λε))2s + 2
∑

j≥−1

(γj−1 − γj)(1− γj)sjI{2−j > λε}

≤ (SψC2 + M ′2) (u(λε))2s + 2M ′2 ∑

j≥−1

(γj−1 − γj)(1− γj)(u(2−j))2sI{2−j > λε}

≤ (SψC2 + M ′2 + 2M ′2C1)(u(λε))2s.

2

Combining Theorems 14 and 15, by straightforward computations, we obtain:

Corollary 4. If we assume that u(x) = xũ(x) where

ũ(x)−1 = O(1) as x goes to 0

and if we consider linear estimates associated with the weights γ
(1)
j (λε), γ

(2)
j (λε) with α >

(s ∨ 1/2) or γ
(3)
j (λε) with α > s (see section 2.2), then for i ∈ {1, 2, 3}

MS((γ(i)
j (λε)yjk)jk, ‖.‖2

2, (u(λε))2s) = Bs
2,∞(u),

as soon as (ε2λ−1
ε u(λε)−2s)ε is bounded.

To shed light on this result, let us take λε = ε2/(1+2s). So, (ε2λ−1
ε u(λε)−2s)ε is bounded

as soon as (ε4s/(1+2s) u(λε)−2s)ε is bounded. So, for the rate ε4s/(1+2s)(log(1/ε))2sm, m ≥ 0,
the maxisets of the linear estimates mentioned in Corollary 4 are the spaces Bs

2,∞(u), where
u(x) = x(log(1/x))m.

7.2 Ideal maxisets for elitist rules

Definition 10. Let 0 < r < 2 and u be an increasing continuous map of R+ such that u(0) = 0.
We shall say that a function f ∈ L2([0, 1]) belongs to the space Wr,u if and only if:

sup
λ>0

(u(λ))r−2
∑

j

∑

k

|βjk|2I{|βjk|6λ} < ∞.
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Theorem 16 (Ideal maxiset for elitist rules). Let s > 0 and f̂ε be an elitist rule that
belongs to E(λε, a) with a ∈ [0, 1[, where λε is an increasing continuous function of ε, such that
λ0 = 0. Then

MS(f̂ε, ‖.‖2
2, (u(λε))4s/(1+2s)) ⊂ W 2

1+2s
,u.

Proof: Let f ∈ MS(f̂ε, ‖.‖2
2, (u(λε))4s/(1+2s))(M). We have:

(1− a)2
∑

j,k

β2
jkI{|βjk| ≤ λε}

= 2(1− a)2
∑

j,k

β2
jk [P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{|βjk| ≤ λε}

≤ 2E
∑

j,k

[
(βjk − γjkyjk)2I{βjk ≥ 0}+ (βjk − γjkyjk)2I{βjk < 0}] I{|βjk| ≤ λε}

≤ 2E
∑

j,k

(βjk − γjkyjk)2

≤ 2M (u(λε))4s/1+2s.

So, using the continuity of λε in 0, we deduce that f ∈ W 2
1+2s

,u.

7.3 Ideal maxisets for cautious procedures

Definition 11. Let 0 < r < 2 and u be a increasing continuous map of R+ such that u(0) = 0.
We shall say that a function f ∈ L2([0, 1]) belongs to the space W

∗
r,u if and only if:

sup
λ>0

(u(λ))r−2λ2

[
log(

1
λ

)
]−1 ∑

j<jλ,k

I{|βjk|>λ} < ∞.

Theorem 17 (Ideal maxiset for cautious rules). Let s > 0 and f̂ε be a cautious rule that
belongs to C(λε, a) with a ∈]0, 1]. Let λε be an increasing continuous function with λ0 = 0 such
that:

∃ c > 0, ∀ ε > 0,
λε√

log( 1
λε

)
≤ cε. (20)

Then
MS(f̂ε, ‖.‖2

2, (u(λε))4s/1+2s) ⊂ W ∗
2

1+2s
,u

.

Remark: Note that the case λε = tε (resp. λε = ε) satisfies (20) with c =
√

2 (resp. c = 1)3

Proof: Let f ∈ MS(f̂ε, ‖.‖2
2, (u(λε))4s/1+2s)(M). Using (20),

a2λ2
ε

[
log(

1
λε

)
]−1 ∑

j<jε,k

I{|βjk| > λε} ≤ a2c2ε2
∑

j<jε,k

I{|βjk| > λε}.
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Now, let us recall that if X is a zero-mean Gaussian variable with variance ε2, then

E(X2I{X<0}) = E(X2I{X>0}) =
ε2

2
.

From Lemma 1,

a2c2ε2
∑

j<jε,k

I{|βjk| > λε}

= a2c2ε2
∑

j<jε,k

[I{βjk > λε}+ I{βjk < −λε}]

= 2a2c2 E
∑

j<jε,k

(βjk − yjk)2 [I{yjk − βjk < 0}I{βjk > λε}+ I{yjk − βjk > 0}I{βjk < −λε}]

≤ 8c2 E
∑

j<jε,k

(βjk − γjkyjk)2

≤ 8c2M (u(λε))4s/1+2s.

So, using the continuity of λε in 0, we deduce that f belongs to W ∗
2

1+2s
,u

. 2

7.4 Ideal maxisets for hereditary procedures

Definition 12. Let 0 < r < 2 and u be an increasing continuous transformation of R+ such
that u(0) = 0. We say that a function f ∈ L2([0, 1]) belongs to the space W

T

r,u if and only if:

sup
λ>0

(u(λ))r−2
∑

0≤j<jλ

∑

k

β2
jkI{∀I ⊂ Ijk, / |I| > λ2, |βI | ≤ λ

2
} < ∞.

Theorem 18 (Ideal maxiset for hereditary rules). Let s > 0 and f̂ε be a hereditary rule
that belongs to H(λε, a) with a ∈ [0, 1[. Let λε be an increasing continuous function with λ0 = 0
such that there exists a constant C > 0 satisfying

P(|Z| > λε

2ε
) ≤ Cu(λε)2λ2

ε . (21)

Then
MS(f̂ε, ‖.‖2

2, (u(λε))4s/(1+2s)) ⊂ W
T

r,u

with Z ∼ N (0, 1).

Remark: For instance, λε = mtε and u = Id satisfy (21) for any m ≥ 4
√

2. 3

Proof: Let 2jε ∼ λ−2
ε and f ∈ MS(f̂ε, ‖.‖2

2, λ
4s/(1+2s)
ε )(M). Denote

• |ȳjk(λε)| := max{|yI |; I ⊂ Ijk, |I| > λ2
ε},

• |β̄jk(λε)| := max{|βI |; I ⊂ Ijk, |I| > λ2
ε}.
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We have the following lemma:

Lemma 3. Let λε that satisfies (21). Then, for any j ≥ 0 and any k:

P(|ȳjk(λε)| > λε}I{|β̄jk(λε)| ≤ λε

2
} ≤ 2C u(λε)2.

Proof of the lemma: Let Z ∼ N (0, 1). We have

P(|ȳjk(λε)| > λε}I{|β̄jk(λε)| ≤ λε

2
} ≤ 2jεP(|yjk − βjk| > λε

2
}

≤ 2λ−2
ε P(|Z| > λε

2ε
}

≤ 2C u(λε)2.

2

Now, using Lemma 3:

(1− a)2
∑

0≤j<jε,k

β2
jkI{∀I ′ ⊂ Ijk, / |I ′| > λ2

ε , |βI′ | ≤ λε

2
}

= (1− a)2
∑

0≤j<jε,k

β2
jkI{|β̄jk(λε)| ≤ λε

2
}

= 2(1− a)2
∑

0≤j<jε,k

β2
jk [P(yjk − βjk < 0)I{βjk > 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{|β̄jk(λε)| ≤ λε

2
}

≤ 2(1− a)2E
∑

0≤j<jε,k

β2
jk [I{yjk − βjk < 0}I{βjk > 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{|ȳjk(λε)| ≤ λε}

+2E
∑

0≤j<jε,k

β2
jkP(|ȳjk(λε)| > λε}I{|β̄jk(λε)| ≤ λε

2
}

≤ 2 E
∑

0≤j,k

(βjk − γjkyjk)2 +
λ2

2

∑

0≤j<jε,k

P(|ȳjk(λε)| > λε}I{|β̄jk(λε)| ≤ λε

2
}

≤ 2 E
∑

0≤j,k

(βjk − γjkyjk)2 + 2Cu(λε)2

≤ 2(M + C) (u(λε))4s/1+2s.

So, using the continuity of λε in 0, we deduce that f ∈ W
T

2
1+2s

,u
. 2
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