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Abstract

We here discuss a model of continuous opinion dynamics in which
agents adjust continuous opinions as a result of random binary encoun-
ters whenever their difference in opinion is below a given threshold.
We concentrate on the version of the model in the presence of few
extremists which might drive the dynamics to generalised extremism.
The intricate regime diagram is explained by a combination of meso-
scale features involving the first interaction steps

1 Introduction

The present paper is a follow-up in a series of publications on contin-
uous opinion dynamics and ”extremism” [1].

∗Laboratoire associé au CNRS (URA 1306), à l’ENS et aux Universités Paris 6 et Paris
7
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Social psychology is often concerned with the outcome of collective
decision processes in connection with individual cognitive processes
and the actual dynamics of opinion exchanges in meetings. The issue
of whether extremist or moderate opinions are adopted in commissions
is thoroughly discussed in Moscovici and Doise [2].

A connection with statistical physics and the Ising model was
soon established, for instance by Galam [3] who collaborated with
Moscovici. They considered binary opinions as in the vast majority of
the literature on binary social choice [4].

The approach here is different and rests on the fact that certain
choices imply continuous opinions; typical examples are the evalua-
tion of economic profits among different possible choices [5], or how to
share profits after a collective enterprise (hunt, agriculture etc.)[6]. In
the early literature on committees, opinions were simply supposed to
influence each other in proportion to their difference. The described
dynamics was equivalent to heat diffusion, and resulted in uniformi-
sation around some average opinion.

The notion of an interaction threshold, based on experimental so-
cial psychology, was proposed by Chattoe and Gilbert [7], and in-
troduced in models by Deffuant etal [8] and Hegselmann and Krause
[9]. Two individuals with different opinions only influence each other
when their difference in opinion is lower than a threshold. The out-
come of the dynamics can then be clustering rather to uniformity. (A
series of models of cultural diffusion first introduced by Axelrod and
followers [10] belong to the same class: cultures are represented by vec-
tors of integers which are brought closer by interactions under certain
conditions of similarity; these authors studied how these conditions
influence the outcome of the dynamics, uniformity versus diversity.
Integer variables facilitate analytical approaches [10],[11] via master
equations).

Fascinating results were obtained in the ”extremism” model of Def-
fuant etal [1]: when interaction thresholds are unevenly distributed,
and in particular when agents with extreme opinions are supposed to
have a very low threshold for interaction, extremism can prevail, even
when the initially extremist agents are in very small proportion. The
so-called ”extremist model” can be applied to political extremism, and
a lot of the heat of the discussion generated by these models relates to
our everyday concerns about extremism. But we can think of many
other situations where some ”inflexible” agents are more sure about
their own opinion than others. Inflexibility can arise for instance:
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• Because of knowledge; some agents might know the answer while
others only have opinions; think of scientific knowledge and the
diffusion of new theories;

• Some agents might have vested interests different from others.

Although the model has some potential for many applications, we will
here use the original vocabulary of extremism.

Several subsequent papers [12] checked the genericity of these re-
sults for different interaction topologies (well-mixed systems versus
social networks represented by many variants between lattices and
random nets) and for different variants of the distribution of interac-
tion intensities (see further equation 3). Clustering and the possibility
of extremist attractors were shown to be generic, but the phase dia-
grams between different dynamical regimes can be rather intricate
with co-existence regions depending on parameter values.

The purpose of the present paper is to increase our understanding
of these phase diagrams using simpler conditions for simulation. (Un-
fortunately, were are still not very advanced in formal derivations).
The subsequent section describes the models, the simulation tech-
niques and the monitoring of the results. We first deal with models
where only one ”extremist” is present. Full mixing and lattice topolo-
gies are then studied. More intricate situations with many extremists
can be understood from the one-extremist case.

2 Models and simulations

2.1 The basic model

The most basic model later called bounded confidence model was in-
troduced by Deffuant etal [8]. It supposes an initial distribution of
agents with scalar opinion x.

At each time step any two randomly chosen agents meet: they
re-adjust their opinion when their difference in opinion is smaller in
magnitude than a threshold d. Suppose that the two agents have
opinion x and x′. Iff |x−x′| < d opinions are adjusted according to:

x = x + µ · (x′ − x) (1)

x′ = x′ + µ · (x − x′) (2)
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where µ is the convergence parameter whose values may range from
0 to 0.5. The rationale for the threshold condition is that agents only
interact when their opinions are already close enough; otherwise they
do not even bother to discuss.

The basic model uses

• a threshold d constant in time and across the whole population;

• a complete mixing hypothesis;

• and a random serial iteration mode.

The threshold can be interpreted as ”openness”, tolerance or as
some uncertainty in opinion.

The choice of the random serial iteration mode models opinion
diffusion in a large population which agents encounters each other
in small groups such as pairs. By contrast Hegselmann and Krause
[9] chose parallel iteration since their approach derives from earlier
literature modeling formal meetings.

Computer simulations show that the distribution of opinions evolves
at large times towards clusters of homogeneous opinions (both itera-
tion modes yield similar clusters under the used conditions).

For large threshold values (d > 0.3) only one single cluster is ob-
served at the average initial opinion (consensus). For lower threshold
values, several large clusters are observed. Consensus is then NOT
achieved when thresholds are low enough. The number of clusters
varies as the integer part of 1/2d [8], to be further referred too as the
1/2d rule.

Some recent literature by Stauffer and collaborators [18] consider
as clusters any group of opinions however small (even of size one).
Counting all these groups yield higher figures scaling with N the num-
ber of agents. We here only monitor large clusters which size is a finite
fraction of the number N of agents. We don’t care about the existence
of isolated “outliers”. (because of the randomness of the iteration pro-
cess some agents are selected at later times and remains as “outliers”
outside the main clusters). The “generic” results we here refer to,
such as the 1/2d rule, apply to the large clusters.
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Rewriting the opinion updating equation as:

x = x + µ · f(x′ − x) · (x′ − x), (3)

the bounded confidence model supposes a square amplitude of the
interaction function f(x′−x) when |x−x′| < d. Smoother shapes (such
as trapezoidal[1] or bell-shaped [13]) were also proposed for f(x′−x).
The simulations show that the main dynamical features are conserved
with these smoother interaction functions.

2.2 Extremism

The model for extremism introduce by Deffuant etal [1] is based on
two more assumptions.

• A few extremists with extreme opinions at the ends of the opin-
ion spectrum and with very low threshold for interaction are
introduced.

• Whenever the threshold allows interaction, both opinions and
threshold are readjusted according to similar expressions.

Iff |x − x′| < d

x = x + µ · (x′ − x) (4)

d = d + µ · (d′ − d) (5)

A symmetrical condition and equations apply to the other agent of
the pair with opinion x′ and tolerance d′ but when thresholds are
different the influence can be asymmetric: the more ”tolerant” agent
(with larger d) can be influenced by the less tolerant (with smaller
d) while the less tolerant agent is not. This “effective” asymmetry is
responsible for the outcome of “extremist” attractors.

2.3 Simulation methods and displays

Computer simulations are run according to standard conditions.

• Initial conditions: uniform distribution of opinions among [0, 1]
among N agents with initial threshold dl. Among these a few
agents are extremists, with opinions at the extreme of the opinion
spectrum and with initial threshold de < dl.
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• At each time step, one randomly selected pair is chosen and
agents are updated according to equations 4-5 whenever the con-
dition on threshold is fulfilled.

• Simulations are run until an approximate state of equilibrium
is reached: we here consider that equilibrium is reached when
opinion and tolerance histograms of 101 bins are stable.

The main parameters are the number and initial tolerance of extrem-
ists, and the initial tolerance dl of the other agents. Variants in-
clude different interaction networks, and different interaction functions
f(x′ − x).

We usually first check opinion and tolerance dynamics by time
plots of single simulations [1]. These time plots are clouds of points
representing at each time step the opinions and tolerance of those
agents chosen for eventual updating versus time along the x axis.
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Figure 1: Time plots of opinion (red ’+’) and tolerance (green ’x’) dynamics
exhibiting a ”centrism” attractor on the left frame and a single extremist
cluster on the right frame. Time is given in the average number of updating
per agent. The number of agents is N = 100, extremists’ tolerance is de =
0.001 and two opposite extremists are initially present. Any pair of agents
can a priori interact. The centrism attractor is obtained when the initial
centrist tolerance is dl = 0.4 and the extremist attractor when dl = 0.63

The time plots display different dynamical regimes according to
the eventual predominance of the extremists: sometime they remain
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isolated and most agents cluster as if there were no extremist (e.g as
represented on figure 1 left frame); otherwise extremism prevails and
most agents cluster in the neighborhood of one (e.g as represented on
figure 1 right frame) or both extreme. Convergence characteristic time
differs: convergence is fast for the centrism attractor and slow for the
extremism attractor. The ratio in convergence time is approximately
the ration in the initial fraction of centrists and extremists.

Which attractor is reached depends mainly upon the parameters
of the simulation (number and initial tolerance of extremists, and the
initial tolerance dl of the other agents). A simplified conclusion is that
some kind of extremism prevails for larger values of the tolerance of
initially non-extremist agents when dl > 0.5, and centrism when dl <
0.5. In other words, the outcome of the dynamics is largely determined
by the tolerance of the non-extremists agents. Systematic studies
show the existence of parameter regions where several attractors can
be reached depending upon the specific initial distribution of opinions
and upon the specific choice of updated pairs.

Deffuant etal [1] papers are filled with two dimensional regime
diagrams coded according to a variant of the Derrida-Flyvbjerg pa-
rameter [14] defined as:

Y =
∑

i

ni

N

2

(6)

This sum of the square of the fraction of number ni of agents in
each cluster i roughly represents the inverse of a weighted number of
clusters. Particular choices of monitored Derrida-Flyvbjerg parame-
ters allow to separate dynamical regimes of attraction towards center,
clustering and attraction towards one or both extremes.

But these diagrams although comprehensive in terms of parame-
ter ranges and averaging over many initial conditions are difficult to
interprete and we use here a more direct approach. We only vary
one parameter along the x axis, most often the initial large tolerance
dl. The y axis code the histogram of attractor clusters by vertical
bars. The magnitude of the bar represents how many agents are in
the asymptotic cluster(s). Clusters made of one agent are most often
discarded to make diagrams more readable. The position of the bar
represents either the opinion or tolerance of agents in that cluster.
Each bar only gives the result of one simulation.

Coexistence regions appear as dl intervals on which large fluctu-
ations are observed in the cluster positions. Probabilities of either
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regime are evaluated from their frequency of observation on any in-
tervall. By contrast, pure regimes yield regular variations of cluster
positions.

We also show the asymptotic patterns of opinions and tolerance
for lattice topologies with color coding.

3 Single extremist regimes

3.1 Single extremist with full mixing topology

To easily gain some insight, let us start from a rather extreme case:
one single extremist agent chosen with initial opinion 0.99 and 0.001
tolerance. The topology is full mixing. Large simulation times are
used (10 000 iterations per agent) to ensure convergence under every
simulation condition (figure 2).

The regime diagram (figure 2) clearly shows that the centrist agents
are all attracted by the extremist when their initial tolerance dl is
above 0.5: they gather in a cluster of opinion 0.99 and tolerance 0.001.
The interpretation is straightforward: For this low value of extremist
tolerance, interaction between the extremist and centrists are asym-
metric (as we checked by measuring asymmetric interactions during
the simulation). The extremist acts as a fixed source of extremism,
formally equivalent to a heat source at constant temperature (equa-
tions 1 and 2 can be thought as a randomly discretized version of a
Euler relaxation algorithm solving a diffusion equation [15]). Opinion
is here the equivalent of temperature.

Below dl = 0.5 the influence of the extremist decreases and agents
cluster near the center opinion keeping roughly their initial tolerance.
When dl < 0.27, the diagram show the same increase in cluster number
that can be observed in the absence of extremist (the ”1/2d rule”),
except for a partial extremism clustering below dl = 0.27 which is
easily understood.

The region 0.37 < dl < 0.52 is a co-existence region where both
regimes, centrism or extremism can be observed, depending upon ini-
tial conditions and pair sampling.
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Figure 2: Histograms of asymptotic clusters. The y axis code the histogram
of attractor clusters by vertical bars which magnitude represents how many
agents are in the asymptotic cluster. The position of the bar represents
either the opinion (red) or the tolerance (green) of the agents in that cluster.
The horizontal axis gives the initial tolerance parameter of the ”centrist”
agents. One single extremist present, N = 900, de = 0.001, average number
of iterations per agent 10 000, any pair of agents can a priori interact

3.2 Single extremist with square lattice topol-

ogy

In many cases we expect interactions to occur across some social net-
work. Such would be the case for political discussions, especially in
the absence of an open discussion forum. Many model topologies of
social networks have recently been proposed. We here report sim-
ulation results for square lattices, when interactions are only possi-
ble among nearest neighbours (each node can only interact with his
4 neighbours). The boundaries of the lattice are connected to each
other: the diagrams represent in fact the unfolding of a torus.

Although the regularity of connections on a square lattice make it a
poor candidate to model a social network, the existence of short inter-
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Figure 3: Histograms of asymptotic clusters for interactions across a square
lattice topology. Same coding as the previous figure. One single extremist
present, N = 400, de = 0.001, average number of iterations per agent 100
000. Single element clusters are exceptionnally represented on this figure, in
order to check that the initial extremist himself moves towards centrism at
large dl values.

action loops is shared with many empirical social nets. But again, the
purpose of this paper is to increase our understanding of the dynam-
ics of more complicated cases and the possibility to observe patterns
determined our choice of lattice topology. The relevance of the results
to other topologies will be further discussed.

The main difference in dynamics between well mixed systems and
the square lattice structure appears in the dl > 0.5 region. For values
of dl just above 0.5, the extremism regime seems to re-appear (see
figure 3). A closer examination of the dynamics, (see figure 4) shows
attraction towards extremism proceeds locally on the lattice in the
neighborhood of the extremist. This spatial diffusion process is not
the same as the emergence of single sided extremism in well-mixed
systems as described in Deffuant etal [1]: in well-mixed systems one
first observe a convergence towards a attractor with centrist opinion
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and low tolerance which is often unstable and slowly evolves towards
extremism.

Figure 4: Propagation of extremism from a single initial extremist at the
center of the lattice. Left frame: Opinions after 27 iterations per site . Color
scale: deep blue 0, light green 0.5, brown 1. Right frame: Tolerances after
27 iterations per site . Color scale: deep blue 0, brown dl = 0.55, initial
centrist’s tolerance. Initial extremist tolerance 0.001.

But for large value of dl, the influence of extremist seems to weaken.
Let us see why. The propagation of extremism proceeds from the ini-
tial extremist is initially asymmetric, since the initial extremist and
the new “converts” are separated from their neighbours down stream
by an opinion gap intermediate between the two tolerances. But as
diffusion proceeds, the opinion difference decreases below the low tol-
erance of extremists thus allowing symmetric interactions to occur,
as we checked during the simulations. Initial and converted extrem-
ists become fully coupled by symmetric diffusion dynamics and their
opinion is also influenced by those of their centrist neighbours. The
position of the final cluster reflects this balance of influence. Initially
more tolerant agents (large values of dl) are faster attracted towards
the extremist, and their increased number favours the cluster evolution
toward the center in opinion and towards dl in tolerance.(By contrast,
in the case of full mixing, all agents can be attracted by the extremist
when it acts as a source; there are no screening shells in the vicinity
of the extremist).

The effect is density dependant: for a smaller lattice, N = 100, the
deviation of extremism towards the center is much weaker (the opinion
cluster is at 0.9 rather than 0.7 at dl=0.99), for the same values of the
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initial tolerances. In other words, this effect is not a standard seed
effect as usually observed in phase transitions where a single seed is
able to drive all the system to another phase.

The same coexistence region when 0.37 < dl < 0.52 with the oc-
curence of either type of attractor is observed with the lattice topology,
as when all interactions are a priori possible.

4 Simulation with several extremists

4.1 Low extremist density and full mixing

Deffuant etal [1] report the existence of several dynamical regimes for
the full mixing case in the presence of extremists of both kind:

• When dl < 0.5, extremists are not important and clustering
follow the standard 1/2d rule.

• When dl > 0.5 they determine the dynamics:

– at high extremist initial density, clusters of extremists ap-
pear at both end of the spectrum;

– at low extremist density, instabilities often arise, and the
system might evolve in a single asymmetric extreme attrac-
tor at one end of the spectrum, or even reach an attractor
with centrist opinion but extremist low tolerance.

All time plots and regime diagrams are given in their paper [1].

4.2 Low extremist density on a square lattice

topology

For low extremist density, we observed the same 3 regimes, centrism,
polarised extremism and bi-extremism, as in the full mixing topology
(figure 5).

At larger threshold, dl > 0.5 bi-extremism is always observed (see
e.g. figure 6). In the presence of several extremists at both ends of
the spectrum, the lattice is divided in extremist domains of different
opinions with boundaries separated by opinion differences larger than
the tolerance threshold. The size of these domains is smaller than
the lattice size and the dilution of extremism in the sea of centrist as
observed for single extreme dynamics at large dl values (see figure 3)
does not occur. The evolution of the domains towards centrist opinion
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Figure 5: Clustering as a function of centrists’ threshold dl. Vertical bars
represent clusters: their center gives cluster’s average opinion and their length
give the number of agents belonging to the cluster. Note the existence of e.g.
centrist attractors at dl = 0.28, single extreme attractors at dl = 0.35, double
extreme attractors at dl = 0.56.

is limited by their size, which varies itself as the inverse of the square
root of extremist densities.

As soon as the threshold is lower than 0.5, centrists position be-
come stable. Their importance increases when threshold decreases.
In the intermediate region, 0.25 < dl < 0.5, the 3 regimes can be ob-
served. Which regime is observed depends of the initial sampling of
the homogeneous opinion distribution. But, of course, the probability
of observing a given regime depends upon the threshold.

These results apparently contradict [12] who don’t report the ob-
servation of single extremism attractor: in fact this is because their
simulation were done at higher extremist densities than ours.

Since evolution towards a single extreme is the most intriguing
regime let us first observe the evolution towards this regime. The next
figures display opinions and tolerances on a 64x64 square lattice after
300 and 2000 iterations per site on average. There were initially 12
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Figure 6: A bi-extremism opinion pattern observed after 100 iterations per
agent for initial tolerances of dl = 0.65 and de = 0.001. Initially, twelve
extremists (on each side 0 or 1) were present. Two extreme domains are seen
with a few agents at the interface with centrist opinion but low tolerance.

extremists of either side, dl = 0.38, de = 0.01 and µ = 0.5. Extremism,
both in opinions and in intolerance, clearly propagates from the lower
left side of the lattice and eventually invades it.

After 2000 iterations the percolating cluster is uniform at a low,
but not extreme, opinion and tolerance values.

The patterns of figure 7 exemplify the different possible influence of
initial extrmists, according to the first events occuring in their imme-
diate neighborhood. One can distinguish two different “geographic”
configurations:

• Mesas A few extremist islands, with opinion and tolerance close
to the initial extremist values survive, but their influence on
their neighborhood is zero: the difference in opinion at the edge
between those agents on the mesa and all their neighbours is
larger than dl = 0.38. Obviously small values of dl favour mesa
which disappear whenever dl > 0.5.

• Hills The success of the extremists in the lower left corner is
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due to local fluctuations in opinions: there exists in their neigh-
borhood centrists which opinion is within the large tolerance
distance. Since the dynamics results in decreasing local opinion
gradients, the diffusion process once started carries on across the
lattice, unless such hills collide at larger initial extremist densi-
ties as seen on figure 6.

In fact restricting interactions to the lattice structure results in two
dynamics: fast local opinion clustering and eventually slow diffusion
across the lattice of local fluctuations. A time plot of opinion and
gradients average across the lattice allow to distinguish among the
fast local averaging of opinions and the slow diffusion of extremism
(figure 8). The average squared opinion gradient is evaluated by :

G =
∑

i

(xi+1 − xi)
2 (7)

The average gradient decreases very rapidly towards low values
reflecting the fact that opinions locally average very fast. This fast
relaxation time does not depend upon the size of the lattice.

The slow diffusion of extremism is reflected in the slow decrease
of the average opinion from 0.5 the average of the initial uniform
distribution towards 0.25 corresponding to the ”relative” overcome of
extremism. The diffusion time varies as the square of the linear size
of opinion domains.

5 The global picture and the ”hopeful

monster hypothesis”

Our expectation which global attractor is reached when extremists of
either side are randomly scattered is then:

• Above dl = 0.5, extremists are always able to influence some
centrists in their immediate neighborhood and extremism pre-
vails at large times. When extremists of both kinds are present
the lattice ends up subdivided in domains of extremists of either
side.

• Between dl = 0.5 and dl = 0.25, extremists are not always able
to influence centrists in their immediate neighborhood. Chances
of conversion to extremism depend upon the existence of neigh-
bours close enough in opinion (i.e. with difference in opinion
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smaller than threshold). Since an initial extremist is only one
among four neighbours of its centrist neighbours, the random
sampling of pairs might result in initial interactions of these
neighbours with centrists (with a 0.75 probability), thus making
it harder for the extremist and its neighbour to later interact.

– At small extremist density, there is a threshold region such
that the probability of having only one diffusing extremist
”hill” is large enough to observe single extremism conver-
gence. This is also true if there are several ”hills” on the
same extremist side, either close to 0 or close to one.

– At large extremist density, one obtains several hills and bi-
extremism is by far the most frequent attractor.

Chances of extremists to influence their neighbours anyway de-
crease with dl and one observes mostly one centrist attractor
when dl < 0.33.

• Below dl = 0.25, the lattice is highly divided between many
clusters some of which are extremists.

The basic hypothesis is that when the density of extremists is low,
the initial growth of ”extremist hills” are independent events which
occurrence only depends upon a restricted neighborhood of each initial
extremist. These ”extremist hills” can be called ”hopeful monsters”
since they are susceptible to grow and invade the lattice as opposed
to the ”mesa” configurations.

If we call P0 the probability of occurrence of a hopeful monster,
we can obtain the probabilities of observing any of the 3 attractors
by simple combinatorics. In the presence of 2ne initial extremists
(ne extremists close to 1, ne close to 0) on a large lattice (to ensure
independence), these probabilities are given by:

Pc = Q2ne

0 (8)

Pbie = (1 − Qne

0 )2 (9)

Pmoe = 2(1 − Qne

0 )Qne

0 (10)

• where: Q0 = 1− P0 is the probability of any initial extremist to
give a ”sterile” mesa;

• Pc is the probability of getting a centrist cluster (i. e. du to the
absence of any extremist hill);

• Pbie is the probability of getting clusters of extremists of both
kind (two kinds of hill present);
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• Pmoe is the probability of getting a single extremist cluster (only
hills of the same extreme grow);

These expressions are immediately generalised to the asymmetric case
when the initial numbers of extremists close to 0 and to 1 are different.
They imply that the initial number of extremists is important, not
their density, at least in the limit of low densities.

The exact calculation of P0 as a function of the threshold dl in-
volves a rather intricate combinatorics on the possible initial configu-
rations of the extremist’s neighborhood and on the initial sequence of
iterations . But P0 is easily evaluated by simulations. We did it on a
32x32 square lattice with a single extremist in the center.

Knowing P0 allows to check the ”independent hopeful monster hy-
pothesis” which predicts the occurrence of attractors with probabili-
ties given by equations (8-10). Let ’s take the case of ne = 3. Equation
5 predicts a maximum Pmoe probability of occurrence of a single ex-
tremist attractor of 0.5 at Q3

0 = 0.5, which corresponds to Q0 = 0.79
and approximately to dl = 0.35 according to figure 5. The statistics
plotted on figure 6 roughly confirm this prediction: The maximum of
Pmoe is around 0.5 and occurs around dl = 0.38.

Figure 9 and expressions 8-10 then give a clear prediction of the
succession of the most frequent attractors when centrist initial toler-
ance is decreased from 0.5 to 0.25.

• Bi-extremism is predominant until (1−P0)
ne is close to 0.5. How

close?

• The width of the single extremist region, Wmoex, is evaluated
from equation 10. We define it as the region where the proba-
bility of the single extremist attractor is above one half of the
maximum (Pmoe > 0.25).

Wmoex ∝ (ne)
−1 (11)

• Below the single extremist region, centrist attractors are pre-
dominant.

So according to the above analysis, single extreme attractors should
be observable even in the presence of many initial extremists.

But large fluctuations of the statistics of ”hills” and ”mesa” are
observed in figure 9 and 10 due to the vicinity of regime transitions
(these two figures represent averages over 1000 samples, and fluctua-
tions are still noticeable). These fluctuations reduce the occurence of
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single extreme attractors at larger ne values. Furthermore increasing
ne decreases the distance between sources of intolerance that cannot
be considered as independent anymore: the probability of a ”centrist”
to be early influenced by an extremist is increased by having more
than one extremist neighbour.

A rapid survey of the dl region most favourable to single extreme
attractor, 0.34 < dl < 0.40, when the number of extremists is increased
from 0.4 to 2 perc. show that the probability of observing single
extreme attractors decreases from 50 perc. to 4 perc. This is consistent
with Amblard and Deffuant [12] who report the absence of any single
extreme attractor for extremist densities higher than 2.5 perc.

5.1 Scale free networks

What about more realistic topologies? Since the successive neighbour-
hood structure is preserved in all networks topologies, except fully
connected networks, we expect that the same intermediate scale fea-
tures which drive the dynamics, such as mesa or hills in opinions or
boundaries across domains are present for different topologies. Can
we expect equivalent phase diagrams, with possibly more irregularities
such as outliers and co-existence phases?

We then run the extremist dynamics on scale free networks[17]
to test the above prediction (equivalent phase diagram). (After small
worlds networks were introduced by Watts and Strogatz [16], scale free
networks became recently the strongest contenders as models of social
networks). Scale free networks differ from lattices by the inhomogenity
of connectivity and by their smaller diameter.

We used a standard construction method to generate scale free
networks, see e.g. Stauffer and Meyer-Ortmanns [18]:

Starting from a fully connected network of 3 nodes, we add iter-
atively nodes (in general up to 900 nodes) and connect them to pre-
viously created nodes in proportion to their degree. We have chosen
to draw two symmetrical connections per new added node in order to
achieve the same average connection degree (4) as in the 30x30 square
lattice taken as reference. But obviously the obtained networks are
scale free as shown by Barabasi and Albert[17].

In fact scale free networks [17] display a lot of heterogeneity in
nodes connectivity. In the context of opinion dynamics, well connected
nodes might be supposed more influential, but not necessarily more
easily influenced. At least this is the hypothesis that we choose here.
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We have then assumed asymmetric updating: a random node is first
chosen, and then one of its neighbours. But only the first node in
the pair might update his position according to equ.1, not both. As a
result, well connected nodes are influenced as often as others, but they
influence others in proportion to their connectivity. This particular
choice of updating is intermediate between what Stauffer and Meyer-
Ortmanns [18] call directed and undirected versions.

The cluster diagram obtained with 24 initial extremists out of 900
agents (with the same parameters as for figures 5 and 6) is represented
on figure 11.

• Similarity with lattice dynamics. Below dl = 0.45 this cluster
diagram closely resembles those we obtained for square lattice,
with predominance of centrism. Above dl = 0.45 one also ob-
serves the predominance of some kind of extremism, with a lim-
ited final tolerance.

• Differences. But the only two kinds of observed attractors are
low tolerance centrism and single sided extremism. We don’t
observe two sided extremism attractors as with lattices. The
large inhomogeneity in nodes connectivity favour well connected
nodes: most often, the best connected extremist impose his view
nearly everywhere. And there are still minority clusters around
the other extremists. The asymptotic clusters with central opin-
ion are probably obtained when the initial sampling of extremists
does not contain highly connected nodes.

The present result is still preliminary: the distribution of the con-
nectivity of initial extremists is only a rough predictor of the outcome
of the dynamics. More complete studies, outside the scope of the
present paper are still needed.

6 Conclusions

The above series of simulations give a clearer picture of the phenomena
occurring in this strongly simplified model of opinion dynamics.

The most important result, already established in Deffuant etal
[1], is also true for lattice and scale free networks topologies: the
existence of extremist regimes is largely due to the large tolerance of
agents which were initially centrists.
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One difference is observed in the dilute regime on lattices: when
initial extremists are far apart in the network, their influence at large
tolerance dl > 0.5 can be counter-balanced by centrists influence; at
infinite dilution centrism would win. In some sense social networks
can limit the propagation of extremism. Here is a possible explanation
of the strategy of some sects which concentrate conversion efforts on
a limited number of individuals by repeated interaction rather than
broadcasting across whole earth.

We established that all attractors observed in the full mixing hy-
pothesis, including single extreme, can be obtained on a square lattice
for low initial extremist densities.

At higher extremist densities and large centrist tolerance, the lat-
tice structure favours two sided extremism, while single sided extrem-
ism is favoured by scale free networks. Even our preliminary results
allow to understand why extremists (or market strategists) should first
convince leader figures to establish their influence on a social network.
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Figure 7: Upper frames: Opinions after 300 iterations per site (left panel)
and 2000 (right panel). Color scale: deep blue 0, light green 0.5, brown 1.
Lower frames: Tolerances after 300 iterations per site (left panel) and 2000
(right panel). Color scale: deep blue 0, brown dl = 0.38, the maximum initial
centrist’s tolerance.
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Figure 8: Time evolution of opinion and gradients average across the lattice.
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Figure 9: Statistics of extremist attractors (red ’+’) and centrists attractor
(green x) as a function of centrists’ threshold. Each point corresponds to
1000 samples on a 32x32 lattice with one central extremist.
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Figure 10: Statistics of attractors: red ’+’ are single extreme, blue ’*’ are
double extreme and green ’x’are centrist attractors; as a function of centrists’
threshold. Each point corresponds to 1000 samples on a 32x32 lattice with
6 extremists.
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Figure 11: Clustering as a function of centrists’ threshold dl for a scale free
networks with the same parameters as for the diagram displayed for the
square lattice on figure 5. The size of the bars representing tolerance clusters
is reduced by a factor two for clarity reasons.
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