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2 Section 1
1. Introduction.

The number partitioning problem is a classical problem from combinatorial optimization.
One considers N numbers zi,...,zy and one seeks to partition the set {1,..., N} into
k disjoint subsets I,...,I;, such that the sums Kz = Kg([1,...,1;) = Znelﬂ Z, are as
similar to each other as possible. This problem can be cast into the language of mean field
spin systems [Merl,Mer2,BFM] by realizing that the set of partitions is equivalent to the set
of Potts spin variables o : {1,..., N} — {1,...,k}". We then define the variables

N
Ks(0) =Y anly,—g, B=1,... k. (1.1)
n=1

One may introduce a “Hamiltonian” as [Merl,BFM]

k—1
Hy(o) =) |Kp(0) — Kgya(o)| (1.2)
B=1

and study the minimization problem of this Hamiltonian. In particular, if the numbers z;
are considered as random variables, the problem transforms into the study of a random mean

field spin model. For a detailed discussion we refer to the recent paper [BFM].

Mertens [Merl,Mer2] has argued that the problem is close to the so-called Random En-
ergy Model (REM), i.e. that the random variables Kz(0) can effectively be considered as
independent random variables for different realizations of o, at least as far as their extremal
properties are concerned. This claim was proven rigorously in a paper by Borgs et al.[BCP]
in the case k = 2 (see also [BCMP]).

In this paper we extend this result to the case of arbitrary k& and under the additional
constraint that the cardinalities of the sets I; are all equal. We formulate this result in the

language of multi-dimensional extremal process.

Let Xi,...,Xy be independent uniformly distributed on [0,1] random variables. (We
assume that N is always a multiple of k.) Consider the state space of configurations o of
N spins, where each spin takes k possible values o = (01,... ,0n) € {1,... ,k}N. We will
restrict ourselves to configurations such that the number of spins taking each value equals
N/k,ie. #{n:0, =p} = N/kforall g =1,... k. Finally, we must take equivalence classes
of these configurations: each class includes k! configurations obtained by a permutation of
the values of spins 1,... ,k. We denote by Yy the state space of these equivalence classes.
Then

ISy| = <NJ\/[k) <N(1N_/;/k)> <2JJVY//:> (k)™ ~ KN (2rN) T k5 (B = S(k, N). (1.3)
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Each configuration ¢ € Yy corresponds to a partition of Xi,..., Xy into k subsets of
N/k random variables, each subset being {X,, : 0, = 8}, 8 = 1,... ,k. Then the vector
Y (o) = {Yﬂ(a)}z;% with the coordinates

N
YP(0) = Kp(0) = Kpp1(0) = > Xn(Wio—py — To—ps1y)s B=1,..., k=1, (14)
n=1
measures the differences of the sums over the subsets. Our objective is to minimize its norm

as most as possible. Our main result is the following theorem.

Theorem 1.1: Let
VA(0) = kFr (20 N) " km ()71 2vV6]Y P (o)), B=1,...,k—L (1.5)

. k—1
Then the point process on R

Z dV1(0),... VE1(0))
O'EEN

converges weakly to the Poisson point process on Ri_l with intensity measure given by the

Lebesgue measure.

Clearly, from this result we can deduce extremal properties of Hy (o) = ZE;} Y8 (a)|

straightforwardly.

Remark: Integer partitioning problem. It is very easy to derive also from our Theo-
rem 1.1 the analogous result for the integer partitioning problem. Let Si,... , Sy be discrete
random variables uniformly distributed on {1,2,... ,M(N)} where M(N) > 1 is an integer

number depending on N. Let us define

N
D (0) =) Su(Mie,—py — Tio,—pr1)-
n=1

Theorem 1.2: Assume that M(N) — co as N — oo such that limy _ o0 (M (N)) = EN/(k=1) =
0. Let

Wh(0) = M(N)~ k™1 (20 N) " k=2 (k1) =12v6|D? ()|, B=1,....k—1.  (L.6)
. k—
Then the point process on R !

Z SW1(o),... Wh1(a))
O'EEN
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converges weakly to the Poisson point process on Ri_l with the intensity measure which is

the Lebesque measure.

Proof. 1t follows from Theorem 1.1 by the same coupling argument as in the proof of Theo-
rem 6.4 of [BCP].

The difficulty one is confronted with when proving Theorem 1.1 is that the standard
criteria for convergence for extremal processes to Poisson processes that go beyond the i.i.d.
case either assume independence, stationarity, and some mixing conditions (see [LLR]), or
exchangeability and a very strong form of asymptotic independence of the finite dimensional
marginals [Gal,BM]. In the situation at hand, we certainly do not have independence, or
stationarity, nor do we have exchangeability. Worse, also the asymptotic factorization of

marginals does not hold uniformly in the form required e.g. in [BM].

What saves the day is, however, that the asymptotic factorization conditions hold on
average on Yy, and that one can prove a general criterion for Poisson convergence that

requires just that.

Thus the proof of Theorem 1.1 involves two steps. In Section 2 we prove an abstract
theorem that gives a criteria for the convergence of an extremal process to a Poisson process,

and in Sections 3,4 we show that these are satisfied in the problem at hand.

Unfortunately, and this makes the proof seriously tedious, for certain vectors o, o', there
appear very strong correlations between Y () and Y (0') that have to be dealt with. Such a
problem did already appear in a milder form in the work of Borgs et al [BCP] for k = 2, but

in the general case k£ > 2 the associated linear algebra problems get much more difficult.

Remark: The unrestricted problem. These linear algebra problems prevented us to
complete the study of the unrestricted problem (that is when the sets Iy,..., I are not
necessarily of size N/k) in the case k > 2. In Section 5 we give a conjecture for the result
similar to Theorem 1.1 in this case and explain the drawback in the proof that remains to
be filled in.

Remark: Dynamical search algorithms. It would be interesting to investigate rigorously
the properties of dynamical search algorithms, resp. Glauber dynamics associated to this
model. This problem has been studied mainly numerically in a recent paper by Junier and
Kurchan [JK]. They argued that the dynamics for long times should be described by an
effective trap model, just as in the case of the Random Energy Model. This is clearly going
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to be the case if the particular updating rules used in [BBG1], [BBG2] for the REM will
be employed, namely if the transition probability p(o,c’) depends only on the energy of the
initial configuration. In the REM this choice could be partly justified by the observation
that the deep traps had energies of the order —N, while all of their neighbors, typically,
would have energies of the order of 1, give or take v/In N. Thus, whatever the choice of the

dynamics, the main obstacle to motion will always be the first step away from a deep well.

In the number partitioning problem, the situation is quite different. Let us only consider

the case k = 2. If o is one of the very deep wells, then
N
Hy(o) =]zl =27 NVN. (1.7)
i=1

If 07 denotes the configuration obtained from o by inverting one spin, then
Hy(07) ~ 2. (1.8)

For a typical sample of z;’s, these values range from O(1/N) to 1 — O(1/N). Thus, if we
use e.g. the Metropolis updating rule, then the probability of a step from o to o7 will be
~ exp(—2f|z;|). It is by no means clear how high the saddle point between two deep wells
will be, and whether they will all be of the same order. This implies that the actual time
scale for transition times between deep wells is not obvious, nor it is clear what the trap

model describing the long term dynamics would have to be.

Of course, changing the Hamiltonian from H(o) to In H(o), as was proposed in [JK],
changes the foregoing discussion completely and brings us back to the more REM-like situa-

tion.

Acknowledgements: We thank Stephan Mertens for introducing us to the number parti-

tioning problem and for valuable discussions.

2. A general extreme value theorem.
Consider series of M random vectors V‘i,M = (V;}M, V) ERL =1, M.

Notation. We write > @y When the sum is taken over all possible ordered sequences of
different indices {i1,... 5} C {1,...,M}. We also write 3. )  ,(p)() when the sum

is taken over all possible ordered sequences of disjoint ordered subsets a(r1) = (i1,... ,ir, ),

04(7'2) = (iT1+17- .. ,7:7-2), ey O{(T‘R) = (1:7'1+"'+7'R—1+1" .. ?iT1+"'+1"R) of {1, .. ,M}
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Theorem 2.1: Assume that for all finite | = 1,2,... and all set of constants cf > 0,
j=1,...,1, 6=1,... ,p we have

S o r(Vy<dvi=1 p=1.p)> ] & Moo (1)

Oé(l)z(’il,...,’il) jil7.‘:.‘7l

Then the point process

M
I, = 25(Vi{M,...,v;jM) (2.2)

i=1
on RE converges weakly as M — oo to the Poisson point process PP on RE with the intensity

measure which is the Lebesgue measure.
Proof. Denote by II%,(A) the number of points of the process II%, in a subset A C RY .

The proof of this theorem follows from Kallenberg theorem [Kal] on the week convergence
of a point process IT}, to the Poisson process ITP. Applying his theorem in our situation weak

convergence holds whenever
(i) For all cubes A = ngl[aﬂ, %)

EIT2, (A) — 4], M — . (2.3)

(i) For all finite union A = (J;-, gzl[alﬂ, b)) of disjoint cubes

P(I%,(A) = 0) = e Ml M — . (2.4)

Our main tool of checking (i) and (ii) is the inclusion-exclusion principle which can be

summarized as follows: for any [ = 1,2,... and any events O1,... ,0;
l k
M[WOQ:Z 3y pmﬂﬂéﬁ (2.5)
i=1,...,1 k=0 Ap=(i1. . ig)C{L,... 1} j=1

i1 <ig <---<ip

where (_)i]. are complementary events to O;,. We use (2.5) to “invert” the inequalities of
type {VZB v 2 a? }, i.e. to represent their probability as the sum of probabilities of opposite
events, that can be estimated by (2.1). The power of the inclusion-exclusion principle comes
from the fact that the partial sums of the right-hand side provide upper and lower bounds

(Bonferroni inequalities, see [Fe]), i.e. for any n < [I/2]:

2n k 2n+1 k
> @NMQOQZM Q(QZE: 3 pmﬂ OQ.
k=0 Ap=(i1,...,ig) 7j=1 i=1,...,1 k=0 Ap=C(i1,...,ig) j=1
C{1,...,1} c{1,....1}
ip<ig<--<ip i]<ig<-r-<ip

(2.6)
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They imply that it will be enough to compute the limits as N 1 oo of terms for any fixed

value of [. Using (2.5), we derive from the assumption of the theorem the following more

general statement: Let Aq,...,A; € RY be any subsets of volumes |4,],... ,|4;| that can be
represented as unions of disjoint cubes. Then for any mq,... ,my
1
> P(Vinr € Aj Vi € a(my),Vr =1,...,1) = [T 14" (2.7)
a(m1)7a(m2)7"' ;a(ml)

Let us first concentrate on the proof of this statement. We first show it in the case of one
subset, [ = 1, which is a cube A = ngl[aﬂ, b%). Let m = 1. We denote by E.AC{I,...,p} the
sum over all 27 possible ordered subsets of coordinates : A denotes the subset of coordinates
[ such that the inequalities VzB W < a? are excluded leaving thus VZB 'y < bP. Then by (2.5)
applied to g,:l{v;.?M > af}

M M
Y PV € A) =) P’ <V, <b . ¥p=1....p)
=1 i=1

M
=1 AC{1,...

M
= > (—1)|A|ZIP’(VfM<aﬁH5gA+bﬁlgeA,Vﬂ=1,...,p).

c{L,p} i=1

The interior sum in (2.8) Zf\il P(-) converges to ngl(aﬂ Tgga+b°T e 4) by the assumption

(2.1). Thus

p
lim Z]p Vimed)= > (-1 lAlH (a’Tpga + b Tgen) :H = |A].

M—o0
AcC{1,...,p} B=1
(2.9)

Now let m > 1. Denote by > AyAs.... A, the sum over all 2 ordered sequences of all 2P
unordered subsets A C {1,... ,p}. Here A; is the subset of coordinates corresponding to the
jth index in the row a(m) = (i1,... ,%;,). Then by (2.5)

ZIP’(‘Z,MEAViEa(m)): ZP(CLBSVZ?M<I)5 Vie a(m),VB=1,... ,p)

a(m) a(m)
=3 Z )ALl A | p (Vﬂ < aPlgga, + VP Ugen, Vi=i; € alm),Vj=1,... ,m,Vﬁ)
a(m) A1,...,A

= Y (- |A1|+...|Am| > PV < allgga, + 6P Ugea, Vi=i; € a(m),¥j =1,... ,m,Vp).
Aty Am a(m)
(2.10)
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By (2.1) applied to the interior sum of (2.10) }_ ) P(:) we get:

m

p
i 7 ; _ |A1|+ | Am | B Ié] _ m
Jim (Z)P(VZ,M € AVi € a(m)) . ZA (-1 U —1(a Tgga, +b"Tgea,) = |A]™.

Assume now that [ > 1 and A, = [[%_,[a?,b%), r =1,... ,I. Then

B=11"r>"r
3 P(XZ-,MeAj ViEa(mT),Vrzl,...,l)
a(my),a(ms),... ,a(m;)
1 e l
= > Do (C)HIETEIR(VE, < oM aga; 7 e n;
a(mq),a(ms),... ,a(m;) A},...,A}nl
,...,.All,...,.Alml

Vi=1i; € a(m,),Vi=1,...,m,,Vr=1,...,1,Y8)

- Z (_1)|Ai|+"'+|«41nl|... Z (_1)|Ai|+"-+|v45nl| Z

A},...,A}nl .All,...,.Agnl a(mi),a(ma),... a(my)

P (VfM < aﬂ]IBEA;‘ +bﬁ1156,4§ Vi=i; € a(m,),Vj=1,...,m. Vr=1,... ,l,Vﬁ)
(2.11)

Due to (2.1) applied once more to the interior sum »_ .y o(m) P(+), (2.11) converges

to
I m, p
E 1 AL |41 AL
Z (_1)|~A1|+ +An, L Z (_1)| 1+ mllHHH(aﬁH5€A§+bﬁ]{BEA§)
AL AL AL AL, r=1j=1p8=1
— Z (_l)lAi|+"'+|A'}n1| ... Z (—1 )lAl Ll AL
Al AL AT LA
-1 m,
IT11 H o’ Tggar + b Lgear)| Ay™
r=1j=1p=1
= |Ar[" Az |2 - [ A (2.12)

Let finally Ay = U;L; A1 k... . A = Uj_; Ai,x be unions of sq,...,s; disjoint cubes

respectively. Then we may write:

g P(Vim € Aj Vi€ a(m,),Vr=1,...,1)
a(my),a(ms),... ,a(my)
=X X > (2.13)
MY 15 sM gy >0 ml,l"")"nl,slzo a(ml,l)v---va(ml,sl)v
m1)1+---+m1,31:m1 ml,1+"'+ml,sl=ml ...,a(mlgl),...,cx(ml’sl)

P (ﬁ,M € AnyVi € almog)Vr=1,... IVEk=1,... ,sT>
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and apply to the interior sum 3-, .. ) o, 2) P(-) the statement (2.7) about cubes just
proven by (2.12). Then (2.13) converges to

DN S 1 1 (S | D SR | (8

ml,l,...,ml’slzo M 1T Sl>0 r=1k=1 M 1y M, sp 20

my 1tetmy g =my mytedmy g =my My 1+t me, s, =mr

l
= H | A, ™.
r=1
(2.14)
This finishes the proof of the statement (2.7).

Now we are ready to turn to the proof of the theorem. The condition (i) has been already
shown by (2.9). To verify (ii), let us construct a cube B = H%ZI[O, maxj—1,.. L blﬁ) of volume
|B|, then clearly A C B. For any R > 0 we may write the following decomposition:

R
PILy(4) =0 =Y =3 P (ﬁ,M € B\ AVi € a(r), Vi ¢ BYi & a(r))
r=0 " a(r) (215)

+ Pl (A) = 0,11y (B) > R) = [L(R, M) + I(R, M).

Applying the inclusion-exclusion (2.6) principle to M — r events {1_/; ¢ B} for i & a(r), we
may bound I (R, M) for all n < [(M —r)/2] by

R 2n o N\ N _
Z% (=1 Z P(Viar € B\AVYi€ afr), V;y € BVi € a(k)) > I,(R,M)

| |
r=0 " k=0 K a(r),a(k)
R 1 2n+1 (—l)k . o
>3- o 2. B(Via € B\AVica(r), Viy € BYicak).
r=0 k=0 a(r)a(k)

(2.16)
Then for any fixed n > 1, the statement (2.7) applied to the subsets A/B and B imply:

R 2n 2n+1

B\ A|" —1)*|BJF B\ A —1)k|B|*

5! \' el >k'| s i (R, M) >ZMZ%- (2.17)
T . .

’!‘:0 k:O r= 0 k:O

Since n can be fixed arbitrarily large, it follows that
B\ A
Jlim 13 (R, M) —|B|Z| \ i (2.18)

The statement (2.7) also gives

.1 - . _|BI®
i I(R, M) < A}grlooIP(HM( )>R) = lim — %)P(WM €BVi€a(R) =7
(2.19)
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By choosing R large enough, the limit (2.19) can be done as small as desired and the sum
(2.18) can be done as close to the exponent el P\AI=IB] a5 wanted. Hence, limy;_,o, P(I1},(A)) =

e~ 141, This concludes the proof of the theorem. <

3. Application to number partitioning

We will now prove Theorem 1.1. In fact, the proof will follow directly from Theorem 2.1
and the following proposition:

Proposition 3.1: Let

1—

S(k,N) = kN (2rN) "= k¥ (k)™ (3.1)

be borrowed from (1.3). We denote by 3,1 jies (+) the sum over all possible ordered
sequences of different elements of Xn. Then for any | = 1,2,..., any constants cf > 0,
j=1,...,1, 6=1,... ,k —1 we have:

Y3 (o) & )
2(N/k)var X S(k, N)¥=T

= JI e~z (3.2)

3 ]P’(Vﬁ:l,...,k—l,Vj:l,... N

ol,...,oleXy

Informal arguments. Before proceeding with the rigorous proof, let us give intuitive ar-

guments supporting this lemma.

5
The random variables ———2) _ are the sums of independent identically distributed
V2(N/k)var X
random variables with the expectations EY #(07) = 0 and the covariance matrix By (o2, ... ,o!)

with the elements

ypr _ v (V2(0), Y7(0%) _ Snci (Mg =p) = Lot =p41)) Mo =) = Log=y41))
2(N/k)var X 2(N/k) '

(3.3)
In particular:
bl =1, b =—1y2, 07 =0fory £B,B+1, Vi=1,... k-1 (3.4)

Moreover, the property that b’ig,’j'y = o(1) as N — oo for all i # j, 3, v, holds for a number
R(N,1) of sets o', ... ;0! € X' which is R(N,1) = |En[' (1 +0(1)) = S(k, N)'(1+0(1)) with
o(1) exponentially small as N — oc. For all such sets o, ... , ¢!, by the Central Limit Theo-
Yo (a?)

V2(N/k)var X

rem, the random variables should behave asymptotically as centered Gaussian
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random variables with covariances b£;7 = 1{i=j,8=1} + (=1/2)1 (= y=p+1} +0(1). The deter-
minant of this covariance matrix is 1+ o(1). Hence, the probability P(-) defined in (3.2) that
these Gaussians belong to the exponentially small segments
[—cf-S(k,N)_l/(k_l),cJB-S(k,N)_l/(k_l)] isof theorder  [] (2(27r)_1/2055(k,N)_1/<k_1)).

G=1,...,1
B=1,... ,k—1

1
Multiplying this probability by the number of terms R(N, ) we get the result claimed in (3.2).

Let us turn to the remaining tiny part of E%l where o',... , 0! are such that bﬁ ;7 40

for some 7 # j as N — oc. Here two possibilities should be considered differently. The first
5

one is when the covariance matrix By (o?,... ,o') of Y 4 non-degenerate. Then

V2(N/k)var X

invoking again the Central Limit Theorem, the probability P(-) in this case is of the order

(detBy(ot,...,o))™V2 [ (2@r)7V2 Sk, N)~HE=D),

Tyl

j=
=1,...,k—1

B

But from the definition of bf, 7 (detBy(ot, ... ,0!))~'/2 may grow at most polynomially.
Thus the probability P(-) is about S(k, N)~! up to a polynomial term while the number of
sets ol,... 0! in this part is exponentially smaller than S(k, N)!. Hence, the contribution

of all such o',... 0! in (3.2) is exponentially small.

The case of o1, ... ,o! with B(o,... ,o') degenerate is more delicate. Although the num-
ber of such 0!, ... , 0! is exponentially smaller than S(k, N)!, the probability P(-) is exponen-
tially bigger than S(k, N)~! since the system of /(k — 1) random variables {Yﬁ(ai)}gzlf;::_’fk_l
is linearly dependent! First of all, it may happen that there exist 1 <4y < iy <--- < <1
such that the basis of this system consists of (k — 1)p elements {Yﬁ(a”)}jﬁf1 L _,. Then

J—1
the assumption that the elements o',... 0! of ¥ must be different, plays a crucial role:
due to it the number of such sets o!,... ,o! in this sum remains small enough compare to

the probability P(-), consequently their total contribution to (3.2) vanishes.

Finally, for some sets o!,... , o', there is no such p < I: for any basis, there exists a number
4 €{1,... 1} such that the random variables Y?(07) are included in the basis for some non-
empty subset of coordinates B and are not included there for the complementary non-empty
subset of B. This last part is clearly absent in the case k = 2. It turns out that its analysis
is quite tedious. We manage to complete it only in the case of the constrained problem by
evaluating the number of such sets o, ... ,o! where each of spins’ values {1,... ,k} figures
out exactly N/k times and by showing that the corresponding probabilities P(-) are negligible
compare to this number. The only drawback that remains in the study of the unconstrained

problem is precisely the analysis of this part.
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Proof of Proposition 3.1. In the course of the proof we will rely on four lemmata that will be

stated here but proven separately in Section 4. Let

,gl({tﬂ,j}) = Eexp (\/W Z tﬁ,jYﬁ(Uﬂ')) (3.5)

be the characteristic function of the random vector (2(N/k)var X)™'/2{Y?(09)} 1. ..

B=1,... ,k—1

=

Here t = {t3 ;}s=1.... k-1, is the vector with (k — 1)l coordinates. Then
j=1,...,1
i B
Yﬂ J c.
P(Vﬁ:l,...,k—l,Vj:l,...,l Y2l I ) (3.6)
2(N/k)var X S(k,N)#T
—1 —1
1 ezt,g,]ch(k,N) _e itg,jc; S(k,N)
li ({t dtg ;.
= (20D Do / £ s })_ﬂﬂ l its,; =
[-D,D]ik-1) s,
It will be convenient to have in mind the following representation throughout the proof. Any
configuration o gives rise to k — 1 configurations o™, ... ,o*=1 € {—1,0,1}" such that
o) =1(y,=py — Lig,=ps1y, n=1,... ,N. (3.7)
We now define the N x (k — 1) matrix C(c) composed of columns ¢V, ... ,o*=1)_ Then it is
composed of types of k rows of length k — 1: Oy = (1,0,...,0), O = (-1,1,0...,0), Oy =
(0,-1,1,0,...,0),..., Op—2=(0,...,0,—1,1), Op_1 = (0,... ,0,—1). They correspond to

spin values 1,2,... , k respectively: if o,, = 3, then the nth row of C(0) is Og_;.* Each of

these k rows is repeated N/k times in the construction of C(o). Then

N
Blo) = Z X, 0
n=1
Let C(o!,... ,0') be the N x (k — 1)I matrix composed by the columns

ot g1 | glk=1) 52 gL Then it is easy to see that the function

l
fX,l"" "7 ({tg,;}) is the product of N functions

{tg,J} H Eexp (W{C(al,... ,o’l)ﬂn>

-1

ﬂex v (s Ol ’-"’“l)f}"> 58

V2(N/E)var X)=1{C(o o},

4The case k = 2 is particular, since here C(o) is the vector with elements +1; i.e. in this case this
reparametrisation just corresponds to passing from values {1, 2} to {—1, +1}.
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where {C(c',... ,0")t}, is the nth coordinate of the product of the vector £ = {tz ;} s=1,... ko,
G=1,...,

with the matrix C(o?,... o).

We will split the sum of (3.2) into two terms

YooP()= > P(-) + > P(-) (3.9)

0'1,...,0'1621\1 01,...,al€EN 01,...,al€EN
rank c(ol,... ,ol)y=(k—1)1 rankc(nl,...,al)<(k—1)z
and show that the first term converges to the right-hand side of (3.2) while the second term

converges to zero.

We start with the second term in (3.9) that we split into two parts

> P(-) = Ji + J%. (3.10)

01,... ,aleEN
rank c(o1,... ,.oly<(k=1)1

In the first part J} the sum is taken over ordered sets o1, ... ,o! of different elements of Xy
with the following property: the rank r of C(c?, ... ,o') is a multiple of (k—1) and, moreover,
there exist configurations o, ..., o%/(-1 such that all of (M1 @i - glk=1)r/x-1)
constitute the basis of the columns of the matrix C(c?, ... ,o!), i.e. the rank of C'(0?*, ... ,o'r/(x-D)
equals r. Consequently, for any j € {1,... I} \ {i1,... ,irj—1)} all of oM .. ok=1)J
are linear combinations of the columns of the matrix C(c%,... ,o'7/*-1). In the remaining
part, J%, the sum is taken over configurations o',0?,... ,o! satisfying the complementary
property: for any basis of the columns of C(c!,... ,o!) there exist at least one configuration
o such that some of the configurations o4 ... (=1 are included in this basis and some

others are not®.

The following Lemma 3.2 shows that the sum J% is taken over sets of different o!,... o'
such that the matrix of the basis C(6%,... ,o%/*~1) contains at most (k"/*~1) —1) different
rows.

Lemma 3.2: Assume that the matriz C(o',... ,o') contains all k' different rows. Assume
that a configuration & is such that each V), ... ,5%=1 is a linear combination of the columns
of the matriz C(at,... o). Then the configuration & is obtained by a permutation of spin
values in one of the configurations o',... o', i.e. & coincides with one of o*,... o' as an

element of Y.

5In the case k = 2 the term J12v can obviously not exist. This leads to considerable simplifications.
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Remark: In the case kK = 2, Lemma 3.2 has been an important ingredient in the analysis of

the Hopfield model. It possibly appeared first in a paper by Koch and Piasko [KP].

In fact, if in J% the matrix C(o™,... 0% /*-1) contained all k"/(=1) different rows, then
by Lemma 3.2 the remaining configurations o7 with j € {1,... 1} \ {iy,..- yir/(k—1)} would
be equal to one of o’1,... ,o'r/(=1) as elements of ¥y, which is impossible since the sum in
(3.10) is taken over different elements of ¥ . Thus there can be at most O((k"/*~1 — 1))
possibilities to construct C(o%,...  a%/¢*-1) in the sum J}. Furthermore, there is only a

N-independent number of possibilities to complete it by linear configurations of its columns

up to C(ct,...,0'). To see this, assume that there are v < k/(=1) different rows in the
matrix C(o%, ... ,o%/*-1) and consider its restriction to these rows which is the v x 7 matrix
C(o™,... ,o/-1). Then C(o™,... ,o'r/(:-1) has the same rank r as C(co™ ..., oir/(-1),

Now there are not more than 3*((:=1=")) ways to complete the matrix C to a v x I(k — 1)
matrix with elements 1, —1, 0 such that all added columns of length v are linear combinations
of those of C. But each such choice determines uniquely the coefficients in these linear
combinations, and hence the completion of the full N x r matrix C(¢%,... ,o"/*-1) up to
the N x [(k — 1) matrix C(ol,... ,o') is already fully determined. Thus the number of terms
in the sum representing J3, is smaller than

kr/(k‘,—l)_l
Z PN 3WUE=D=) — O (/=) _ 1)N)_ (3.11)

v=r

The next proposition gives an a priori estimate for each of these terms.

Lemma 3.3: There exists a constant K (k,1) > 0 such that for any different o*,... o' €
Y, any r =rank C(ot,...0') < (k—1)l and all N > 1
Y9 (o) 7

P(Vﬂ: Lo k=1¥j=1,... 1 i ) < KS(k, )~/ (k=1 y3r/2,

2(N/k)var X  S(k,N)*T (3.12)

Hence, by Lemma 3.3 each term in Jj is smaller than KS(k, N)~"/(*=D)N3"/2 with the
leading exponential term k~N7/(=1)_ Tt follows that Jx = O([(k"/(*=Y —1)k=/E=D]N) — ¢

as N — oo.

Let us now turn to J% in (3.10). The next proposition allows to evaluate the number of

terms in this sum.

Lemma 3.4: Let Dy be any N x q matriz of rank r < q. Assume that for any N > 1
it is composed only of R different rows taken from a finite set D of cardinality R > k.



Number partitioning 15

Let Qn(R,t) be the number of configurations o such that the matriz Dy completed by the
columns oV, ... 0"V has rank r +t where 1 <t < k — 2. Then there exists a constant

K(R,t,k) > 0, depending only on R,t,k, such that

(N(t+1)/k)!

Qn(R,t) < K(R,t,k) (INJR) (3.13)

Now, to treat J%, consider o',... o' such that (k — 1)m +t; +t5 +--- +t, = r columns

of C(ot,... o) form a basis for the span of all column vectors of this matrix. Then there
exist o’,... , o' such that all of o(")*» are included in the basis for all v = 1,... ,k — 1,
p=1,...,m, and there exist 07',... ,07s such that among o(?)Ja tqy > 1 configurations are
included in the basis and other ¥ —1 — 1%, > 1 are not, ¢ = 1,... ,s. By Lemma 3.4 the

number of possibilities to construct such a matrix C(o!,... o) is

((N/E)!)tatt

s=1

O(kimN ﬁ (N(tq + 1)/k)') ~ Nm ﬁ(tq + 1)N(tq+1)/k

up to leading exponential order. The probability in (3.9) is already estimated in Lemma 3.3:
it is

O(N3T/2S(k,N)_’"/(k_l)) ~ k—NT/(k—l) — k_—N(m(k—l)+t1+t2+---+ts)/(k—l).

Thus, to conclude that J% — 0 exponentially fast, it suffices to show that for any k = 3,4,...
and any t = 1,2,... ,k — 2 we have (¢t + 1)(#+D/kg=t/(k=1) < 1 which is reduced to the

inequality

bk, t) = Ink < 0.

k
1n(t+1)_t+1

It is elementary to check that % <Oforall k>t+1and ¢t > 1. Then, given ¢, it suffices
to check this inequality for the smallest value of k£ which is £ = ¢ + 2, that is that

b(k) = (k —1)?In(k — 1) — k(k — 2)Ink < 0.

This is easy as ¢’(k) < 0 for all k¥ > 3 and v(3) < 0. Hence, J% — 0 as N — oo. Thus the

proof of the convergence to zero of the second term of (3.9) is complete.

We now concentrate on the convergence of the first term of (3.9). Let us fix any a € (0,1/2)

and introduce a subset Rf‘ N C Z%:

RlOfN:{O-la"'7UlGZN:V1§i<T§l71Slga’%nékaﬂ#v
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N
> Wit =y = Lpg =) Doy | < N2 (3.14)

n=1
This subset can be constructed as follows. Take o' where each of k possible values of spins
is present N/k times. Divide each set Ag = {i € {1,...,N} : o} = B}, B € {1,....k},
into N/k + O(N®*1/2) pieces Ag_, of length N/k? + O(N®+1/2). Then the spins of ¢ have
the same value on the subsets of indices which are composed by k such pieces Ag , taken
from different Ag, 8 = 1,... ,k. Next, divide k? subsets Ag . into k pieces Ag. 5. The
spins of 0 have the same values on the subsets composed by k? such pieces Ag_, 5 of length
N/k® + O(N°*1/2) taken from different Ajg ., etc. It is an easy combinatorial computation
to check that with some constant A > 0

K\ Ry | < BN exp(—hN?) (3.15)

from where by (1.3)
Ri x| = S(k, N) (1 +0(1)), N — oo. (3.16)
It is also not difficult to see that for any o!,... 0! € Ri'n the rank of C(ot,...,0') equals

(k — 1)I. Note that the covariance matrix By (see (3.3)) can be expressed as

CT(ol,...,0")C(c},... 0!

By(o* = 3.17
N ) 2(N/k)var X (3.17)
Thus by definition of RY; , its elements satisfy
B:’Y — _1/2 y y

bi,j _O(Na ) V,B,’)/,Z?éj, (318)
uniformly for Vol,... .ol € R - Therefore, for any ot,...,0le Ri'ns detBy(ct,... ,0!) =

1+ o(1) and consequently the rank of C(o!,... ,o') equals (k — 1)I.

By Lemma 3.3 and the estimate (3.16)
> P() < kNl MN g N3EDU2G (5 N) T 0, (3.19)
01,...,JL€71%N

rankc(al veob)y=(k=1)1

To complete the study of the first term of (3.9), let us show that

Yoo P() = en)m®2 T (2d) (3.20)
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with IP(-) defined by (3.6). Using the representation (3.6), will divide the normalized proba-

bility P(-) of (3.6) into five parts

S(k,N)l( I1 (2c§)—1)P(-):ZIjV(al,...,al) (3.21)

i=1,...,k—1,

j=1,...,1
where:
1% = (2m) 1D / e~ BN N2 T dtyy, (3.22)
B=1,... ,k—1,
£ <ent/6 G=1,....1
- - 0—17"'50'1 —£ 0'1,...,O'l £
=m0 [ (5 () - )T dag, (529
Il <ent/e LT
— — o’l,...,al
13 = (2m) "D / St ) [ dtess (3.24)
eNL/6<|| T <6VN SRR
ol ...,al
=m0 [ ()
IfI<svN
itg,jc? S(k,N)~V/ =D _itg cPS(k,N)T/ (KD
X [ H c ’ B © ’ — 1:| H dt/gﬂ
B=1,...,k—1 %tj’ﬂcjs(kaN)_l/(k_l) B=1,...,k—1,
j=1,...,0 j=1,...,1
(3.25)
and
—I(k— : a'l,...,al
1% =(2m) 70 lim / 2 ()
[-D,Dlk=Dn|[{]| >6VN
ite e S N)TH D ity el S(k,N)TH/ (D) (3.26)
< I — — dig ;.
B=1,... k-1 ZZtﬂyjch(ka) /€ )
j=1,...,1

for values §,¢ > 0 to be chosen appropriately later. We will show that there is a choice such
that I%(0r,... ,0') = 0 for i = 2,3,4,5 and Ix(o?,... ,0') — (2r)~*=DV/2 uniformly for
ol,... ol € Ri*y as N — oo. These facts combined with (3.16) imply the assertion (3.20)
and complete the proof of the proposition. The following lemma gives control over some of

the terms appearing above.

Lemma 3.5: There exist constants C > 0, € > 0, § > 0, and ( > 0, such that for all

ol,..., 0l e Ri'n, the following estimates hold:

(i)

1 7 1 y CIt|® _» 1 *
‘fK/ ,...,al({tﬂ’j}) o e—tBN(O’ ,...,Ul)t/Z‘ S |-]| e—tBN(a' ,...,o’l)t/Q’ fO'I" all ||ﬂ| < €N1/6

VN
(3.27)
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(ii)
15 (g 1| < e BN (@ DHCUEN T o i 17]) < 5V, (3.28)

and

(iii)
‘fﬁl""’”l({tﬁjj})‘ < =Sl for all ||F]] < 6V/N. (3.29)

We can now estimate the terms I%. First, by a standard estimate on Gaussian integrals,

I (o, ... oh) = ((2n)F=DVdet By (o, ... ,0')) Y2 4+ o(1)

(3.30)
= (2m)~*=DI2 L 5(1), N — oo,

where o(1) is uniform for o!,... 0! € Ri'y by (3.18) and (3.4). Thus I} gives the desired

main contribution.

The second part I%(c!,...,0') = O(N~—/2), uniformly for o,... o' € Ry by the
estimates (3.27) and (3.18), (3.4). The third part I3 (c?,... ,0!) is exponentially small by
(3.29). To treat I%(o?,...,0'), we note that for any € > 0 one can find Ny such that for
all N > Ny and all ¢ with ||f]] < v/N the quantity in square brackets is smaller than € in

absolute value, and apply again (3.29). Finally, we estimate

0'1 O'l
130", oh)] < (2m) 7D / v Qe T s (3.31)
17> 6V N pIN TR
For any o,... ,0' € Ry the matrix C(ot,...,0') contains all k! possible different rows and

by (3.8) 0 " "UZ({tg,j}) is the product of k! different characteristic functions, where each
is taken to the power N/k'(1 + o(1)). Let us fix from a set of k' rows of C(o?,... ,0') any
(k — 1)l linearly independent and denote by C' the matrix composed by them. There exists
n(0) > 0 such that \/fC’TC’f/(2(1/k)varX) > n for all £ with ||f]] > §. Changing variables

§=1C"T/\/2(N/k)varX one gets the bound

113 (ot ... ,0®)] <(27r)_l(k_1)(2(N/k:)varX)l(k_1)/2(det )1

/ e85 — 1 ‘Nkl(1+o(1))
- Sﬁ,j
— /LSﬁ7 j
151>n ‘331: !
< CNZ(’“’D/Z(l — hn)) Nk AFol)=2 / ew,ﬁ’j _1‘2dsﬂ,j,
p— ZSB’ ]
15> ‘f: ’

(3.32)
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where h(n) > 0 is chosen such that |(e** —1)/s| < 1 — h(n) for all s with |s| > n/((k — 1)I)
and C is a constant independent of the set o',... ¢! and N. Thus I} (c},... ,0!) — 0,

uniformly for o', ... o' € Ri'n, and exponentially fast as N — oc. This concludes the proof
of (3.20) and of Proposition 3.1. <

4. Proofs of Lemmas 3.2, 3.3, 3.4, 3.5.

Proof of Lemma 3.2. Let first [ = 1. Without loss of generality we may assume that the first
k rows of C(o!) are different. Then for alli = 1,... ,k — 1, the following system of equations

has a solution:
)\(1) _ ~(%)

_>\§Z) + )\éz) _ 6&1)

IONRNORPIO

_)\1(22 + >‘ch11 = 51(;21
)\(1) ~(1) (41)

Then necessarily Zn 1 6*7(11) =0forall:=1,2,... ,k—1, since the sum of the left-hand sides
of these equations equals 0. But for at least one j € {1,... ,k} andi=1,... [k —1, o](-i) £ 0,
for otherwise A" = 0 for all s = 1,...,ki=1,... ,k—1 and consequently C(¢) is composed
only of zeros, which is impossible. Without loss of generality (by definition of ¥y we may

always permute spin values) we may assume that 53(-1) #0.

We will use the following crucial property of the configurations 51, ... *+—1:
0 =1= 56U+ =0,6U+? =0,... 60k~ = . (4.2)
50 = -1 =60t =1,60+D =0,... ,s:=Y =o. (4.3)
It follows that, for a certain number #; > 1 of pairs of indices nl,n?,... ,n%l , nfl e{l,... k},
we must have that 0(11) =1and & ~(1) =—-1,u=1,...,t;. We say that these 2¢; indices are

“occupied” from the step j = 1 on, since, by (4.2) and (4.3), we know all values &T(le) =0 for
all j =2,3,...,k—1,5% =1, and a(“ =0forallj=3,....,k—1,u=12_...,t. We

say that the other k — 2t1 indices are “free77 at step 7 = 1. Then we must attribute to at

~(2) _

least t1 of k — 2t; spins 07(1 ) with “free” indices the value &,/ = —1 in order to ensure that

ZZ 10 ~(2) = 0. We could also attribute to a certain number t5 > 0 of pairs of the remaining
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k — 3t spins with “free” indices the values 52 = £1. Thus by (4.2), (4.3) for j = 2 we know
the values of O'(J) for j = 2,3,... ,k — 1 for at least 3t; + 2¢5 indices n. We say that they

~( ) — 1 for the number of indices t1 + ty and

are “occupied” from j = 2 on. Among them &
~(3) = 0 for the others 2t; +t>. Then we should assign to the number ¢; 4 t5 of the remaining
k — 3t; — 2ty spins 07&) with “free” indices the value 0( ) = —1 to make Zk_l 07(13) = 0.
We could also attribute to a certain number t3 > 0 of pairs of the remaining k — 4¢; — 3t,
spins the values +1. Hence, after the third step, 4¢; 4+ 3t5 4+ 2t5 indices are “occupied” etc.
Finally, after (j — 1)th step, jt1 + (j — 1)t2 +... + 2t,_; indices are “occupied”, & (7) =1 for

5U) — _1 for the same

t1 +---+1t;_1 among these indices, and at the jth step we must put o,
number ¢y +t2 + ... +t;_1 of “free” indices to ensure that Z - 6&7) = 0. But, if t; > 1 or

t; = 1 but ¢; > 0 for some 2 <14 < k — 1, then, for some 7 < k — 1, we have
k—jtl—(j—l)tg—---—2tj_1<t1+t2+---+tj_1.

(In fact, for j = k—1, if, £; > 1, then obviously k — (k—1)t; < t1, and if £; = 1 but ¢; > 0 we

have k — (k—1) —2 < 1). This means that at the jth step there are not enough “free” indices

among the remaining k — jt; — (j —1)t2 —...—2t;_; ones such that we could assign 9 =1

to ensure Z -1 &,(1]) = 0. Hence, the only p0381b1hty isti=1land tyg =t3=---=t_; =0.

So, at the first step 2 indices get “occupied” and at each step one more index is “occupied”.

Thus there exists a sequence of k different indices ni,ma,... ,nx € {1,... .k} such that
aﬁfi) =1, (ZZ)H = —1, o) =0 for n # n;,niy1, 1 = 1,... ,k — 1. Solving the system (4.1),
we see that )\,(%.) = )\7(%,)“ == Ay-1 = 1, AD =0 for n # nj,...,n;y1 — 1. Hence,

the configuration & is a permutation of the configuration o' such that &, = i, iff aki = 1,
i=1,...,k.

Let us now turn to the case [ > 1. We use induction. Consider k'~! possible columns. We
denote linear combinations of them by Ag), a=1,...,k"" 1. Then for any i = 1,... ,k — 1,
the following system should have a solution

)
1«
D X0 A =)
AD AP 4 A = 50

(4.4)

A(z) - )\](22 + Al(cill = 51(:11@
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It follows that

S e

A Loon() @) 5(%’21 5(i21>
2 Ba S (4.5)

Ml tend =52, L -6
Given o( ) ag)a, . 5,(:) La —&,(:L, this system (4.5) of k—1 equations has a unique solution,
which does not depend on @ = 1,... ,k'~!. Then 6%1) ~§ L, ... ,6,(21@ — ol(g) should not
depend on « neither. We denote by 6(1) (zi ~J(z_21 o

Let us consider two cases. In the first case we assume that, for some 1 = 1,... bk — 1

and for some 7 = 1,... k — 1, 6@ # 0. Then it may take values +1,+2. Knowing each

of these values, we can reconstruct in a unique way o( - a< D and NJ( 721 o = ~]( le, which
do not depend on a. (If 5(1) = 1, then a(z) =1 and 0(21 =0, if 5(1) —1, then oj(l) =0
and a]( 4)_1 = —1 etc.). Then we can reconstruct the values ag ,l = ~j(-l + Zin:lt 5% for

t=1,...,5—1, a(z) = ~() Zt ! (5() for t = j+1,...,k, which consequently do not
depend on a. Since the sum of all &’ left hand sides of equations (4.4) equals zero, it follows
that 3 Sk & = 0. But, since o() = O'J(%), it follows that 3% 5 = o, Thus,

Jlaoc j=19;

A((; _kZJ 1 ]a:kzj 1~j(z)—0f0ralla

() 5@

The sequence 7y ) being not constant and Z = 0, it follows that for some

§=19;
J1,J2, O () =1 and UJ(.2) = —1. Using (4.2) and (4.3), we see that U(H'l) =0 and J(H'l) 1.
Therefore, for some j=1,... k-1 5(-”1) # 0, so that we may apply the previous reasoning
~(i+1)

to the configuration 6U*t1. We get that the values &' do not depend on « and that

j (6%
AU — 0, for all a. Applying the analogues of (4.2) and (4.3) backwards, namely
5’511) =—-1= &Slj_l) = 07 &'Szj_2) = 07 T 7&7<Ll) = 07 (46)
i) =1=60"Y =-1,6V"2 =0,... .60V =0, (4.7)

we find that 6(i_1) —1 and O'(Z b= . Thus, forsome j =1,... ,k—1, 6(1 b # 0 and so we

(

may apply the previous reasoning to the configuration 6(*~1). Hence, g, ) does not depend

on « and Ag b

= 0 for all a. Continuing this reasoning subsequently for 50+2) .. &k
and backwards for 50=2) ... 51 we derive that none of the values 63(-2 depends on « and
that A =0 for all @ and all s = 1,... , k. But the system AY) =0foralls=1,... ,k—1
and @ = 1,...,k'"! has only the trivial solution. Hence the system (4.4) becomes the
system (4.1). Invoking the reasoning for [ = 1, we derive that ¢ is a permutation of the last

configuration o'.
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Let us now turn to the second case, that is assume that for all 7, j 65-“ = 0. Then the

unique solution of (4.5) is A = --- = A’ = 0. Then 6\, = 6{'), = --- = 5{"), = 50 for
ala=1,... k"t andalli=1,... ,k— 1. The system (4.4) is reduced to a smaller system
AD =50 corresponding to the matrix C(ol,... ,0!™!) with all k¥'~! different columns. The

statement of the lemma holds for it by induction. Thus in this case ¢ is a permutation of

one of ot,... 07 &

Proof of Lemma 3.3. Let us remove from the matrix C'(co!,... ,o!) linearly dependent columns
and leave only r columns of the basis. They correspond to a certain subset of r configurations
o?B) 5 3e A, c{l,...,1} x{1,... ,k—1}, |A.| = r. We denote by C"(c!,...,0') the
N x r matrix composed by them. Then the probability in the right-hand side of (3.12) is
not greater than the probability of the same events for j, 3 € A, only. Let f;l"“’gl({tgyj}),
4,3 € A,, be the characteristic function of the vector (2(N/k)var X)~Y/2{Y?(07)}; sca,.

Then
B

B (5 .
P(Vﬁ:l,,k—l,v‘jzl”l |Y (U )| < i . )
2N Rvar X S(k, N) 7

itg ;P S(k,N)F=T _ _itg ;cPS(k,N)F=T
€ 7 e J
< — ({t | | ditg. ;.
[ D D]'r ]aBEA'r

(4.8)
To bound the integrand in (4.8) we use that

=1 =1
eitﬁ,jcfS(k,N) =T e—ztg,jcfS(k,N) k=1

. =L _
T ‘ < min (2cfS(k, N)=T,2(ts.,) 1). (4.9)
Next, let us choose in the matrix C" (o1, ... ,o!) any r linearly independent rows and construct
of them a r x r matrix C"*". Then

N .
Uﬂ”ﬂmm=ﬂmm%2&%memh”wm)

= H ‘Eexp <\/ Ni)varX ert_}s)

< H min (1 2v/2(N/E)var X ({C"™*"t},)~ )

(4.10)

where £ = {t3_;}; sca,. Hence, the absolute value of the integral (4.8) is bounded by the sum

of two terms

SWH(%MM%) / [ min (1, 2/ Rvas X(C7" 1) )t

_1
1< S (k,N)F=1
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comr ) T @)™ T min (12920 Rvar XU ) dts.

1> s

(4.11)
The change of variables 7 = C"*"#in the first term shows that the integral over ||£]| < S(k, N) =
is at most O(N"/2(InS(k, N)¥1)"), where InS(k, N)=T = O(N) as N — oo. Thus
the first term of (4.11) is bounded by Ki(CT*",k,[)N37/2S(k, N)¥7T with some constant
K{(C™"k,1) > 0 independent of N. Using the change of variables 77 = S(k,N)%fin
the second term of (4.11), one finds that the integral over ||#]| > S(k:,N)lel is at most
O(S(k,N)¥T). Thus (4.11) is not greater than Ky(C™*" k,[)N3/28(k, N)¥T with some
positive constant Ko(C"*", k,[) independent of N.

To conclude the proof, let us recall the fact that there is a finite, i.e. N-independent,
number of possibilities to construct the matrix C™*" starting from C(c?,... ,o') since each
of its elements may take only three values £1,0. Thus there exists less than 37" different
constants Ko(C™ ", k,l) corresponding to different matrices C"*". It remains to take the

maximal one over them to get (3.12). {

Proof of Lemma 8.4. Throughout the proof we denote by DyUC(o) the matrix Dy completed

by the rows o), ... ok=1),

Let us denote by c!,...,c? the system of columns of the matrix Dy. Then we can
find the indices i; < iy < ... < ip—y—1 < k — 1 such that o) is a linear combination of
eyt oW gl2) gl foralls =1,... ,k—t—1. Then there exist linear coefficients
ay(s),...,a;,—1(s) such that

ar(s)c 4 Fag ()l +agpr(s)oM 4 da;, _1(s)oe™ =6l) s =1,... k—t—1. (4.12)

(If r < q these coefficients may be not unique, but this is not relevant for the proof.) Since
t > 1, without loss of generality (otherwise just make a permutation of spin values {1,... ,k}

in o) we may assume that i; > 1.

Initially each of k — ¢t — 1 systems (4.12) consists of N linear equations. But the number
of different rows of Dy being a fixed number R, each of these k& — ¢ — 1 systems (4.12) has
only a finite number of different equations. Thus, (4.12) are equivalent to k —t — 1 finite (i.e.

N-independent) systems of different equations of the form:
a1(s)dy + -+ ag(s)dy = ag41(8)01 + -+ +a;,—1(s)d;,—1 + i, (4.13)

where d = (di,... ,dg) is one of the R distinct rows of the matrix Dy and §; = 0,1, —1.
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Note that there exist at most R x 3° of such equations (4.13) for any s =1,... ;k—¢t— 1.
Consequently, for the given matrix Dy, there exists a finite (i.e. N-independent) number of
such sets of kK — ¢ — 1 finite systems of distinct equations (4.13). We will denote by A the set
of such sets of k —t — 1 finite systems of distinct equations (4.13) which do arise from some
choice of a spin configuration o with rank [Dy U C(0)] = r + ¢, after the reduction of (4.12)
(i.e. after eliminating the same equations among all N in each of k — ¢ — 1 systems (4.12)).
For 0 € ¥, we denote by a(o) € A the set of k —t — 1 finite systems of distinct equations
(4.13) obtained from (4.12) in this way.

We will prove that for any given element o € A we have the estimate:

(N(t+1)/k)!

#{o :rank[DyUC(0)] =7 +t, alo)=a} <C ((N/E)h)i+L

(4.14)

where C is a constant that depends only on R,t,k. Since the cardinality of A is finite and

depends only on R,t, and k, this will prove the lemma.

Consider some o € A. Since by definition of A there exists o with the property rank[DyU
C(o9)] = r+t and a(op) = ag, then there exists a solution of all these £ —¢ — 1 systems of

equations «y. Let a;(s) be any such solution. For any row d = (di,... ,d;) of Dy, set
A(s,d) = a1(s)dr + az(s)da + - - - a,(s)d,,. (4.15)

Then to any row d of Dy there corresponds the vector of linear combinations A(d) =
(A(1,d),A(2,d),... ,A(k — 1 —1t,d)). Next, let us divide the set D of the R different rows
of the matrix Dy into m disjoint non-empty subsets D1, Do, ... , D, such that two rows d, d

are in the same subset, if and only if A(d) = A(d).
Lemma 4.1: The partition D; defined above satisfies the following properties:
(i) m>k—t

(ii) For any pair d € D;, de D;, with i # j, and for any o, such that rank[Dy UC(0)] =r+t
and o(c) = g, the rows d and d can not be continued by the same row O of the matriz C(o)

n Dy UC(U).

Proof. Let us first show that D can be divided into three non-empty subsets Dgy, D1, Da, such
that A(1,d) # —1,0 for all d € Dy, A(1,d) = —1 for d € Dy, A(1,d) = 0 for d € Ds. First
of all, since ag € A, then there exists at least one o such that rank[Dy U C(0g)] =r + ¢

and a(og) = ag. Let d°, ... ,d* ! denote k rows (not necessarily different) of Dy that
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are continued by the rows Oy, ... ,Of_1 of the matrix C(og) (recall the definition given in
the paragraph following (3.7)) respectively in Dy U C(0p). Now consider a row d** that is
continued by the row O;,. The corresponding equation (4.12) with s =1 then reads

A(l,d") = —1.

This shows that the set Dy # (). Similarly, for a row d’ continued by the row O; with j > iy,

the corresponding equation yields
A(l,d7) = 0.

Thus Dy # (0. Finally, consider the rows of the matrix Dy continued by Oy, ... ,0;, _1. The

corresponding i; equations (4.12) with s = 1 then read :

A(d07 1) = —Qg+1
A(dh,1) = agr1 — a2
A(d? 1) = agro — agy3 (4.16)

A(dil_l, 1) = Ggti, -1+ 1.

The sum of the right-hand sides of these equations equals 1. Thus the left-hand side of at

least one equation must be positive. Hence, there exists d/ with j € {1,... ,i; — 1} such that
A(d?,1) # —1,0.

Thus also Dy # (), and so all three sets defined above are non-empty. Moreover, Dy includes

all rows d that are continued by the rows O; with j > i; of C(oy).

Now, let us divide D3 into two non-empty subsets D5 1, Ds o according to the value taken
by A(2,d). We define D31 = {d € Dy : A(2,d) # 0}, and Dy = {d € Dy : A(2,d) = 0}.
Note that the row d’? is an element of Dy by the observation made above, while using (4.12)
with s = 2, we get, as before that A(2,d"?) = —1, and for all j > is, A(2,d’) = 0. Thus Da
and D; > are non-empty. In addition to that, for any row d continued by O; with j > iy we
have again by (4.12) with s =2 A(2,d’) = 0. Hence, Dy 1 and Ds 5 are non-empty, and Da o

contains all rows d continued by O; with j > is of C(0y).

Using (4.12) for s = 3 we can again split D3> into two non-empty subsets D351 with
A(d,3) # 0 and Dy with A(d,3) = 0. Furthermore, D552 contains all rows that are
continued by O; with j > i3 of C(0y), etc. The same procedure can be repeated up to the



26 Section 4

step s = k—1—1¢—1. In this way we have subdivided D5 into kK —1—¢ —1 disjoint non-empty
subsets. Together with Dy and D;, these constitute & — ¢ disjoint subsets D;. This proves

the assertion (i).

Let us now take any o such that rank [Dy U C(0)] =7+t and with a(0) = op. Assume
that d and d are continued by the same row O, of C(0) in Dy UC(0). Since d and d belong
to different subsets D;, for some v € {1,... , k —t — 1}, A(d,u) # A(cz,u). Then, writing
(4.12) with s = u along the row d continued by O; and along the row d continued by O; we
would get either the system

A(d,u) =0

A(d,u) =0
if j > iy, or

A(d,u) = -1

A(d,u) = —1

if j =iy, or

if j =4, — 1, or finally
A(d, u) — agtj(u) + ag+j+1(u)

=0

A(d,u) = agyj(u) + agyj1(u) =0,
if j < i,, — 1. But no one of these four systems has a solution if A(d, u) # A(J, u). This proves

(i). O

By (ii) of Lemma 4.1, for any o such that rank [DxyUC(0)] = r+t and a(o) = oy the set of
rows of the matrix Dy is divided into m > k —t non-empty disjoint subsets Dy, ... ,D,, and
the set of k rows of the matrix C'(o) is divided into m non-empty disjoint subsets Cy,...,Cp,
of cardinalities s1,... , s, > 1, respectively, such that the rows in C; continue the rows of D;
only. But s; rows of the matrix C'(0) must be present Ns;/k times. Thus, first of all, in the
matrix Dy, these r; rows must be present Ns;/k times as well, for all j =1,... ,m. Thus,

the number of configurations o with rank [Dy U C(0)] = r + ¢ such that a(o) = ay does not

exceed TT7Z, (“wit’) (Y03 27%) - (W8) = (N/R))7* TT}L, (Ns;/k)! which is bounded by

(N/E))E((N(k —m+1)/k))((N/k))™~! for any s1,... 8, > 1 with 51 + -+ + s,,, = k.
By (i) of Lemma 4.1 we have k —t < m < k, so that

((N(k = m + ) /R ((N/RY™" <N(k —m+ 1)/k) <N(k - m)/k) N (N/k)
(N/k)DF N/k N/k N/k
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< <N(t+ 1)/k) <Nt/k> (N/k) (N(E+1)/k)!

N/k N/k N/k) ~ ((N]R))ED

Hence, for any matrix Dy composed of R different columns

#{o :rank [DyUC(0)] =71 +1t, a(o) =ap}

(4.17)
%

Proof of Lemma 3.5 The statement (3.29) is an immediate consequence of (3.28) and (3.18),
(3.4) if 6 > 0 is small enough.

The proof of (3.27) and (3.28) mimics the standard proof of the Berry-Essen inequality.
Namely, we use the representation (3.8) of f3'" UZ({tZ}) as a product of N characteristic

functions where at most k' of them are different. Each of them by standard Taylor expansion

(,

2
_ Z (]I{tTﬁL:i} B l{a%=i+1})tﬁ,j>
0'1 (TL =
a7 {tsyh) =1——=

1,0 ,k—1
=1,...,1

varX

4(N/Ek)varX

3
Ty = Lopmisn) 0 )
. 1,...,Ic—1( {o},=i} {0',71—7,4—1}) B3
ji=1,...,1l

6((2N/k)var X)3/2

EX —EX)} =1-r, (4.18)

with |6,| < 1. Tt follows that |r,| < C1||f]|2N~" + Cy||t]|PN—3/2, for some Cy,Cy > 0, all
o',..., 0!, and all n. Then |r,| < 1/2 and |r,|? < Cs||#]|>N=3/2, for some C3 > 0 and all
¢ satisfying ||f]] < 0v/N, with § enough small. Thus, lnf]‘f,l,,’z'"’”l({tg,j}) = —rp + 0,72/2
(using the expansion In(1 + z) = z + 02%/2 for ||z|| < 1/2 with ||0] < 1) , with some |6, < 1
for all o,... 0!, all n, and all ¢ satisfying ||#]] < 0v/N. Tt follows that f]‘z,l"“’al({tﬁ,j}) =
exp(— 27]:,:1 Tn + Ziv:l 0,72 /2). Here — Zi:;l rn = —tBy(ot,... ,0")i/2 + Zgzlpn where
[pal < Callf°N-3/2. Then

K]l,... o ({tﬁ,j}) _ e—fBN(al,... ,al)i’/2622;1(pn-f-9~nT721/2)7 (4.19)

~ N a
where ||+ 10,72 /2| < (Co+C3/2) [P N=3/2. Hence |edanas ®nt0mi/2 1) < 0y AP N-1/2,
for all # satisfying ||#]] < eN'/® with ¢ > 0 small enough. Moreover, | Y. (p,, + 0,72 /2)| <
Cs||#]|I>N~1/2, which implies (3.28). This concludes the proof of Lemma 3.5 <)
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5. The unrestricted partioning problem.

In the previous section we considered the state space of spin configurations where the
number of spins taking each of k values is exactly N/k. Here we want to discuss what happens
if all partitions are permitted. Naturally, we divide again the space of all configurations
{1,...,k} into equivalence classes obtained by permutations of spins. Thus our state space
Sy has NV (k!)~! elements. Let us define the random variables Y# (o) as in the previous

section, see (1.4). Then we may state the following conjecture analogous to Theorem 1.1.

Conjecture 5.1: Let
V(o) = KN/ R=UN=Y2p1 2 () -/ =112 31Y B (5)|, B=1,...,k—1.  (5.1)

: k—1
Then the point process on R

Z 5(‘71(0),... JZVE=1(g))
UGiN

converges to the Poisson point process on R’fl with the intensity measure which is the

Lebesgue measure.

Using Theorem 2.1, the assertion of the conjecture would be an immediate consequence of

the following conjecture, that is the analogue of Proposition 3.1.

Conjecture 5.2: Denote by Zal,...,olezN(') the sum over all possible ordered sequences of
different elements of Xn. Then for any | = 1,2,..., any constants cf- >0,5=1,...,1,
B=1,... ,k—1 we have:

Y#(09)] ¢ )

< J
(N E)var X (k) 1/G=DN/(E=1)

3 P(Vﬂzl,... k—1Yj=1,....1
ol,...,0leXn
ZCJB-\/varX
- I ===
e
= k1

B=1,...,

(5.2)

Remark: One can notice the difference between the right-hand sides of (3.2) and (5.2).
In spite of this difference, the proof of this statement proceeds along the same lines as
that of Proposition 3.1. The only point that we were not able to complete is that the
sum analogous to JZ in (3.10) (recall that it is a sum over sets ol,... 0! such that the

system {Y# (o7 )}szl,...,l, is linearly dependent and, moreover, for any basis of this system
=1,...k—1
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there exists a number j € {1,...,l} such that for some non-empty subset of coordinates
B € {1,...,k — 1} the random variables Y?(07) are included in this basis and for some
non-empty subset of coordinates 3 € {1,... ,k — 1} they are not included there) converges

to 0 as N — oo. Therefore the whole statement remains a conjecture.

Remark: The case k = 2. In the case k = 2 the sum J% is absent. Hence, in this case
we can provide an entire proof of (5.2) and therefore prove our conjecture. The result in the
case k = 2 is not new: it has been already established by Ch. Borgs, J. Chayes and B. Pittel
in [BCP], Theorem 2.8. Our Theorem 2.1 gives an alternative proof for it via (5.2).

Finally we sketch the arguments that should lead to (5.2) and explain the differences with
(3.2). To start with, similarly to (3.9), we split

> P(-) + > P(.). (5.3)

al,...,o'leiN al,...,o'lef]N
rankc(ol,... oly=(k—1)1 rankc(ol,... ol)y<(k—1)1

We are able to prove that the first part of (5.3) converges to the left-hand side of (5.2). For

that purpose, we introduce again “the main part” of the state space with « € (0,1/2):

ﬁﬁN:{ol,...,UZEZN:Vlgjgl,Vl§i<r§l,1§ﬂ,7,n§k,ﬂ7§7

N
> (Mog=p) = oy =) Loy | < NV} (54)

n=1

N
‘ S, - N/k‘ < N°*VN,
n=1

where
IR NIl = BN (1 — exp(~hN?*)) (K1)~ (5.5)
and split the first term of (5.3) into two terms
Yoo P+ > P(-). (5.6)

0-1""’O—ZGR?,N Ul,...,a-leﬁ’,?’N

ranke(ol,... ,ol)y=(k—1)1
The second term of (5.6) converges to zero exponentially fast: the number of configurations
in it is at most O(exp(—hN2*)ENY) by (5.5), while the probability P(-) = O(N'k~N!) by the

analogue of Lemma 3.3.

To treat the first term of (5.3), let us stress that an important difference compared to
the previous sections is the fact that the variables Y (o) are now not necessarily centered.

Namely,

N
EY?(0) = (EX) Y (N0, =) — Nio,=g+1}) = EX [#{n:0n = B} —#{n: 0, = B+1}]
" (5.7)
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as it may happen that #{n : o0, =} # #{n:0, =5+ 1}.

Taking this observation into account and proceeding similarly to the analysis of (3.21), we

can show that, uniformly for all o',... 0! € 7@;" N
—NI l B vas _ vas
B() = E=VE(KY Hj7ﬁ(20j) ( EY; B! EY; ) oMY (5.8)
(2m) (k=1)1/2 2(N/k)varX 2 /2(N/k)varX

where the matrix B consists of [ diagonal blocks (k —1) x (k — 1), each block having 1 on the
diagonal, —1/2 on the line under the diagonal and 0 everywhere else. Thus the first term of
(5.6) by (5.8) and (5.5) equals

ENU BT (2 EY/  p-'  EY/
2 ) b 2) e (- ) +o(1)
s (2m) (k=1)/ 2(N/k)varX 2 /2(N/k)varX
(o LN
(2 EY/ B-1 EY”
=-l1&ég4Q—Ealm(ﬂeXP( - )-%OO)
(2m)(k—1)L/2 e 2(N/k)varX 2 2(N/k)varX
(5.9)

By the Central Limit Theorem the vector Z 1Ly gy =Ly _py1y)/V/2N/k on 2% con-
verges to a Gaussian vector Zjﬂ with zero mean and covariance matrix B as N — oo. Hence,
(5.9) converges to

[1,5(2¢))
(27)(k=1)1/2

EX 2[3 B—l Zﬁ EX ) _ H 26?\/ varX
VvarX 7 2 7 \var X i V2r/(EX)? + var X

which is the right-hand side of (5.2). This finishes the analysis of the first term of (5.3).

Ez exp ( - (5.10)

To treat the second term, we split it into two parts Ji and J% analogously to (3.10).
The analysis of J} is exactly the same as in the proof of Proposition 3.1 and relies on

Lemmatas 3.3 and 3.2.

However, the problem with the sum J% persists. First of all, this sum contains much
more terms than in the case of the previous section as it consists essentially of configurations
ol,..., 0! where some of the values of spins 3 among {1,... ,k} figure out more often than
others, i.e. #{n:0, =0} > #{n:0, =+ 1}. Lemma 3.4 is not valid anymore. Second,
for all such configurations o, the random variables Y # (o) are not centered and consequently
the estimate of the probability P(-) suggested by Lemma 3.3 is too rough. We did not manage

to complete the details of this analysis.
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