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Nonperturbative functional renormalization group for random field models: the way

out of dimensional reduction

Gilles Tarjus∗ and Matthieu Tissier†

LPTL, Université Pierre et Marie Curie, boîte 121, 4 Pl. Jussieu, 75252 Paris cédex 05, France
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We have developed a non-perturbative functional renormalization group approach for the random
field O(N) model (RFO(N)M) that allows us to investigate the ordering transition in any dimension
and for any value of N including the Ising case. We show that the failure of dimensional reduction
and standard perturbation theory is due to the non-analytic nature of the zero-temperature fixed
point controlling the critical behavior, non-analycity which is associated with the existence of many
metastable states. We find that this non-analycity leads to critical exponents differing from the
dimensional reduction prediction only below a critical dimension dc(N) < 6, with dc(N = 1) > 3.

PACS numbers: 75.10.Nr,11.10.Hi

After decades of intensive investigation, the nature
and properties of the phase transition in systems with
quenched disorder remains a much debated topic. Among
the controversial issues are the critical behavior and
the phase diagram of the random field Ising model
(RFIM) [1]. For the RFIM, the diagnosis is well estab-
lished: standard perturbation theory “exactly” (i.e. to
all orders) predicts an equivalence between the critical
behavior of the RFIM in dimension d and that of the
corresponding pure Ising model in dimension d − 2 (“di-
mensional reduction”) [2, 3], which contradicts rigorous
results showing that the lower critical dimension of the
RFIM is 2 and not 3 [4]. The failure of dimensional re-
duction (DR) and conventional perturbation theory is at-
tributed to the existence of a “complex energy landscape”
characterized by many metastable states [5]. However,
limited progress has been made for developing a theory
able to cope with metastability in random field systems,
especially for the physically relevant case of the RFIM
in d = 3. The most significant step has been the for-
mulation of a perturbative renormalization group (RG)
approach for the RFO(N>2)M near the lower critical di-
mension d = 4 [6]. Already at leading order, the calcula-
tion includes an infinite set of marginal operators near the
zero-temperature fixed point controlling the critical be-
havior, hence the name functional renormalization group
(FRG). This perturbative FRG has been further devel-
oped to study equilibrium and out-of-equilibrium proper-
ties of elastic manifolds in disordered medias [8, 9, 10, 11],
and it has been shown that the large scale behavior of
these systems is controlled by non-analytic renormalized
actions, with non-analycities encoding the effect of the
many metastable states at zero temperature.

In this letter, we develop a non-perturbative FRG for
the RFO(N)M by combining the ideas of the perturba-
tive FRG for disordered systems with the formalism of
the non-perturbative RG for the effective average action,
based on an exact equation (ERGE) [12]. We imple-
ment a tractable approximation scheme that allows us
to recover the perturbative results in the relevant limits

(most importantly, the perturbative FRG at first order
in ǫ = d − 4 for N > 2 [6, 7]) and to describe, approxi-
mately but non-perturbatively, the ordering transition in
the whole d − N diagram, including N = 1 and d = 3.
This provides a comprehensive picture of the critical be-
havior of random field systems. We find in particular
that this latter is controlled by a zero-temperature fixed
point at which the renormalized effective average action
is non-analytic (albeit in a more complex way than in the
random elastic manifold case [8–11]); however, the DR
prediction for the critical exponents breaks down only be-
low a critical dimension dc(N) < 6, with dc(N = 1) > 3.

We start with the standard effective hamiltonian for
the RFO(N)M in d dimensions with an N -component
field χ(x) coupled to a random field h(x) with zero mean
and variance hµ(x)hν(y) = ∆δµνδ(x − y). For conve-
nience, we derive the ERGE for disorder averaged func-
tions within the replica formalism, but it could similarly
be obtained by using e.g. the dynamic formulation. We
thus consider the “replicated” action

Sn[{χa}, {Ja}] =

∫

ddx

{

1

2T

n
∑

a=1

[

∂χa · ∂χa

+τχ2
a+

u

12
χ4

a

]

− ∆

2T 2

n
∑

a,b=1

χa.χb −
n

∑

a=1

χa.Ja

}

,

(1)

where we have introduced sources acting separately on
each replica, which therefore explicitly breaks the per-
mutation symmetry between the replicas. One can
associate to the above action the thermodynamic po-
tential Wn[{Ja}] = log Zn[{Ja}] where Zn[{Ja}] =
∫

∏n
a=1 Dχa exp(−Sn[{χa}, {Ja}]), and its Legendre

transform, the effective action Γn[{φ}] = −Wn[{Ja}] +
∫

ddx φa ·Ja which is the generating functional of the ver-
tex functions. In the following, we drop the subscript n.

To investigate the phase diagram and critical behavior
of the model, we use an ERGE for the effective average
action [12]. An effective average action Γk at the run-
ning scale k is obtained by integrating out fluctuations
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with momenta q >∼ k via the introduction of an infra-red
(IR) cutoff function Rk(q); Γk continuously interpolates
between the bare action, eq. (1), at the microscopic scale
k = Λ and the usual effective action when k → 0. It
follows an exact flow equation,

∂tΓk[{φa}] = 1/2 Tr∂tRk(q)(Γ
(2)
k [{φa}, q] + 11Rk(q))−1

(2)
where ∂t is a derivative with respect to t = ln(k/Λ), 11
is the unit matrix with elements (2π)dδ(d)(q − q′)δabδµν ,

Γ
(2)
k is the tensor formed by the second functional deriva-

tive of Γk with respect to the fields φµ
a(q) and φν

b (q′), and
the trace involves an integration over momenta as well as
a sum over replica indices and N -vector coordinates.

Eq. (2) is a complicated functional integro-differential
equation that cannot be solved exactly but provides a
convenient starting point for non-perturbative approxi-
mation schemes. One such scheme that efficiently deals
with the momentum dependence of the vertex functions
is the derivative expansion [12]. However, disordered sys-
tems require more because inversion of the matrix involv-

ing Γ
(2)
k in eq (2) is a difficult task as far as the replica

indices are concerned for non-integer values of n. As in
the perturbative FRG approach [10], we follow the route
that consists in expanding all functions of the replica
fields {φa} in increasing number of free replica sums. Il-
lustrated for the potential Uk({φa}) at the running scale
k (i.e. the effective average action for uniform fields),
this gives:

Uk({φa}) =

n
∑

a=1

Uk(φa) − 1

2

n
∑

a,b=1

Vk(φa, φb) + · · · (3)

where Uk, Vk, . . . are continuous functions of their ar-
guments and satisfy the permutation replica symmetry.
When all replica fields are equal, each free replica sum
brings a factor of n and the procedure amounts to an
expansion in powers of n (with n → 0).

Within this framework, the simplest truncation for Γk

that already contains the main ingredients for a non-
perturbative approach of the RFO(N)M is the following:

Γk[{φa}] =

∫

ddx

{

n
∑

a=1

(1

2
Z

m,k∂φa · ∂φa

+ Uk(φa)
)

− 1

2

n
∑

a,b=1

Vk(φa, φb)

} (4)

with one single wave function renormalization for all
fields, Z

m,k, which is defined as the derivative w.r.t. q2

of Γ
(2)
k evaluated at q = 0 for a (non-zero) field configu-

ration φ
m

that minimizes the 1-replica potential Uk: this
is the so-called pseudo first-order of the derivative ex-
pansion [12]. With the above truncation that keeps only
the first two terms of the expansion in the free replica

sums, the ERGE for Γk, eq. (2), can be reduced to cou-
pled partial differential equations for the functions Uk(φ)
and Vk(φ, φ′), whereas a running anomalous dimension
is defined as ηk = −∂t log Z

m,k. The details will be given
elsewhere.

To study the critical behavior associated with the or-
dering transition and search for fixed points (FP) of the
flow equations, we introduce as usual renormalized di-
mensionless quantities. However, anticipating that the
putative FP is expected at zero temperature [13, 14], it
is convenient to make explicit the flow of a running tem-
perature and the associated exponent. For simplicity, let
discuss first the RFIM. We define a renormalized disor-
der correlation function ∆k(φ, φ′) = ∂φ∂φ′Vk(φ, φ′) and
a renormalized disorder strength ∆

m,k = ∆k(φ
m
, φ

m
).

A running temperature can now be defined by Tk =
Z

m,kk2∆/(Λ2∆
m,k): when k = Λ, it reduces to TΛ = T

(since from eq. (1), ZΛ = 1/T and ∆
m,Λ = ∆/T 2).

An associated running exponent is obtained from θk =
∂t log Tk. By using the definition of ηk, one may al-
ternatively introduce an exponent η̄k = −θk + 2 + ηk

and compute it from the equation η̄k − 2ηk = ∂t∆m,k.
Dimensionless quantities (noted by lower cases) appro-
priate for looking for a zero temperature FP are then:
ϕ = (Tkk−(d−2))1/2φ, uk(ϕ) = Tkk−dUk(φ), vk(ϕ, ϕ′) =
T 2

k k−dVk(φ, φ′), and δk(ϕ, ϕ′) = ∂ϕ∂ϕ′vk(ϕ, ϕ′). The
procedure can be extended to the RFO(N)M. It is how-
ever more convenient in this case to introduce the vari-
ables ρ = ϕ2/2 and z = ϕ ·ϕ′/(4ρρ′)1/2. In scaled form,
the flow equations for uk(ρ) and vk(ρ, ρ′, z) read (for sim-
plicity, we drop the subscript k for all quantities but Tk):

∂tu = (2 − d+η − η̄)u + (d − 4 + η̄) ρuρ

+ 2vd

[

(N − 1)δT ld1(wT ) + δLld1(wL)
]

+ 2vdTk

[

(N − 1)ld0(wT ) + ld0(wL)
]

(5)

∂tv = (4 − d + 2η − 2η̄)v + (d − 4 + η̄)(ρvρ + ρ′vρ′)

− vd

{

(N − 1)
[

(2ρvρ − zvz) δT ld2(wT )/ρ + (2ρ′vρ′

− zvz)δ
′
T ld2(w

′
T )/ρ′ + v2

z ld1,1(wT , wT
′)/(2ρρ′)

]

+

(1 − z2)
[

vzz(δT ld2(wT )/ρ + δ′T ld2(wT
′)/ρ′) + 2ρv2

ρz

ld1,1(wT
′, wL)/ρ′ + 2ρ′v2

ρ′zl
d
1,1(wT , wL

′)/ρ −
(

v2
z

+ 2zvzvzz − (1 − z2)v2
zz

)

ld1,1(wT , wT
′)/(2ρρ′)

]

+ 2
[

δL(vρ + 2ρvρρ)l
d
2(wL) + δ′L(vρ′ + 2ρ′vρ′ρ′)

ld2(wL
′) + 4ρρ′v2

ρρ′ ld1,1(wL, wL
′)
]}

− Tkvd

{

(N − 1)
[

(2ρvρ − zvz)l
d
1(wT )/ρ + (2ρ′vρ′ − zvz)

ld1(w
′
T )/ρ′

]

+ (1 − z2)vzz

[

ld1(wT )/ρ + ld1(wT
′)/ρ′

]

+

2
[

(vρ + 2ρvρρ) ld1(wL) + (vρ′ + 2ρ′vρ′ρ′)ld1(wL
′)
]}

(6)
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where the indices ρ, ρ′, z indicate derivatives w.r.t.
ρ, ρ′, z, and v−1

d = 2d+1πd/2Γ(d/2); wT,L = wT,L(ρ),
w′

T,L = wT,L(ρ′), and similarly for δT,L and δ′T,L,
where wT (ρ) = uρ(ρ) and wL(ρ) = uρ(ρ) + 2ρ uρρ(ρ)
are the transverse and longitudinal masses, whereas
δT (ρ) = 1/(2ρ)vz(ρ, ρ, 1) and δL(ρ) = 2ρvρρ′ (ρ, ρ, 1)
are the transverse and longitudinal disorder correlation
functions when ϕ = ϕ′. For brevity we have omit-
ted the arguments ρ and ρ, ρ′, z of all functions. Fi-
nally, ldp(w) and ldp,p′(w, w′) are the so-called dimension-
less threshold functions, that essentially encode the non-
perturbative effects beyond the standard one-loop ap-
proximation: their definition and properties are discussed
at length in ref. [12]. For the present work, we choose for
IR cutoff function Rk(q) = Z

m,k(k2−q2)Θ(k2−q2) where
Θ is the Heaviside function. When N = 1 and z = ±1,
one recovers the RFIM (ρ and ρ′ being used in place of
ϕ and ϕ′).

The above flow equations are supplemented by equa-
tions for ηk and η̄k. For lack of space, we just give here
the equation obtained for 2ηk− η̄k = −∂t∆m,k in the case
of the RFIM:

2ηk − η̄k = 2vd

{

ld4(u
′′
m
)u′′′

m

2 − 4ld3(u
′′
m
)u′′′

m
δ′
m

+ ld2(u
′′
m
)(δ′′

m
+

3

2
δ′
m

2 − u′′′
m

u′′
m

δ
m
− 1

4
Σ

m
) + ld1(u

′′
m
)
δ′
m

2

u′′
m

− Tk[ld2(u
′′
m
)u′′′

m
δ′
m
− ld1(u

′′
m
)(

1

2
δ′′
m
− u′′′

m

u′′
m

δ′
m

+
1

2
Σ̃

m
)]
}

(7)

with Σ(ϕ) = limϕ→ϕ′(∂ϕ − ∂ϕ′)2(δ(ϕ, ϕ′)− δ(ϕ, ϕ))2 and

Σ̃(ϕ) = limϕ→ϕ′(∂ϕ − ∂ϕ′)2δ(ϕ, ϕ′); the subscript m in-
dicates that the functions are evaluated for fields equal
to ϕ

m
and primes indicate derivatives w.r.t. ϕ. Note the

appearance of the “anomalous” terms Σ
m

and TkΣ̃
m

that
can only differ from zero when a non-analycity (a “cusp”)
in ϕ − ϕ′ appears in the renormalized disorder function
δ(ϕ, ϕ′) when ϕ′ → ϕ. Actually, if δ(ϕ, ϕ′) is analytic
when ϕ′ → ϕ, the flow equations for u(ϕ) and δ(ϕ, ϕ)
can be closed by taking from the beginning the replica
symmetric limit: this analytic behavior in the vicinity of
replica symmetry is precisely what is implied by the stan-
dard perturbation theory. In our formalism, breakdown

of DR thus implies the emergence of a non-analyticity in

the renormalized disorder correlation function. Note also
that if a FP is found to eqs. (5,6), and provided that
θ = 2 − η + η̄ > 0, it is at zero temperature and tem-
perature is irrelevant (albeit dangerously): indeed, in the
vicinity of the FP, Tk flows to zero as kθ when k → 0. In
most of the following, we will consider directly the T = 0
limit, which allows to drop all terms proportional to Tk

in the above equations.
Because of their structure, the above non-perturbative

FRG equations reproduce all perturbative one-loop re-
sults in their range of validity, in particular the ǫ =
6 − d expansion at first order and the N = ∞ limit;
a stronger property is that one also recovers the per-

turbative FRG equation at first order in ǫ = d − 4 for
the RFO(N>2)M [6]; In this case, d = 4 being the
lower critical dimension, the FP occurs (as for the pure
system) for a value of ρ

m
that goes to infinity as 1/ǫ.

One can thus organize a systematic expansion in pow-
ers of 1/ρ

m
. The longitudinal mass becomes very large

around ρ
m
, and by using the known asymptotic proper-

ties of the threshold functions for large arguments [12],
one can derive the flow equations for ρ

m
(obtained from

eq. (5) and the condition u′(ρ
m
) = 0) and for the function

R(z) = v(ρ
m
, ρ

m
, z)/(2ρ2

m
) (recall that since δT,m = 1 by

construction, R′(1) = 1/ρ
m
). This latter reads

∂tR(z) = (ǫ + 2η)R(z) − C4/2
{

(N − 1)
[

R′(z)2

+2R′(1)(2R(z) − zR′(z))
]

+ (1 − z2)
[

− R′(z)2

+(1 − z2)R′′(z)2 + 2(R′(1) − zR′(z))R′′(z)
]

}

(8)

where C4 = 2v4l
4
2(0) = (16π2)−1, irrespective of the

choice of the IR cutoff function; in addition, the expo-
nent η is given by η ≃ C4R

′(1). The above equations are
identical to the FRG equations at order ǫ first derived by
D. Fisher [6].

The main advantage of the non-perturbative FRG that
we have developed is that the mechanism by which DR
and conventional perturbation theory break down can be
studied in the whole d − N diagram. Although we have
not yet obtained the full numerical solutions to eqs. (5,6),
partial solutions and analyses lead us to propose the fol-
lowing picture. (1) Except when N = ∞ and d ≥ 6, the
analytic FP found in perturbation theory is never stable
(more precisely once unstable). (2) The stable FP is char-
acterized by a renormalized disorder correlation function,
involving 2 fields ϕ and ϕ′, which is non-analytic near
ϕ = ϕ′ ≃ ϕ

m
: for instance, in the RFIM δ(ϕ, ϕ′) is non-

analytic in (ϕ − ϕ′) and for the RFO(N)M near d = 4,
R(z) is non analytic in (1 − z); more generally, the non-
analycity appears in the variable (ϕ−ϕ′)2. (3) The power
exponent characterizing the non-analycity increases dis-
continuously with N and d: e.g., near d = 4 for N > 2
there is a cusp R(z) ∼ (1− z)1/2 for 2 < N ≤ 18, a “sub-
cusp” R(z) ∼ (1 − z)3/2 for 18 < N <∼ 18.045, and so
on, and at large N the exponent varies as N/2; a similar
trend is observed with increasing d, and in d = 6− ǫ, the
exponent goes as 1/ǫ2 (a result quite similar to that of
Feldman [7]). (4) Only when a cusp is present do the crit-
ical exponents change from their DR value, so that there
is a critical line dc(N) (or Nc(d)) separating the two re-
gions of the d−N plane in which the exponents are equal
(d > dc(N)) or not (d < dc(d)) to the DR predictions.
To locate this line, it is sufficient to study the flow of the
second derivative ∂2v/∂((ϕ−ϕ′)2)2 when ϕ = ϕ′ under
the assumption of analytic behavior: the appearance of
a cusp, or equivalently of a term in |ϕ−ϕ′|3 in v, is then
signalled by a divergence in the second derivative. To
simplify the analysis, we have used an expansion in pow-
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FIG. 1: Location of the critical line dc(N) below which a cusp
appears and exponents differ from their DR values.

ers of the fields (including all terms up to φ4) around ϕ
m
:

u = u2(ρ−ρ
m
)2, v = 2v1(

√
ρρ′z−ρ

m
)+v2(ρ+ρ′−2ρ

m
)2+

v3(ρ−ρ′)2+v4(
√

ρρ′z−ρ
m
)2+v5(

√
ρρ′z−ρ

m
)(ρ+ρ′−2ρ

m
),

where v1 = 1 by construction. The result is shown in
fig. 1: when d → 4, one recovers that the critical N is
18 and for the RFIM one finds dc(N) ≃ 5.1 (within the
present approximation). (5) Below dc(N), the T = 0
“cuspy” FP is associated with critical exponents differ-
ing from their DR value; the simplest illustration is for
the RFO(N>2)M at first order in ǫ = d − 4: see fig. 2
where we display η and η̄ normalized by their DR value
η̄ = η = ǫ/(N − 2) as a function of N (for N = 3, 4, 5,
they agree with those of ref. [7]). (6) For any finite tem-
perature Tk, the cusp is rounded: this can be inferred,
e.g. , from the term TkΣ̃

m
in eq. (7) that must stay fi-

nite as one approaches the FP. As in the random elastic
manifold problem [9, 11], temperature prevents the flow
from being non-analytic at any finite scale and one may
expect that the rounding of the cusp involves a boundary
layer as Tk → 0 and one approaches the FP.

The present non-perturbative FRG approach of ran-
dom field systems provides a consistent and global pic-
ture of the critical behavior associated with the ferromag-

 1

 2
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 5  10  15  20  25

N

Nc = 18

η/ηDR

η̄/ηDR

FIG. 2: Exponents η and η̄ (normalized to their DR expres-
sion) vs N for the RFO(N>2)M at first order in ǫ = d − 4.

netic ordering transition. The failure of DR and standard
perturbation theory comes from the existence of many
metastable states, but the mechanism by which this oc-
curs is rather subtle: metastability results from an inter-
play between ferromagnetic ordering and disorder, and it
plays a role at large scale because the fixed point occurs
at T = 0. This interplay leads to an effective renor-
malized random potential (beyond the bare random field
term) that displays many minima. The renormalized dis-
order correlation function, which is the second derivative
of the second cumulant of this random potential, acquires
a non-analycity (a cusp in low enough d) as it flows to
the T = 0 fixed point. The physics of such cusps has
been discussed in the context of random elastic mani-
folds [8, 9, 10, 15]; but in the present case the cusp only
occurs when the system is in the vicinity of the minimum
of the non-random potential. Work is in progress to ob-
tain the full numerical solution of the flow equations and
compute the critical exponents, as well as investigate the
connection of the present theory with replica symmetry
breaking approaches [16, 17] and possible formation of
bound states [17, 18].

LPTL is UMR 7600 at the CNRS.
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[17] E. Brézin and C. De Dominicis, Eur. Phys. J. B 19, 467

(2001).
[18] G. Parisi and N. Sourlas, Phys. Rev. Lett. 89, 257204

(2002).

mailto:tarjus@lptl.jussieu.fr
mailto:tissier@lptl.jussieu.fr

