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ABSTRACT

We consider the nucleation process associated with capillary condensation of a vapor
in a hydrophobic cylindrical pore (capillary evaporation). The liquid-vapor transition
is described within the framework of a simple lattice model. The phase properties are
characterized both at the mean-field level and using Monte-Carlo simulations. The
nucleation process for the liquid to vapor transition is then specifically considered.
Using umbrella sampling techniques, we show that nucleation occurs through the
condensation of an asymmetric vapor bubble at the pore surface. Even for highly
confined systems, good agreement is found with macroscopic considerations based
on classical nucleation theory. The results are discussed in the context of recent
experimental work on the extrusion of water in hydrophobic pores.

PACS :

1 Introduction

Recently, the study of water confined in hydrophobic pores has been the object
of a growing interest, both from the fundamental and the industrial point of view [1,
2, 3, 4, 5, 6]. A specific feature of such mesoporous materials is the strong adsorption
of the wetting phase occuring at a chemical potential (or pressure) lower than the
bulk saturation value. This behavior is usually known as capillary condensation,
and corresponds fundamentally to the shifted liquid-gas phase transition induced by
confinement [7]. In the case of hydrophobic pores, the wetting phase is the vapor
while the non wetting phase is the liquid. The restricted geometry therefore favors
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nucleation of vapor bubbles inside the pores. This is known as the hydrophobic effect
in chemistry, widely study by Chandler and co-workers [8, 9, 10, 11].

A characteristic of capillary condensation (both in hydrophobic and hydrophilic
porous matrices) is the existence of a large hysteresis of adsorption. Two different
origins have been pointed out to explain this behavior. One is the presence of large en-
ergy barriers to nucleate the wetting phase (below its saturation value) [12]. Another
explanation, valid in particular for disordered mesoporous matrices, is the trapping
of the system in a complex free energy landscape [13, 14]. There is in general an
intricate coupling between these two origins of hysteresis. However, limiting cases
might be considered experimentally. Highly disordered mesoporous materials (such
as porous glasses or silica gels) must be described using the approach of reference
[14]. For ”ideal” systems with regular pore shapes, such as MCM-41, a more standard
thermodynamic approach is appropriate [15].

In the following we focus on adsorption in such ”ideal” materials. The slit pore
geometry, in which fluids are confined between a pair of infinite plate, has first been
considered in the literature [3, 16, 17]. A macroscopic approach was used by Restagno
et al. to determine free energy barriers [18], which proved to be very large. Talanquer
et al. [19] used density functional theory (DFT) to tackle this problem and showed
that the macroscopic description yields results in quantitative agreement with DFT
provided the effect of line tension is taken into account. Nucleation path proposed
along these approaches are in agreement with those determined by molecular simu-
lations using sampling methods [3] developed by D. Chandler’s group [20, 21].

The experimentally relevant case of cylindrical pores has been considered more
recently by Kornev and Neimark [22] and Lefevre et al. [15] along the same lines.
An important difference with the slit case, however, is that the curvature of the pore
may lead to a critical nucleus lacking axial symmetry [15]. The latter results have
been compared with experimental data on hydrophobic MCM-41 materials, showing
good agreement with the measured hysteresis and estimated nucleation barriers.

In this paper, we investigate nucleation in a hydrophobic cylindrical pore using a
lattice functional density approach. Our aim is twofold : (i) assess the pertinence of
the macroscopic theory to describe nucleation under strong confinement ; (ii) consider
the possibility of nucleation paths involving asymmetric nuclei, which we previously
predicted on the basis of macroscopic arguments to be energetically favorable [15]. To
this end, we consider a very simple coarse grained model, which takes fluid-fluid and
fluid-solid interactions into account at the most simple level. Critical temperature
and chemical potential at coexistence as well as liquid-vapor interfacial tension and
contact angle value are computed using both mean field calculations and Monte Carlo
simulations. Umbrella sampling is used to determine nucleation paths, critical nuclei
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and reduced energy barriers.

2 Model

2.1 Microscopic Hamiltonian : mean-field and fluctuations

Our model is defined by the Hamiltonian proposed by Kierlik et al. to describe
a confined inhomogeneous fluid in contact with an external reservoir of temperature
T and chemical potential µ [23, 13, 24] :

H(ρi) = kBT
∑

i

[ρilnρi + (ηi − ρi)ln(ηi − ρi)] − µ
∑

i

ρi

− wff

∑

<ij>

ρiρj − wmf

∑

<ij>

[ρi(1 − ηj) + (1 − ηi)ρj ] (1)

In this expression, 1 − ηi are the (discrete) occupancy variables for the matrix
(ηi = 0, 1 for the matrix/fluid site) and ρi is the local density of the fluid on a
three-dimensional (BCC) lattice (ρi ∈ [0, 1]). The fluid-fluid wff and matrix-fluid
wmf interactions only act between nearest neighbors sites (< ij >) and the ratio
wmf/wff determines the wettability of the matrix. This coarse-grained description
leaves aside most of the microscopic details of an actual solid-fluid system but allows
extensive simulations while retaining the main experimental and physical ingredients
of the system under consideration. In particular it is sufficient to describe, at least
qualitatively, the interplay between volume and surface contributions of the free en-
ergy (here in a curved, cylinder like, geometry). At this point, one may notice that
the above Hamiltonian is equivalent to the coarse-grained version of the well known
site-diluted Ising-Model [25].

The cylindrical pore is represented in figure 1, together with the underlying BCC
lattice. Periodic boundary conditions are applied in the direction parallel to the axis
of the cylinder. The BCC lattice representation of a cylinder might appear crude, but,
as already mentioned above, this proves sufficient to study the generic mechanism of
nucleation in a curved geometry.

We have investigated the phase properties of the above Hamiltonian in equation
1, at two levels of description. First at the mean field level, where the previous
Hamiltonian is identified as the free energy of the system ; second, by performing
finite temperature Monte Carlo simulation of the Hamiltonian (equation 1) in order
to incorporate fluctuation effects.

Before turning to the nucleation properties, we briefly characterize the bulk and
surface properties of the system.
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Fig. 1 – Representation of the section of a cylindrical pore in the BCC lattice model.
The sites shown belong to the fluid (ηi = 1). The main axis of the cylinder is along a
(100) direction the cubic lattice. The radius of the cylinder is here 5.5 lattice spacings.

2.2 Bulk Phase properties

In the bulk, the system undergoes a liquid-vapor phase transition. At the mean
field level, this is easily deduced from the equation of state which is found to take
the form

µ = kBT ln
ρbulk

1 − ρbulk
− zwffρbulk (2)

where ρbulk is the uniform density of the bulk fluid and z = 8 is the lattice coordi-
nation number. The mean-field bulk liquid-gas transition is then found to take place
at µsat/wff = −4.0, with a critical point located at kBTc/wff = 2.0. The resulting
mean-field bulk phase diagram is plotted in figure 2.

Beyond mean field, fluctuations are incorporated by performing Monte Carlo
simulations based on the Hamiltonian in equation 1. A few technical comments are
in order here. The standard Metropolis method is used [25, 26], in the grand canonical
ensemble (which amounts here to simply fixing the chemical potential µ of the fluid).
One Monte Carlo step corresponds to one attempted trial move per fluid lattice site.
The density change in the trial moves is 0.2, corresponding to a typical acceptance
rate of 0.5.

The bulk phase diagram is computed using periodic boundary conditions, with a
cubic simulation cell of size L. The liquid-vapor equilibrium is determined by equality
of the grand potential in the two phases. The latter is computed by thermodynamical

4



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

T
/T

c

Monte Carlo
Mean Field

Fig. 2 – Bulk phase diagram, obtained from mean field (full curve) and Monte-Carlo
(dots) approaches.
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integration of
∂Ω

∂µ
= − < ρ > (3)

with boundary conditions

lim
µ→−∞

Ωv = 0 (4)

lim
µ→+∞

Ωl = −(µ + 4wff) (5)

The simulated phase diagram is plotted in figure 2 (for a lattice size L = 15, corre-
sponding to 2× 153 sites of the underlying BCC lattice). The value µsat/wff = −4.0
gives a very good approximation of the chemical potential on the critical line, (inde-
pendently of the temperature T ). The critical temperature is found to be kBTc/wff ≃
0.5, quite smaller than the mean-field result (kBTc/wff = 2). If fluctuations are ex-
pected to decrease the critical temperature in spin-Ising model, such a large differ-
ence is however surprising and seems to be due to the coarse graining of the order
parameter ρ.

2.3 Surface properties

In this section, we compute numerically the liquid vapor surface tension and the
contact angle of the triple line on the solid surface. These ingredients will be needed
to check the accuracy of the macroscopic calculation used to describe the nucleation
problem in section 3.

2.3.1 Liquid-Vapor surface tension

Generally, the liquid vapor surface tension is computed by first constructing a
liquid- vapor interface and then computing the excess free energy (grand potential)
of this interface compared to the bulk coexistence free energy. However in a lattice
model, the surface free energy does depend on the particular direction of the interface
with respect to the underlying lattice axis.

This dependence is emphasized below using the simple mean field approach. In
the presence of an interface, minimization of the (mean-field) Hamiltonian (1) with
respect to the local fluid densities, yields a set of non linear coupled equations

ρi =
ηi

1 + e−β{µ+
∑

j/i[wffρj+wmf (1−ηj )]}
, (6)
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where the sum is over the nearest neighbors j of site i. We have solved numerically
these equations by simple iterations {ρt+1

i } = f({ρt
i}) starting from an initial distri-

bution {ρ0
i } (with a convergence requirement maxi |ρ

t+1
i − ρt

i| < 10−10) with a sharp
interface in the desired orientation. Convergence is quite fast due to the relative sim-
ple geometries considered here. Once the interfacial profile is constructed, the mean
field Grand Potential Ω is simply computed by the value of the Hamiltonian com-
puted at the saddle point density. The surface tension is then defined as the excess
value, computed from the difference between this value and the bulk coexistence
grand potential. We plot on figure 3 the temperature dependence of γLV for two
specific directions of the interface, along the [100] and [110] planes. We also compare
on this figure the value of the surface tension obtained using a mechanical route,
based on the dilation of the sample volume, as described in the Appendix. Note the
difference between the thermodynamic and mechanical routes in the present case,
which can be ascribed here to the underlying mean-field approximation [27]. More-
over another drawback of the mechanical estimate is that it is restricted to the [110]
interface, due to lattice effects.

This dependence on the lattice direction remains when fluctuations are included,
beyond the mean field approximation. Note however that in contrast to the mean
field case, the liquid-vapor surface tension cannot be estimated from the excess grand
potential, which is not directly available in the simulation. We have therefore first
used the mechanical route, as described in the appendix, to obtain the surface tension
from the Monte-Carlo runs.

A third route can be proposed to estimate the liquid-vapor free energy. Indeed
the surface tension can be defined in terms of the free energy necessary to create
a bubble of vapor inside the liquid, at coexistence. Moreover this estimate, which
results implicitly from an underlying average over the various direction of the lattice
grid, is particularly relevant when dealing with the free energy of a nucleated bubble,
which will be needed in the next section.

The calculation of the free energy however requires a thermodynamic integration.
This is performed using the umbrella sampling technique [20, 26]. At a given temper-
ature, the bulk (periodic) system is placed at the coexistence conditions, obtained
from the previous section. An order parameter Ψ is then defined as the number of va-
por sites in the system ( with density less than 0.5). We then constrain the system to
contain an average number of vapor sites by biasing the bare Hamiltonian (1). From
the technical point of view this is performed by adding a term in 1

2
κ(Ψ−Ψ0)

2 where
Ψ0 is the target value for sampling. Typical values of κ are 0.005. The Grand Po-
tential curves is then deduced as a function of Ψ by computing the state probability
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Fig. 3 – Mean field estimate of Liquid-Vapor surface tension along various directions,
as a function of T/Tc. Solid line : surface tension in the [100] direction, from the excess
grand potential. Dash-dotted line : same estimate, now for the [110] interface. Dashed
line : estimate from the mechanical route for the [110] interface.
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Fig. 4 – Monte Carlo estimate of liquid-vapor surface tension as a function of T/Tc.
Dotted line with crosses : mechanical estimate (implemented in the Monte Carlo
sampling) in the [110] direction. Circles : estimate from the free energy calculation
of a liquid bubble (see text for details). Dashed line : mean field calculation for the
[110] interface.
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Fig. 5 – Umbrella sampling estimate of the liquid vapor γLV . The measured grand
potential is plotted as a function of the liquid-vapor area. Numerical parameters are
T/Tc = 0.4 and µ/wff = −4.0 (corresponding to the liquid-vapor coexistence). The
stiffness κ of the biasing potential is κ = 0.01 and the total system size is 2 × 203

sites.

distribution P (Ψ) [26] :

Ω(Ψ) = −kBT ln

[

P (Ψ) exp

(

1

2

κ(Ψ − Ψ0)
2

kBT

)]

(7)

A matching procedure for the free energy is required as Ψ0 is increased from Ψ0 = 0
(liquid state) to Ψ0 6= 0 (vapor bubble). For a given order parameter, it can be
checked by inspecting the configurations that the vapor sites organize into a vapor
bubble with fixed radius R. It is then possible to estimate the surface tension γLV

from the definition ∆Ω = 4πγLV R2.
As shown in figure 5, the measured grand potential exhibits a linear slope as

function of the liquid-vapor area, as expected. This allows to define unambiguously
the liquid-vapor surface tension. The latter is ”averaged” over the various directions
of the underlying lattice grid. This ”spherical” estimate of the liquid-vapor free energy
is compared in figure 4 with the value of the surface free energy along the [110]
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Fig. 6 – Mean field estimate of contact angle along various directions at T/Tc = 0.4
as a function of wmf/wff . The symbols are the same as in figure 3.

direction.

2.3.2 Contact Angle

The contact angle is another necessary ingredient in the classical description of
nucleation phenomena on surfaces [28]. It is defined in terms of the various surface
free energies, liquid-vapor (LV), solid-liquid (SL) and solid-vapor (SV), according to
Young’s law, cos(θ) = γSV −γSL

γLV
. This requires the computation of the solid-liquid and

solid-vapor surface free energies. As for the case of the liquid-vapor surface free en-
ergy, these quantities depend on the specific orientation of the interface with respect
to the underlying lattice. Technically, planar liquid-solid or vapor-solid interfaces are
constructed and the surface free energies are computed along the same lines as for the
liquid-vapor surface tension (both in the mean-field and Monte-Carlo calculations).

The mean field results are displayed in figure 6. The comparison between the
contact angle computed for various directions of the underlying lattice shows only a
weak dependence of the contact angle on the direction of the interface.

Beyond mean-field, the previous method based on a biased Hamiltonian can be
used. A liquid bubble is created on a planar solid surface by adding to the Hamil-
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Fig. 7 – Snapshot of a liquid drop growing on a planar surface in direction [100]
(wmf/wff = 0.3, T/Tc = 0.4, 1500 liquid sites) compared with a macroscopic drop
with a 120◦ contact angle. κ = 0.02. One can check that the underlying BCC lattice
does not affect the spherical shape of the bubble.

tonian a penalty associated with the number of liquid sites (see figure 7). The free
energy is computed accordingly from the matching of the histograms, as in equation
(7). The contact angle is computed by comparing the measured free energy with the
prediction of macroscopic theory. The latter predicts that the excess grand potential
is proportional to the V 2/3, where V is the volume of the drop :

∆Ω = 4πγLV g(θ)1/3(
3

4π
V )2/3 (8)

Knowing γLV from the spherical estimate in the previous section, the slope of the
curve (see figure 8) can be used to extract the contact angle, using g(θ) = (2 +
3 cos(π − θ) − cos(π − θ)3)/4. This estimate remains however direction dependent,
since no averaging over the orientations of the solid is involved. Two calculations for
interfaces in the directions [100] and [110] were performed. As for the mean-field case,
the resulting contact angle is found to be only weakly dependent on the direction of
the interface. This is shown in figure 9 where the different estimates are compared.
The small difference between the two orientations is likely due to a change in the
solid coordination number for a liquid site near the interface (4 in [100] direction, 2
in [110] direction). It is interesting to remark that the contact angles obtained using
the umbrella sampling approach for a droplet are slightly smaller than those obtained
using the mechanical route, which only involves planar interfaces. This points towards
the role of a nonzero line tension, which has been neglected in the analysis of the
results shown in figure 8, but will prove important for the critical nuclei described in
the next section, in which the length of the three phase line is important.
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Fig. 8 – Umbrella sampling estimate of the contact angle θ for a plane normal to
direction [100] as a function of the wettability wmf/wff at T/Tc = 0.4. γLV = 0.93515.
From top to bottom wmf/wff = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45. The measured
grand potential of a bubble on a planar surface is plotted as a function of the power
2/3 of the volume. µ/wff = −4.0, κ = 0.01.
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Fig. 9 – Monte Carlo estimate of contact angle along various directions at T/Tc = 0.4
as a function of wmf/wff . The dotted line corresponds to the mechanical estimate
(implemented in the Monte Carlo sampling) in the [110] direction. Thermodynamic
integration estimates are shown for a [100] (circles) and [110] (crosses) interface.
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Fig. 10 – State probability distribution as a function of Ψ obtained for a cylindrical
pore of radius 5.5 and length 30 at µ = −4.0, T/Tc = 0.4 and wmf/wff = 0.3.
Ψ0 = 230, κ = 0.005. The distribution is obtained from 2000 monte carlo steps, after
1000 steps of averaging. The difference between the maximum in the probability and
the ”imposed” Ψ0 is typical of an unstable situation.

3 Nucleation Path

We now focus on the nucleation path for capillary desorption. To this end, we
use the previously described umbrella sampling technique for a ”biased” system [26].
An order parameter Ψ is defined as the number of vapor sites (with density less
than 0.5) and the Hamiltonian is biased by adding a term in 1

2
κ(Ψ − Ψ0)

2 where
Ψ0 is the target value for sampling. Typical values of κ are 0.005. State probability
distributions P (Ψ) are obtained over a window of range ∆Ψ = 30 (see figure 10). The
nucleation path is sampled by starting with a filled pore (Ψ0 = 0) and progressively
increasing the number of empty sites. For each value of the order parameter, 1000
Monte Carlo steps where used for equilibration and 2000 steps for statistics. The final
configuration serves as initial configuration for the next order parameter value. Grand
potential curves are estimated from the order parameter histogram, using equation
(7). As usual, a matching procedure between different order parameter windows is
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Fig. 11 – Grand potential as a function of Ψ for a cylindrical pore of radius 5.5
and length 30. From top to bottom,µ = −3.88, µ = −3.90, µ = −3.92, µ = −3.94,
µ = −3.96, µ = −3.98, and µ = −4.0. κ = 0.01. The sampling windows for Ψ are
shifted by 10 units. The final state corresponds to a partially filled pore containing
two liquid-vapor interfaces.

used to obtain the free energy curve. The results are shown in figure 11 for different
values of the chemical potential for a cylindrical pore of radius 5.5 and length 30.

A metastability limit of the liquid filled pore is reached around Ψ = 1550. Once
the vapor bubble fills the whole cylinder radius, it adopts a ”cylinder like” shape,
whose length increases linearly with Ψ. The nucleation barrier is defined as the differ-
ence between maximum grand potential and its value in the liquid metastable state.
Ψ = 100 (depending on the chemical potentiel), and corresponds to the presence of a
local vapor region near the hydrophobic wall. Such regions are subcritical vapor bub-
bles that can lead to nucleation. Increasing the order parameter Ψ0, a vapor bubble
grows in contact with the wall and suddenly turns into a vapor cylinder terminated
by two spherical caps.

This approach also yields the shape of the critical nucleus. A typical example is
shown on figures 12,13. This shows that the nucleation process occurs via the creation
of a vapor bubble on the wall. It is important to emphasize that the nucleus breaks
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Fig. 12 – Cross section of a typical umbrella sampling snapshot, before the energy
barrier is crossed, for a cylindrical pore of radius 5.5 and length 30. The cross section
is taken in the plane of symmetry of the bubble. An iso-density surface is represented
for µ = −3.94, Ψ0 = 1535.

the cylindrical symmetry of the system, in contrast to simple expectations [15].

4 Nucleation Barrier

We now gather the results for the energy barrier measured in the simulations, as
a function of the various thermodynamic parameters. The temperature of the system
is T/Tc = 0.4 giving an averaged liquid-vapor surface tension γLV = 0.93515 from
the thermodynamic integration estimate. The wettability of the confining pore is
wmf/wff = 0.3. The contact angle is estimated to be 121.7◦ in [100] direction and
115.3◦ for the [110] interface (see section 2.3.1).

We plot in figure 14 the results for the reduced nucleation barrier ∆Ω/γLV R2, R
being the pore radius. The nucleation barrier is plotted against the ”metastability
ratio” (µ − µsat)/(µeq − µsat), where µ is the actual chemical potential, µsat is the
bulk coexistence chemical potential, and µeq is the equilibrium chemical potential
for the capillary evaporation in the considered pore of radius R. The latter is com-
puted independently, by preparing a configuration in which vapor and liquid phases,
separated by a meniscus, are coexisting inside the pore.

From a macroscopic point of view, the excess grand potential between a pore
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Fig. 13 – Same as in figure 12, but perpendicular to the axis of the cylinder. Again
the cross section is taken in the plane of symmetry of the bubble. Note that both
views are representations of the same nucleus, which makes evident the saddle shape
of the critical nucleus.

filled of liquid and a pore containing a vapor nucleus can be expressed as

∆Ω = VV (PL − PV ) + γLV ALV + (γSV − γSL)ASV (9)

Here V is the volume of vapor phase and ASL, ASV , ALV are the solid-liquid, solid-
vapor and liquid-vapor surface areas. Using reduced quantities ṼV = VV

R3 , ÃLV = ALV

R2 ,

ÃSV = ASV

R2 , the definition of the contact angle cos(θ) = γSV −γSL

γLV
, and introducing

Kelvin’s radius RK = γLV

PL−PV
, one obtains

∆Ω

γLV R2
=

R

RK
Ṽ + ÃLV − cos(π − θ) ÃSV (10)

The parameter R/RK can be related to the metastability ratio using

µ − µsat

µeq − µsat

=
PL − Psat

P eq
L − Psat

≃
R

2RK | cos(θ)|
(11)

On the other hand, the reduced areas and volumes, ÃLV , ÃSV and ṼV , do depend on
the specific geometry and morphology of the critical nucleus. In a previous paper,
ref. [15], we have proposed a detailed calculation of these quantities and obtained
the corresponding energy barrier for a nucleus with an asymetric shape, as observed
in the present simulations (see figures 12 and 13). We refer to this paper for further
details on these calculations. We only quote a simple and convenient approximation
for the energy barrier, which writes

∆Ω = (PL − PV )K1R
3 + γLV K2R

2 (12)

18



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

(µ−µ
sat

)/(µ
eq

−µ
sat

)

∆Ω
/(

γ LV
R

2 )

Fig. 14 – Reduced energy barrier for cylindrical pores of radius R = 3.5 (circle), R =
4 (square), R = 4.5 (cross), R = 5 (triangle), R = 5.5 (plus) compared to macroscopic
results for a vapor bubble using a 120◦ (lower full line) and 115◦ (upper full line)
contact angle. The error bars corresponds to the same macroscopic estimates, with
contact angle between 110◦ and 125◦. Dotted lines are guides to the eye.

with the constants K1 = 4.18 and K2 = 2.12 for θ = 120◦ [15].
Figure 14 shows a comparison between the macroscopic estimate of the nucleation

barrier, computed from classical capillarity as described in [15], with results obtained
from Monte Carlo simulations for cylindrical pores of radius R = 3.5, R = 4, R = 4.5,
R = 5 and R = 5.5. The classical capillarity estimate for the reduced barrier does
not depend on pore size, as is obvious from dimensional arguments. Even allowing for
some flexibility in the value of the contact angle, it is clear that that the macroscopic
approach overestimates the nucleation barrier, and that the reduced energy barrier
obtained from simulation depends on the size of the pore. The good agreement in
the slopes suggests however that this discrepancy can be corrected by a simple shift
of the classical capillarity estimate of the activation energy, which should depend
on pore size and be independent of the chemical potential. As already proposed by
Lefevre et al. [15], such a shift can be obtained by invoking the role of line tension,
which adds to the nucleation barrier a term proportional to the length of the three
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phase line in the critical nucleus. Such a line term writes τ ∗L̃SLV /(γLV R), where
L̃SLV is the length of the three phase line.

Such a term is easily taken into account in the previous macroscopic description,
as described in ref. [15]. The results, displayed in figure 15, show that a value of
the line tension τ ∗/wff = −0.55/b (b being the unit length of the lattice) allows to
obtain a very good agreement between the measured free energy barriers and the
macroscopic estimate. Again we quote the corresponding convenient approximation
of the free energy barrier with the line tension term included (see Eq. (12)) :

∆Ω = (PL − PV )K1R
3 + γLV K2R

2 + λK3R (13)

with K3 = 12.43 for θ = 120◦ [15].
A few comments are in order. First the negative sign of the line tension is in

agreement with previous observations [19, 15]. Moreover, the order of magnitude is
consistent with these previous estimates. Indeed, using a typical microscopic length
b ≃ 1 nm and the value of the critical temperature of water, Tc ≃ 675◦ K, we obtain
τ ∼ 10−11 J/m in good agreement with experimental datas.

5 Conclusion

In this paper a careful estimate of the nucleation barriers for capillary evaporation
inside an hydrophobic pore has been proposed. Monte Carlo simulations have shown
that capillary evaporation occurs via the nucleation of a vapor bubble at the wall
of the cylinder pore. Therefore the critical nucleus does not exhibit the cylindrical
symmetry of the cylinder. We have shown moreover that a macroscopic estimate of
the free energy is consistent with the measured free energy barriers in a hydropho-
bic cylindrical pore, provided a contribution from the line tension is included. This
conclusion is consistent previous studies [19, 15], and should motivate more direct
determination of line tensions in such systems, using experimental or numerical tools.

A Mechanical calculation of interfacial tension

Consider a 3D system of volume V in contact with an external reservoir of tem-
perature T and chemical potential µ and described by the Hamiltonian H0 and
partition function Θ0 The system is assumed to contain a liquid-vapor interface of
area A normal to the z axis. By transformation x → (1 + λ)x, y → (1 + λ)y and
z → (1− 2λ)z, dV = O(λ2) and dA = 2λA. the Hamiltonian becomes, to first order
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Fig. 15 – Macroscopic reduced energy barriers for cylindrical pores using a 120◦

contact angle and a line tension τ ∗ = −0.55wff/b (full lines) compared with Monte
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The symbols are the same as in figure 14.
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in λ,
H = H0 + 2λH1 (14)

From linear response, the new partition function is given by

Θ = Θ0 + δΘ =

∫

exp−β(H0 + 2λH1) dΓ ≈

∫

exp−βH0(1 − 2βλH1) dΓ (15)

Thus
δΘ = −2βλ < H1 > Θ0 (16)

The change dΩ in the grand potential can be calculated using the macroscopic def-
inition dΩ = γdA = 2λγA or the microscopic approach Ω = −kBT logΘ ⇒ dΩ =
−kBTδΘ/Θ = 2λ < H1 > leading to the mechanical expression of the interfacial
tension :

γA =< H1 > (17)

Dealing with the Hamiltonian introduced in section 2 on a BCC lattice with cubic
axes ~x, ~y, ~z, we write the rescaling of a system with an interface in the plane (~u =
(1, 1, 0), ~z) normal to ~v = (−1, 1, 0) as ~u → (1+λ)~u, ~z → (1+λ)~z and~v → (1−2λ)~v.
This is taken into account in the Hamiltonian by assuming a dependence of wff and
wmf as the inverse square length between nearest neighbors sites [18, 27]. Thus H1

is obtained as :

H1 =
∑

<ij>(~u,~z)

wffρiρj + wmf [ρi(1 − ηj) + (1 − ηi)ρj ]

−
∑

<ij>(~v,~z)

wffρiρj + wmf [ρi(1 − ηj) + (1 − ηi)ρj ] (18)

where < ij >(~u,~z) (resp < ij >(~v,~z)) are interaction in the (~u, ~z) (resp (~v, ~z)) plane.
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