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Abstract

In this note, we consider a general discrete time financial market with pro-

portional transaction costs as in [4], [5], [6] and [10]. We provide a dual for-

mulation for the set of initial endowments which allow to super-hedge some

American claim. This extends the results of [1] which was obtained in a model

with constant transaction costs and risky assets which evolve on a finite dimen-

sional tree. We also provide fairly general conditions under which the expected

formulation in terms of stopping times does not work.
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MSC Classification (2000): 91B28, 60G40.

1 Introduction and main result

Set T = {0, . . . , T} for some T ∈ N \ {0} and let (Ω,F ,P) be a probability space

endowed with a filtration F = (Ft)t∈T. We assume that FT = F and that F0 is

trivial. Given an integer d ≥ 1, we denote by K the set of C-valued processes K

such that Rd+ \ {0} ⊂ int(Kt) P− a.s. for all t ∈ T.1

1Here, we follow [6] and say that a sequence of set-valued mappings (Kt)t∈T is a C-valued process

if there is a countable sequence of Rd-valued F-adapted processes Xn = (Xn
t )t∈T such that, for

every t ∈ T, P − a.s. only a finite but non-zero number of Xn
t is different from zero and Kt =

cone{Xn
t , n ∈ N}. This means that Kt is the polyhedral cone generated by the P− a.s. finite set

{Xn
t , n ∈ N and Xn

t 6= 0}.
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Following the modelization of [5], for a given K ∈ K and x ∈ Rd, we define the

process V x,ξ by

V x,ξ
t := x+

t∑

s=0

ξs , t ∈ T ,

where ξ belongs to

A(K) = { ξ ∈ L0(Rd;F) s.t. ξt ∈ −Kt P− a.s. for all t ∈ T} ,

and, for a random set E ⊂ Rd P− a.s. and G ⊂ F , L0(E;F) (resp. L0(E;G)) is the

collection of F-adapted processes (resp. G-measurable variables) with values in E

P− a.s.

The financial interpretation is the following: x is the initial endowment in units of

the financial assets, ξt is the amount of units of assets which is exchanged at t and

−Kt is the set of affordable exchanges. We refer to [5] and [6] for a more detailed

description.

Therefore,

A(x;K) :=
{
V x,ξ, ξ ∈ A(K)

}

stands for the set of all portfolio processes with initial endowment x, and

At(x;K) := {Vt, V ∈ A(x;K)}

corresponds to the collection of their values at time t ∈ T.

It is known from the work of [4], [5] [6] and [10], see also the references therein,

that, under mild assumptions, the set AT (x;K) can be written as
{
g ∈ L0(Rd;F) : E [ZT · g − Z0 · x] ≤ 0, for all Z ∈ Z(K), (Z · g)− ∈ L1(R;P)

}

where Z(K) is the set of (F,P)-martingales Z such that

Zt ∈ K∗t P− a.s. for all t ∈ T ,

and K∗t (ω) denotes the positive polar of Kt(ω), i.e.

K∗t (ω) :=
{
y ∈ Rd : x · y ≥ 0 , for all x ∈ Kt(ω)

}
.

The operator ”·” denotes the natural scalar product on Rd and L1(E;P) (resp.

L1(E;F,P)) is the subset of P-integrable elements of L0(E;F) (resp. L0(E;F)).

In this paper, we are interested in

As(x;K) :=
{
ϑ ∈ L0(Rd;F) : V − ϑ ∈ −A(K) for some V ∈ A(x;K)

}
,
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the set of processes which are dominated by a portfolio in the sense of K: Vt−ϑt ∈
Kt, for all t ∈ T, P− a.s. More precisely, our aim is to provide a dual formulation

for

Γ(ϑ;K) :=
{
x ∈ Rd : ϑ ∈ As(x;K)

}
.

In analogy with the standard result for markets without transaction cost, one could

expect that Γ(ϑ;K) can admit the dual formulation

Θ(ϑ;K) =

{
x ∈ Rd : sup

τ∈T (T)
E [Zτ · ϑτ − Z0 · x] ≤ 0 , for all Z ∈ Z(K)

}
(1.1)

where T (T) is the set of all F-stopping times with values in T. However, this char-

acterization does not hold true in general, as shown in the following section. This

phenomenon was already pointed out in [1] in a model consisting of one bank ac-

count and one risky asset evolving on a finite dimensional tree. In [1], the authors

show that a correct dual formulation can be obtained if we replace stopping times

by randomized stopping times.

In our general framework, this amounts to introduce a new set of dual variables.

For P̃ ∼ P, the associated set of dual variables, D(K, P̃), is defined as the collection

of process Z ∈ L1(Rd;F, P̃) such that

Zt ∈ K∗t and Z̄t := EP̃
[

T∑

s=t

Zs | Ft
]
∈ K∗t P− a.s. for all t ∈ T .

In the following, we shall say that a subset B of L0(Rd;F) is closed in measure if it

is closed in probability when identified as a subset of L0(Rd×(T+1);F), i.e.

vn ∈ B and ∀ε > 0 lim
n→∞

P

[∑

t∈T
‖vnt − vt‖ > ε

]
= 0 =⇒ v ∈ B .

We then have the following characterization of As(K) := As(0;K).

Theorem 1.1 Assume that As(K) is closed in measure and that the no-arbitrage

condition

NA(K) : AT (0;K) ∩ L0(Rd+;F) = {0}

holds. Then, the following assertions are equivalent :

(i) ϑ ∈ As(K)
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(ii) for all P̃ ∼ P and Z ∈ D(K, P̃) such that (ϑ · Z)− ∈ L1(R;F, P̃) we have

EP̃
[

T∑

t=0

ϑt · Zt
]
≤ 0 .

(iii) for some P̃ ∼ P we have

EP̃
[

T∑

t=0

ϑt · Zt
]
≤ 0

for all Z ∈ D(K, P̃) such that (ϑ · Z)− ∈ L1(R;F, P̃).

Since As(0;K) = As(x;K) − x, this immediately provides a dual formulation for

Γ(ϑ;K).

Corollary 1.1 Let the conditions of Theorem 1.1 hold. Then, for all ϑ ∈ L0(Rd;F),

Γ(ϑ;K) =

{
x ∈ Rd : E

[
T∑

t=0

ϑt · Zt
]
≤ Z̄0 · x ∀ Z ∈ D(K;P), (Z · ϑ)− ∈ L1(R;F,P)

}
.

Remark 1.1 The integrability conditions on (Z ·ϑ)− are trivially satisfied if there

is some Rd-valued constant c such that ϑt + c ∈ Kt P − a.s. for all t ∈ T, i.e.

the liquidation value of ϑ is uniformly bounded from below. Indeed, in that case

Zt · (ϑt + c) ≥ 0 P− a.s. for all Zt ∈ L0(K∗t ;F).

Following the approach of [5] and [6] the closure property of As(0;K) can be ob-

tained under the general assumption

ξ ∈ A(K) and
∑

t∈T
ξt = 0 P− a.s. =⇒ ξt ∈ K0

t P− a.s. for all t ∈ T (1.2)

where K0 = (K0
t )t∈T is defined by K0

t = Kt ∩ (−Kt) for t ∈ T.

Proposition 1.1 Assume that (1.2) holds, then As(K) is closed in measure.

Remark 1.2 1. In the case of efficient frictions, i.e. K0
t = {0}, ∀t ∈ T, it is shown

in [5] that the assumption (1.2) is a consequence of the strict no-arbitrage property

NAs(K) : At(0;K) ∩ L0(Kt;Ft) ⊂ L0(K0
t ;Ft) for all t ∈ T .

2. In the case where K0
t may not be trivial, (1.2) holds under the robust no-arbitrage

condition introduced by [10] and further studied by [6],

NAr(K) : NA(K̃) holds for some K̃ ∈ K which dominates K,

where K̃ dominates K if Kt \K0
t ⊂ ri(K̃t) P− a.s. for all t ∈ T .

3. It is shown in [7] that the condition K0
t = {0} in 1. can be replaced by the

weaker one: L0(K0
t ;Ft−1) ⊂ L0(K0

t−1;Ft−1) for all 1 ≤ t ≤ T . See also [8].
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2 Counter examples

In this section, we first show that the duality relation

D(K) : Γ(ϑ;K) = Θ(ϑ;K) for all ϑ ∈ L0(Rd;F)

does not hold for a large class of C-valued process K ∈ K. For x ∈ Rd, let us define

ct(x) := min {c ∈ R : c11 − x ∈ Kt} . (2.1)

In financial terms, ct(x) is the minimal amount, in terms of the first asset, necessary

to dominate x in the sense of Kt at time t. If the first asset is interpreted as a

numeraire, it corresponds to the constitution value of x in terms of this numeraire.

Here, 11 stands for the Rd vector (1, 0, . . . , 0).

Proposition 2.1 If there exists x ∈ Rd such that

(i) y − c0(x)11 ∈ K0
0 ⇒ y − x ∈ K0

0 or P [y − x ∈ K1] < 1

(ii) x− c0(x)11 /∈ K0.

Then, there exists ϑ such that Θ(ϑ;K) 6= Γ(ϑ;K), i.e. D(K) is not satisfied.

The proof is postponed to the end of the section.

Remark 2.1 Condition (ii) means that there are directions with efficient frictions

at time 0. Condition (i) has the following interpretation. If a portfolio y is equivalent

to the constitution value of x then it dominates x in the sense of K0. However, since

x and y have the same constitution value, c0(x) = c0(y), it can not be too large. In

particular, if it is not equivalent to x, then it can not dominate x component by

component. In that case, we assume that there is randomness enough so that the

probability that y still dominates x at time 1 is less than 1.

Remark 2.2 1. If K0
0 = {0} and x 6= c0(x)11 then (ii) holds since by definition we

already have c0(x)11 − x ∈ K0. If we also assume that P [c1(x) > c0(x)] > 0 then

(i) is satisfied too.

Example 2.1 1. Efficient frictions: consider the following cones

Kt =
{

(x1, x2) ∈ R2 : x1 + (1 + λt)x
2 ≥ 0 , x1 + (1− µt)x2 ≥ 0

}
,

where t ∈ T := {0, 1}, λ0 < λ1 and µ0, µ1 ∈ (0, 1). Observe that K0
0 = {0}. For

x = (0, 1), c0(x) = 1 + λ0 < c1(x) = 1 + λ1. Then, the conditions of the remark

above hold so that D(K) is not true.
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2. Partial frictions: consider the preceding case where we add an asset which has

no transaction cost with the first one, i.e.

Kt =
{

(x1, x2, x3) ∈ R3 : x1 + (1 + λt)x
2 + x3 ≥ 0 , x1 + (1− µt)x2 + x3 ≥ 0

}
.

We put x = (0, 1, 0) so that assumption (ii) holds. We now check (i). It is clear

that if y − c0(x)11 ∈ K0
0 then y − x /∈ K0

0 . Observe that y = (y1, 0, y3) with

y1 + y3 = c0(x), so y1 + (−1)(1 + λ1) + y3 < 0 which implies that y − x /∈ K1.

On the contrary, we can also show that D(K) does not only hold in the case where

Kt = K0
t + Rd+ P− a.s., i.e. there is no transaction costs.

Proposition 2.2 There exists (Ω,F ,P) and K ∈ R such that NA(K) holds, K0
t =

{0} for all t, and such that for all ϑ ∈ L0(Rd;F) we have Θ(ϑ;K) = Γ(ϑ;K).

Proof. We take Ω trivial, i.e. |Ω| = 1 with F0 = FT = {Ω, ∅}, and put K = K0 con-

stant. Then, x ∈ Θ(ϑ;K) reads sup
Zt∈K∗t

Zt ·(ϑt−x) ≤ 0, i.e. x−ϑ ∈ Kt for all t ∈ T. 2

Proof of Proposition 2.1: Let x be such that (i)−(ii) are satisfied. We consider

the asset ϑ defined by ϑt = c0(x)111It=0 + x1It>0. From the martingale property of

Z,

sup
τ∈T (T)

E [Zτ · ϑτ − Z0 · (c0(x)11)] = sup
τ∈T (T)

E [Zτ · (x− c0(x)11)1Iτ>0]

= max {0 ; Z0 · (x− c0(x)11)}

which is non positive by (2.1). Hence, c0(x)11 ∈ Θ(ϑ;K). If D(K) holds, then there

exists a portfolio V ∈ A(c0(x)11;K) such that V0 − c0(x)11 ∈ K0 and therefore

V0 − c0(x)11 ∈ K0
0 . By (i) there is two cases. If V0 − x ∈ K0

0 , then x − c0(x)11 ∈
K0

0 ⊂ K0 which is a contradiction of (ii). If P [V0 − x ∈ K1] < 1, we can not have

V1 − x = V0 + ξ1 − x ∈ K1 P− a.s. with ξ1 ∈ −K1 P− a.s. 2

3 Proofs

In this section, we first provide the proof of Theorem 1.1. It follows from standard

arguments based on the Hahn-Banach separation theorem. For ease of notations, we

simply write A(K) and As(K) in place of A(0;K) and As(0;K). We denote by L0

the set of F-adapted processes with values in Rd and by L1(P̃) (resp. L∞) the subset

of these elements which are P̃-integrable, P̃ ∼ P, (resp. bounded). Observe that L0

(resp. L∞) can be identified as a subset of L0(Rd×(T+1);F) (resp. L∞(Rd×(T+1);F),

the set of bounded elements of L0(Rd×(T+1);F)).
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Proposition 3.1 Let the conditions of Theorem 1.1 hold. Then, for all P̃ ∼ P,

there is some Z ∈ D(K; P̃) ∩ L∞ such that

sup
ϑ∈As(K)∩L1(P̃)

EP̃
[∑

t∈T
Zt · ϑt

]
≤ 0 .

Proof. Since As(K) ∩ L1(P̃) is closed in L1(Rd×(T+1);F , P̃) (when identified with

a subset of L1(Rd×(T+1);F , P̃)) and convex, it follows from the Hahn-Banach sep-

aration theorem, NA(K) and the fact that As(K) ∩ L1(P̃) is a cone, that there is

some η = (ηt)t∈T ∈ L∞(Rd×(T+1);F) such that

sup
ϑ∈As(K)∩L1(P̃)

EP̃
[∑

t∈T
ηt · ϑt

]
≤ 0 . (3.1)

By possibly replacing ηt by E [ηt | Ft], we can assume that η is F-adapted. Fix some

arbitrary ξ ∈ A(K) ∩ L∞, so that V 0,ξ ∈ As(K) ∩ L1(P̃). Since

∑

t∈T
ηt · V 0,ξ

t =
∑

t∈T
ξt ·
(

T∑

s=t

ηs

)

we deduce from the above inequality that

sup
ξ∈A(K)∩L∞

EP̃
[∑

t∈T
η̄t · ξt

]
≤ 0 ,

where we defined

η̄t := EP̃
[

T∑

s=t

ηs | Ft
]

t ∈ T .

This shows that η̄t ∈ K∗t P − a.s. for all t ∈ T. For an arbitrary bounded element

ξt in L0(Kt;Ft), the process V 0,ξ
s = −1Is=tξt, s ∈ T, belongs to As(K). In view of

(3.1), this implies that ηt ∈ K∗t P− a.s. 2

Proposition 3.2 Let the conditions of Theorem 1.1 hold. Fix P̃ ∼ P and ϑ ∈
L1(P̃). If

EP̃
[

T∑

t=0

ϑt · Zt
]
≤ 0

for all Z ∈ D(K, P̃) such that ϑ · Z ∈ L1(P̃), then ϑ ∈ As(K).

7



Proof. Since As(K) ∩ L1(P̃) is closed and convex, if ϑ /∈ As(K), we can find some

η = (ηt)t∈T ∈ L∞(Rd×(T+1);F) such that

sup
ϑ̃∈As(K)∩L1(P̃)

EP̃
[

T∑

t=0

ϑ̃t · ηt
]

< EP̃
[

T∑

t=0

ϑt · ηt
]
.

The same arguments as in the proof of Proposition 3.1 then shows that we can

choose η ∈ D(K, P̃) which leads to a contradiction. 2

Proof of Theorem 1.1 1. In view Proposition 3.2, the implication (ii) ⇒ (i) is

obtained by considering P̃ with density with respect to P defined by H/E [H] with

H := exp(−∑t∈T ‖ϑt‖).
2. It is clear that (ii) implies (iii) while the reverse implication follows from the fact

that Z ∈ D(K,P) if and only if H̃Z ∈ D(K, P̃) where H̃t := E
[
dP̃/dP | Ft

]
.

3. The last implication (i) ⇒ (ii) is trivial. Indeed, recall that, for ξ ∈ A(K),

E

[∑

t∈T
Zt · V 0,ξ

t

]
= E

[∑

t∈T
Z̄t · ξt

]
.

Since Z̄t ∈ L0(K∗t ;Ft) and ξt ∈ L0(−Kt;Ft), the last term is non-positive. More-

over, V 0,ξ
t − ϑt ∈ L0(Kt;Ft) implies Zt · V 0,ξ

t ≥ Zt · ϑt. 2

We now provide the proof of Proposition 1.1. The following Lemma can be found

in [3].

Lemma 3.1 Set G ⊂ F and E ⊂ Rd. Let (ηn)n≥1 be a sequence in L0(E;G). Set

Ω̃ := {lim infn→∞ ‖ηn‖ < ∞}. Then, there is an increasing sequence of random

variables (τ(n))n≥1 in L0(N;G) such that τ(n)→∞ P− a.s. and , for each ω ∈ Ω̃,

ητ(n)(ω) converges to some η∗(ω) with η∗ ∈ L0(E;G).

Proof of Lemma 1.1. We use an inductive argument. For t ∈ T, we denote by

Σt the set of processes ϑ ∈ L0 such that

∃ ξ ∈ A(K) s.t.

τ∑

s=t

ξs − ϑτ ∈ Kτ P− a.s. for all t ≤ τ ≤ T .

Clearly, ΣT is closed in measure. Assume that Σt+1 is closed and let ϑn be a

sequence in Σt such that ϑns → ϑs P − a.s. for t ≤ s ≤ T . Let ξn ∈ A(K) be such

that

τ∑

s=t

ξns − ϑnτ ∈ Kτ P− a.s. for all t ≤ τ ≤ T .
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Set Ω̃ := {lim infn→∞ ‖ξnt ‖ <∞}. Since Ω̃ ∈ Ft, we can work separately on Ω̃ and

Ω̃c.

1. If P
[
Ω̃
]

= 1, after possibly passing to a random sequence (see Lemma 3.1), we

can assume that ξnt converges P− a.s. to some ξt ∈ L0(−Kt;Ft). Since

τ∑

s=t+1

ξns − (ϑnτ − ξnt ) ∈ Kτ P− a.s. for all t+ 1 ≤ τ ≤ T ,

and Σt+1 is closed, we can find some ξ̃ ∈ A(K) such that

τ∑

s=t+1

ξ̃s − (ϑτ − ξt) ∈ Kτ P− a.s. for all t+ 1 ≤ τ ≤ T .

This shows that ϑ ∈ Σt.

2. If P
[
Ω̃
]
< 1, then we can assume without loss of generality that P

[
Ω̃
]

= 0.

Following line by line the proof of Lemma 2 in [6] and using theKs’s closure property,

we can find some ξ̂ ∈ A(K) with ‖ξ̂t‖ = 1 such that

κτ :=
τ∑

s=t

ξ̂s ∈ Kτ P− a.s. for all t ≤ τ ≤ T .

By (1.2), we must have ξ̂τ − κτ ∈ K0
τ P − a.s. ∀t ≤ τ ≤ T . Since ξ̂τ and −κτ

∈ −Kτ P− a.s., we deduce that

ξ̂τ ∈ K0
τ and κτ =

τ∑

s=t

ξ̂s ∈ K0
τ P− a.s. for all t ≤ τ ≤ T . (3.2)

Since ‖ξ̂t‖ = 1, there is a partition of Ω̃ into disjoint subsets Γi ∈ Ft such that

Γi ⊂ {(ξ̂t)i 6= 0} for i = 1, . . . , d. We then define

ξ̌ns =
d∑

i=1

(
ξns − βn,it ξ̂s

)
1IΓi s ∈ T

with βn,it = (ξnt )i/(ξ̂t)
i on Γi, i = 1, . . . , d. In view of (3.2) and definition of ξn, we

have

τ∑

s=t

ξ̌ns − ϑnτ ∈ Kτ P− a.s. for all t ≤ τ ≤ T ,

since Kτ −K0
τ ⊂ Kτ , τ ∈ T. We can then proceed as in [6] and obtain the required

result by repeating the above argument with (ξ̌n)n≥1 instead of (ξn)n≥1 and by

iterating this procedure a finite number of times. 2
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