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CATEGORIFICATION OF THE BRAID GROUPS

RAPHAËL ROUQUIER

1. Introduction

Actions of braid groups on triangulated categories are quite widespread. They arise for
instance in representation theory, for constructible sheaves on flag varieties and for coherent
sheaves on Calabi-Yau varieties (cf [RouZi] and [SeiTho] for early occurrences). In this work,
we suggest that not only the self-equivalences are important, but that the morphisms between
them possess some interesting structure.

Let W be a Coxeter group and C a triangulated category. We consider gradually stronger
actions of W or its braid group BW :

(i) W acting on K0(C)
(ii) a morphism from BW to the group of isomorphism classes of invertible functors of C
(iii) an action of BW on C.

We construct a strict monoidal category BW categorifying (conjecturally) BW and we propose
an even stronger form of action :

(iv) a morphism of monoidal categories BW → Hom(C, C)

The first section is devoted to a construction of a self-equivalence of a triangulated category,
generalizing various constructions in representation theory and algebraic geometry. This should
be viewed as a categorification of an action of Z/2.

In section §3, we construct a monoidal category categorifying (a quotient of) the braid group.
It is a full subcategory of a homotopy category of complexes of bimodules over a polynomial
algebra. The setting here is that of Soergel’s bimodules.

Section §4 is devoted to the category O of a semi-simple complex Lie algebra. There are
classical functors that induce an action of type (i). We show how to use the constructions of
§3, via results of Soergel, to get a genuine action of the braid group and even the stronger type
(iv).

The case of flag varieties is considered in §5. There again, there is a classical action up to
isomorphism of the braid group on the derived category of constructible sheaves (type (ii)).
Using a result of Deligne and checking some compatibilities for general kernel transforms (Ap-
pendix in §6), one gets a genuine action of the braid group (type (iii)). Now, using the link
with modules over the cohomology ring, we get another proof of this and even the stronger (iv).

In a work in preparation we study presentations by generators and relations, homological
vanishings and relation with the cohomology of Deligne-Lusztig varieties.

A few talks have been given in 1998–2000 on the main results of this work (Freiburg, Paris,
Yale, Luminy) and I apologize for the delay in putting them on paper.

I would like to thank I. Frenkel, M. Kashiwara, M. Khovanov and W. Soergel for useful
discussions.

Date: Septembre 2004.
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2 RAPHAËL ROUQUIER

2. Self-equivalences

We describe a categorification of the notion of reflection with respect to a subspace. The
ambient space is K0 of a triangulated category, the subspace is another triangulated category
and the embeddings and projections are given by functors. We actually allow an automorphism
of the “subspace” category, which allows to categorify the q-analog of a reflection.

We present here how a functor from a given triangulated category gives rise to a self-
equivalence of that category, when the functor satisfies some conditions. Then, we give three
special “classical” cases. The first one concerns constructible sheaves on a P1-fibration (it oc-
curs typically with flag varieties, cf §5). The second one deals with the case where the target
category is the derived category of vector spaces, where we recover the theory of spherical ob-
jects and twist functors (it arises as counterparts of Dehn twists via mirror symmetry). The
last application essentially concerns derived categories of finite dimensional algebras (it occurs
in particular within rational representation theory, cf §4).

All functors between additive (resp. triangulated) categories are assumed to be additive
(resp. triangulated).

Given an additive category C, we denote by K(C) the homotopy category of complexes of
objects of C.

Given an algebra A over a field k, we denote by A-mod the category of finitely generated left
A-modules. We put Aen = A ⊗k Aopp, where Aopp is the opposite algebra.

Given a graded algebra A, we denote by A-modgr the category of finitely generated graded
A-modules.

2.1. A general construction.

2.1.1. This section can probably be skipped in a first reading.
We will be working here with algebraic triangulated categories (following Keller), a simple

setting that provides functorial cones.

Let E be a Frobenius category (an exact category with enough projective and injective objects
and where injective and projective objects coincide). Let Compacyc(E-proj) be the category of
acyclic complexes of projective objects of E . Let Frob be the 2-category of Frobenius categories,
with 1-arrows the exact functors that send projectives to projectives and 2-arrows the natural
transformations of functors.

The construction E 7→ Compacyc(E-proj) is an endo-2-functor of Frob. The 2-functor from E

to the 2-category of triangulated categories that sends E to its stable category Ē factors through
the previous functor.

The important point is that the category Compacyc(E-proj) has functorial cones. Given F, G :
Compacyc(E-proj) → Compacyc(E

′-proj) and φ : F → G, then we have a well defined cone C(φ)
of φ and we have morphisms G → C(φ) and C(φ) → F [1] such that F → G → C(φ) → F [1]
gives a distinguished triangle of functors from Ē to Ē ′.

Note that if φ0 : F0 → G0 is a morphism of functors (exact, preserving projectives) between
E and E ′, then we get via Compacyc(−) a morphism of functors φ : F → G, with F, G :
Compacyc(E-proj) → Compacyc(E

′-proj).
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The category of functors (exact, preserving projectives) Compacyc(E-proj) → Compacyc(E
′-proj)

is a Frobenius category. We define the category AlgTr(E , E ′) to be its stable category. Its ob-
jects are the exact functors Compacyc(E-proj) → Compacyc(E

′-proj) and HomAlgTr(E,E ′)(F, G) is

the image of Hom(F, G) in HomFun(Ē,Ē ′)(F̄ , Ḡ).
This defines the 2-category of algebraic triangulated categories AlgTr, with objects the Frobe-

nius categories E . We have a 2-functor from AlgTr to the 2-category of triangulated categories
obtained by sending E to Ē . It is 2-fully faithful.

2.1.2. Let C and D be two algebraic triangulated categories, F : C → D, G : D → C be two
functors and Φ be a self-equivalence of C. Let there be given also two adjoint pairs (F, G) and
(G, FΦ). We have four morphisms (units and counits of the adjunctions)

η : 1D → FΦG, ε : GFΦ → 1C

η′ : 1C → GF, ε′ : FG → 1D.

Let Υ be the cocone of ε′ and Υ′ be the cone of η : there are distinguished triangles of functors

Υ → FG
ε′

−→ 1D  and 1D
η

−→ FΦG → Υ′  .
Assume

(1) 1C
η′

−→ GF
εΦ−1

−−−→ Φ−1 0
 

is a distinguished triangle.

Proposition 2.1. The functors Υ and Υ′ are inverse self-equivalences of D.

Proof. Let γ be the map FΦG → Υ′ in the triangle above, i.e., we have the distinguished

triangle 1D
η

−→ FΦG
γ
−→ Υ′  . We have a commutative diagram with horizontal and vertical

distinguished triangles

FG

OO
O�
O�
O�

FG
FGη //

id

66lllllllllllllll
FGFΦG

FGγ //

FεG

OO

FGΥ′ ///o/o/o

FΦG

Fη′ΦG

OO

The octahedral axiom shows that (FGγ) ◦ (Fη′ΦG) : FΦG
∼
→ FGΥ′ is an isomorphism.

We have a commutative diagram

FΦG
Fη′ΦG //

id ))RRRRRRRRRRRRRR FGFΦG
FGγ //

ε′FΦG
��

FGΥ′

ε′Υ′

��
FΦG γ

// Υ′

The distinguished triangle ΥΥ′ → FGΥ′ ε′Υ′

−−→ Υ′  gives a distinguished triangle ΥΥ′ →

FΦG
γ
−→ Υ′  , hence ΥΥ′ ≃ 1D.

The case of Υ′Υ is similar — note that the triangle (1) shows that GF ≃ idD ⊕Φ−1, hence
Φ commutes with GF . �
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Remark 2.2. One sees easily that ηF +FΦη′ : F ⊕FΦ
∼
→ FΦGF and Gη+η′ΦG : G⊕ΦG

∼
→

GFΦG are isomorphisms. One can show that the requirement that ηFG + FΦη′G : FG ⊕
FΦG → FΦGFG and FGη + Fη′ΦG : FG ⊕ FΦG → FGFΦG are isomorphisms, instead of
the stronger requirement that (1) is a distinguished triangle, is enough to get Proposition 2.1.

2.1.3. Let us recall a version of Barr-Beck’s Theorem ([Mac, §VI.7, exercice 7], [De2, §4.1]).
Let C be a category. A comonad is the data of a functor H : C → C, of c : H → H2 and

ε : H → id such that (cH) ◦ c = (Hc) ◦ c and (εH) ◦ c = (Hε) ◦ c. Note that ε is determined
by c.

A coaction of (H, c, ε) on an object M of C is the data of ρ : M → H(M) such that
ε(M) ◦ ρ = idM and c ◦ ρ = F (ρ) ◦ ρ. The category (H, c, ε)-comod has objects the pairs (M, ρ)
and a morphism (M, ρ) → (M ′, ρ′) is a morphism f : M → M ′ such that ρ′f = H(f)ρ.

Let A and B be two abelian (resp. algebraic triangulated categories), T : A → B an exact
functor (resp. a triangulated functor). Assume T has a right adjoint U . Put H = TU , denote by
ε : H → idB and η : idA → UT the counit and unit of adjunctions and let c = TηU : H → H2.

We have a functor T̃ : A → (H, c, ε)-comod given by M 7→ (TM, Tη(M)).

The following Theorem is an easy application of Barr-Beck’s general result to abelian and
triangulated categories.

Theorem 2.3. If T is faithful, then T̃ : A
∼
→ (H, c, ε)-comod is an equivalence.

We deduce from this Theorem that the category C, together with the functors F , G and
the adjunctions, is determined by D, Θ = FG and c = Fη′G : Θ → Θ2. We view this as a
categorical version of the “fixed points” construction.

Remark 2.4. Let V = K0(D), U = K0(C), f = [F ] : U → V and g = [G] : V → U . Assume
[Φ] = idU . Then, gf = 2 idU and θ = [Θ] : x 7→ x − fg(x) : V → V is an involution. One
recovers U (up to unique isomorphism) from θ acting on V as V θ.

2.2. Applications.

2.2.1. We consider schemes of finite type type over an algebraic closure of a finite field Fq

(the case of complex algebraic varieties is similar). Let π : X → Y be a smooth projective
morphism already defined over Fq. Assume the geometric fibers are projective lines.

Let Λ be a field of coefficients (=an extension of Qℓ for ℓ 6 | q a prime number). Put C = Db(Y )
and D = Db(X) (bounded derived categories of constructible sheaves of Λ-vector spaces). Take
F = π∗, G = Rπ∗ and Φ =?(1)[2]. We have a canonical isomorphism (projection formula)

? ⊗ Rπ∗ΛX
∼
→ Rπ∗π

∗. Via this isomorphism, η′ becomes id⊗η′(ΛY ) and ε becomes id⊗t,
where t : Rπ∗ΛX → ΛY (−1)[−2] is the trace map (an isomorphism on H2).

So, the triangle (1) is obtained from the triangle ΛY

η′(ΛY )
−−−−→ Rπ∗ΛX

t
−→ ΛY (−1)[−2]  by

applying ?⊗. This is indeed a distinguished triangle, for it is so at geometric fibers.
Let L be a relative ample sheaf for π and c ∈ H2(X, Λ(1)) be its first Chern class. The hard

Lefschetz Theorem states that the composition ΛY

η′(ΛY )
−−−−→ Rπ∗ΛX

c
−→ Rπ∗ΛX(1)[2]

t(1)[2]
−−−→ ΛY is

an isomorphism. It follows that the connecting map in the triangle above is zero.
Thus, we are in the setting of §2.1.2 and we get a self-equivalence of Db(X).

This can be also constructed as a kernel transform. Let α, β : X ×Y X → X be the first
and second projections. Let i : ∆X → X ×Y X be the closed immersion of the diagonal and
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j : Z → X×Y X be the open immersion of the complement of ∆X. Denote by ε̃ : 1Db(X×Y X) →
i∗i

∗ and η̃ : Rj!j
∗ → 1Db(X×Y X) the adjunction morphisms. One checks easily that there is a

commutative diagram where the rows are distinguished triangles

Υ // π∗Rπ∗
ε′ //

∼

��

1D

∼

��

///o/o/o/o/o

Rβ∗Rj!j
∗α∗

Rβ∗η̃α∗
// Rβ∗α

∗

Rβ∗ε̃α∗
// Rβ∗i∗i

∗α∗ ///o/o/o

where the middle vertical map is the base change isomorphism.
Denote by p, q : Z → X the first and second projections. Then, Υ ≃ Rp!q

∗ and Υ′ ≃ Rp∗q
!.

2.2.2. Assume we are in the setting of §2.1.2 with C = Db(k-mod) where k is a field and
the categories and functors involved are k-linear. There is an integer n such that Φ =?[n].
Let E = F (k). Then, F ≃ E⊗k? and G ≃ R Hom(E, ?). The morphism ε comes from
t : Hom(E, E[n]) → k.

The morphism ε is the counit of an adjoint pair (G, FΦ) if and only if dimk

⊕

i Hom(E, M [i]) <
∞ for all M ∈ D and Hom(E, M)×Hom(M, E[n]) → k, (f, g) 7→ t(gf) is a perfect pairing for
all M ∈ D.

The triangle (1) is distinguished if and only if 0 → k · id →
⊕

i Hom(E, E[i])
t
−→ k → 0 is an

exact sequence.
In other words, E is an n-spherical object and Υ, Υ′ are the corresponding twist functors of

Seidel and Thomas [SeiTho, §2b]. So, the framework above corresponds exactly to the twist
functor theory when C ≃ Db(k-mod).

Remark 2.5. The case C = Db(kd-mod) also leads to interesting examples.

Remark 2.6. It would be interesting to see if the construction of §2.1.2 can be used to construct
automorphisms of derived categories of Calabi-Yau varieties corresponding, via Kontsevich’s
homological mirror symmetry conjecture, to graded symplectic automorphisms on the mirror
associated to Lagrangian submanifolds more complicated than spheres.

2.2.3. Let us consider here two abelian categories A and B and F̃ : A → B, G̃ : B → A and
Φ̃ a self-equivalence of A. We assume we have two adjoint pairs (F̃ , G̃) and (G̃, F̃ Φ̃). So, we
have four morphisms (units and counits of the two adjunctions)

η̃ : 1B → F̃ Φ̃G̃, ε̃ : G̃F̃ Φ̃ → 1A

η̃′ : 1A → G̃F̃ , ε̃′ : F̃ G̃ → 1B.

Let Υ̃ be the complex 0 → F̃ G̃
ε̃′

−→ 1B → 0 and Υ̃′ the complex 0 → 1B
η̃

−→ F̃ Φ̃G̃ → 0 (with

F̃ G̃ and F̃ Φ̃G̃ in degree 0). We put C = K(A) and D = K(B) and we denote by F , G, etc...
the extensions of F̃ , G̃, etc... to C and D.

Assume B is artinian and noetherian (every object is a finite extension of simple objects).

If we have the equality [G̃F̃ ] = [id] + [Φ̃−1] as endomorphisms of K0(A) (or more generally, if
[F̃ Φ̃G̃F̃ G̃] = [F̃ G̃F̃ Φ̃G̃] = [F̃ G̃] + [F̃ Φ̃G̃] in End(K0(B))), then, the conclusion of Proposition
2.1 remains valid.

Let us justify this, following ideas of Rickard [Ri, §3]. There is an adjoint pair (Υ′, Υ), hence
there is a map u : id → ΥΥ′ that doesn’t vanish on a non-zero object of B. One shows that
ΥΥ′ is homotopy equivalent to a complex of functors with only one non-zero term, R, in degree
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0 and R is an exact functor. The assumption on classes shows that [R] = [id]. So, R sends a
simple object to itself, for a simple object is characterized amongst objects of B by its class in
K0(B). In particular, u : id → R is an isomorphism on simple objects. So, u is an isomorphism.

3. The 2-braid group

3.1. Coxeter group action.

3.1.1. Let (W, S) be a Coxeter system (with S finite) and V =
⊕

s∈S kes be the reflection
representation of W over a field k. We assume the representation is faithful (this is always the
case if the characteristic is 0). Given s, t ∈ S, we denote by mst the order of st. We assume
that 2mst is invertible in k, for all s, t ∈ S such that mst is finite. We denote by {αs}s∈S the
dual basis of {es}s∈S (so that ker(s− id) = ker αs for s ∈ S). Let BW be the braid group of W .
This is the group generated by S = {s}s∈S with relations

sts · · ·
︸ ︷︷ ︸

mst terms

≃ tst · · ·
︸ ︷︷ ︸

mst terms

for any s, t ∈ S such that mst < ∞
Let A = k[V ] be the algebra of polynomial functions on V . All A-modules considered in this

section are graded.
We will sometimes identify an object M of Kb(Aen-modgr) with the corresponding endofunc-

tor M ⊗A − of Kb(A-modgr). In particular, we will sometimes omit the symbols ⊗A when
taking tensor products of bimodules for the sake of clarity.

3.1.2. The action of W on V induces an action on A, hence on A-modgr and on Db(A-modgr) :
the element w ∈ W acts by Aw ⊗A − where Aw is the (A, A)-bimodule equal to A as a left
A-module, with right action of a ∈ A given by right multiplication by w(a). We have an
isomorphism of (A, A)-bimodules, id⊗1 : Aw

∼
→ k[∆w], where ∆w = {(w(v), v)}v∈V ⊂ V × V .

We have a canonical isomorphism Aw ⊗A Aw′
∼
→ Aww′ given by multiplication. Let x =

(x1, . . . , xm) and y = (y1, . . . , yn) be sequences of elements of S such that x1 · · ·xm = y1 · · · yn =

w. We denote by cx,y : Ax1
· · ·Axm

∼
→ Ay1

· · ·Ayn the isomorphism obtained by composing the

multiplication map Ax1
· · ·Axm

∼
→ Aw with the inverse of the multiplication map Ay1

· · ·Ayn

∼
→

Aw.

3.2. Braid group action. Let us now construct a non-obvious lift of the action of W on
Db(A-modgr) to an action of BW on Kb(A-modgr).

3.2.1. For s ∈ S, we define the complex of (A, A)-bimodules

Fs = Fs = 0 → A ⊗As A
ε′s−→ A → 0

where A is in degree 1 and ε′s is the multiplication.
Since A = As ⊕ Asαs, the morphism of Aen-modules

As → A ⊗As A(1), a 7→ a ⊗ αs − aαs ⊗ 1

induces an isomorphism

fs : As
∼
→ Fs(1) in Db(Aen-modgr).
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3.2.2. For w ∈ W , let ∆≤w =
⋃

w′≤w ∆w′ and Dw = k[∆≤w]. Note that Ds = A ⊗As A for
s ∈ S.

Given w′ ≤ w, we have a canonical quotient map Dw → Dw′ given by restriction of functions.
We have

Hom(Dw, Dw′) =

{

k · can if w′ ≤ w

0 otherwise

3.2.3. In the next lemma, 0 → L → M → 0 denotes a complex with L in degree 0.

Lemma 3.1. Assume W is a finite dihedral group, i.e., dim V = 2, S = {s, t} and mst < ∞.

Let x ∈ W such that tx > x. Then,

(i) Ds(0 → Dtx
can
−−→ Dx → 0) ≃ (0 → Dx(−1)

id
−→ Dx(−1) → 0) ⊕ (0 → Dstx

can
−−→ Dx → 0).

(ii) FsDx ≃ (0 → Dx
id
−→ Dx → 0) ⊕ (0 → Dx(−1) → 0 → 0).

Proof. Let us recall some constructions and results of Soergel [Soe4, Lemma 4.5, Proposition
4.6 and their proofs]. Since 2mst is invertible, then given u, u′ two distinct reflections of W , we
have ker(u + id) 6= ker(u′ + id).

Given I an ideal of A ⊗ A invariant under s × 1, we put ((A ⊗ A)/I)+ = ((A ⊗ A)/I)(s×1).
Let r be the reflection of W such that rx < x and rx 6< tx. Then, ∆x + ∆rx is a hyperplane

of V × V and let β ∈ V ∗ × V ∗ be a linear form with kernel this hyperplane. Let M (resp. N)
be the (As ⊗A)-submodule of Dtx generated by the image of the elements β (resp 1) of A⊗A.
Then, Dtx = M ⊕ N , M ≃ D+

x (−1) and N ≃ D+
stx as (As ⊗ A)-modules.

Let M ′ (resp. N ′) be the (As ⊗ A)-submodule of Dx generated by αs ⊗ 1 (resp. 1). Then,
Dx = M ′ ⊕N ′, M ′ ≃ D+

x (−1) and N ′ = D+
x as (As ⊗A)-modules. Denote by p : Dx → M ′ the

projection.

Let us show now that β 6∈ (V ∗)s × V ∗. Equivalently, we need to show that (∆x + ∆rx) ∩
(kαs × 0) = 0. This amounts to proving that im(id−r) 6= kαs. But this holds, since r 6= s.

Let us now come to our problem. Since β 6∈ (V ∗)s × V ∗, it follows that the image of β
in (A ⊗ A)/(As ⊗ A) is a generator as (As ⊗ A)-module. Consequently, the restriction of
pf : Dtx → M ′ to M is surjective, hence it is an isomorphism (we denote by f : Dtx → Dx the
canonical map).

M
� � //

∼

((
Dtx

f // // Dx

p // // M ′

A ⊗ A

ccccGGGGGGGGG

OOOO

// // A ⊗ A/As ⊗ A

OOOO

AsβA

bbbbEEEEEEEEEEEEEEEEEEEEEE

77 77ooooooooooo?�

OO

Finally, the multiplication map A⊗AsD+
y

∼
→ Dy is an isomorphism for any y ∈ W with sy < y.

We have shown that the complex A⊗As(0 → Dtx
can
−−→ Dx → 0) is isomorphic to the direct sum of

the complex 0 → Dx(−1)
id
−→ Dx(−1) → 0 and a complex D = 0 → Dstx

φ
−→ Dx → 0. Note that

φ = r · can for some r ∈ k and we need to prove that r 6= 0. The complex 0 → Dtx
can
−−→ Dx → 0

has zero homology in degree 1, hence the same is true for D. It follows that r 6= 0.
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Let us now prove the second assertion. The multiplication map A ⊗As D+
x → Dx is an

isomorphism. Since Dx = D+
x ⊕ M ′ and M ′ ≃ D+

x (−1), we obtain the second part of the
Lemma. �

Proposition 3.2. Take s 6= t ∈ S with mst < ∞. We have braid relations

FsFtFs · · ·
︸ ︷︷ ︸

mst terms

≃ FtFsFt · · ·
︸ ︷︷ ︸

mst terms

in Kb(A ⊗ A).

Proof. We have a decomposition V = V1⊕V2 under the action of 〈s, t〉, with V1 = V 〈s,t〉. For the
(A, A)-bimodules involved in the Proposition, the right and left actions of k[V1] are identical.
So, we get the Proposition for V from the Proposition for V2 by applying the functor k[V ∗

1 ]⊗k−.
It follows we can assume dim V = 2. So, we assume W is finite dihedral with S = {s, t}. We
put s+ = s and s− = t.

Let m = mst and consider i ≤ m and ε ∈ {+,−}. Let σε
i = sεs−εsε · · · (i terms) and

Dε
i = Dσε

i
. We put Dε = Dsε. Consider the simplicial scheme over V × V :

∆1 ⇉ ∆≤s+

∐

∆≤s− ⇉ ∆≤s+s−

∐

∆≤s−s+
⇉ · · ·⇉ ∆≤σε

i−1

∐

∆≤σ−ε
i−1

→ ∆≤σε
i

where the maps are the inclusions.
We now define F ε

i as the complex of (A, A)-bimodules coming from the structural complex
of sheaves of this simplicial scheme :

F ε
i = 0 → Dε

i

(
+
+

)

−−−→ Dε
i−1 ⊕ D−ε

i−1

(
+ −
+ −

)

−−−−−→ Dε
i−2 ⊕ D−ε

i−2 → · · · → D+ ⊕ D− (+ −)
−−−−−→ D1 → 0

where the sign denotes the multiple of the canonical map considered (we put Dε
i in degree 0).

We have Hr(F ε
i ) = 0 for r > 0, since ∆≤σ+

r
∩ ∆≤σ−

r
= ∆≤σ+

r−1
∪ ∆≤σ−

r−1
and we have an exact

sequence

0 → k[∆≤σ+
r
∪ ∆≤σ−

r
]

(
+
+

)

−−−→ k[∆≤σ+
r
] ⊕ k[∆≤σ−

r
]

(+ −)
−−−−−→ k[∆≤σ+

r
∩ ∆≤σ−

r
] → 0.

The complex F ε
1 is isomorphic to Fsε. We will now show by induction on i that FsεF

−ε
i is

homotopy equivalent to F ε
i+1 for ε = ±. This will prove the Proposition, since F+

m ≃ F−
m .

Let us consider the complex C = FsεF
−ε
i . This is the total complex of the double complex

DεD−ε
i

//

��

DεDε
i−1 ⊕ DεD−ε

i−1
//

��

DεDε
i−2 ⊕ DεD−ε

i−2
//

��

· · · // DεD1

��
D−ε

i
// Dε

i−1 ⊕ D−ε
i−1

// Dε
i−2 ⊕ D−ε

i−2
// · · · // D1

By Lemma 3.1, the complex 0 → DεD−ε
r

can
−−→ DεDε

r−1 → 0 is isomorphic to the direct sum

of 0 → Dε
r−1(−1)

id
−→ Dε

r−1(−1) → 0 and of 0 → Dε
r+1

can
−−→ Dε

r−1 → 0. Also, the complex

0 → DεDε
r

can
−−→ Dε

r → 0 is isomorphic to the direct sum of 0 → Dε
r

id
−→ Dε

r → 0 and of
0 → Dε

r(−1) → 0 → 0. It follows that C is homotopy equivalent to a complex

C ′ = 0 → Dε
i+1 → Dε

i ⊕ D−ε
i → · · · → D1 → 0,
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where the maps remain to be determined. Since Fsε has non zero homology only in degree 0
and that homology is free as a right A-module, it follows that the homology of C vanishes in
degrees > 0.

To conclude, we have to show that a complex X with the same terms as F ε
i and with zero

homology in degrees > 0 is actually isomorphic to F ε
i . We have

X = 0 → Dε
i

(
ai

ci

)

−−−→ Dε
i−1 ⊕ D−ε

i−1

(
ai−1 bi−1

ci−1 di−1

)

−−−−−−−−→ Dε
i−2 ⊕ D−ε

i−2 → · · · → D+ ⊕ D− (c1 d1)
−−−−−→ D1 → 0

where the coefficients are in k and the maps are corresponding multiples of the canonical maps.

Take r ≤ i minimal such that there is an entry of
(

ar br

cr dr

)

that vanishes. Assume for example

cr = 0. Then, ar−1ar = 0, hence ar = 0. We have brcr+1 = drcr+1 = brdr+1 = drdr+1 = 0.
If br = dr = 0, then X is the sum of the subcomplex with zero terms in degrees ≤ i − r and
the subcomplex with zero terms in degrees > i − r. Otherwise, cr+1 = dr+1 = 0, hence X
splits as the direct sum of the subcomplex · · · → Dε

r+1 ⊕ D−ε
r+1 → Dε

r → 0 and the subcomplex
0 → D−ε

r → Dε
r−1 ⊕ D−ε

r−1 → · · · . Now, a morphism D−ε
r → Dε

r−1 ⊕ D−ε
r−1 is never injective, for

the support of the left term is strictly larger than the support of the right term. Consequently,
the complex X has non-zero homology in degree i−r, which is a contradiction. We have proven
that none of the coefficients ar, br, cr, dr can be zero.

Let Z be the closed subvariety of the affine space of coefficients ar, br, cr, dr that define a

complex (i.e.,
(

ar br

cr dr

)(
ar+1 br+1

cr+1 dr+1

)

= 0) and let Z0 be its open subset corresponding to non-

zero coefficients. We have an isomorphism Z0 ∼
→ (Gm)2i−1, h : (ar, br, cr, dr)r 7→ (ar, cr)r. The

action of (Gm)2i on the terms of the complex induce an action on Z. The corresponding action
on Z0 ≃ (Gm)2i−1 has a unique orbit. It follows that X is isomorphic to F ε

i . �

3.2.4. Let us define the complex of Aen-modules

Fs−1 = 0 → A
ηs
−→ A ⊗As A(1) → 0

where A is in degree −1 and ηs(a) = aαs ⊗ 1 + a ⊗ αs.

Lemma 3.3. The complexes Fs and Fs−1 are inverse to each other in Kb(Aen-modgr).

Proof. Let C = Kb(As-modgr) and D = Kb(A-modgr). Let F = A⊗As?, G = A⊗A? and
Φ =?(1). The morphisms of (As, As)-bimodules

εs : A(1) → As, 1 7→ 0 and αs 7→ 1 and η′
s : As → A, 1 7→ 1

together with ηs and ε′s previously defined give rise to adjoint pairs (F, G) and (G, FΦ).
We have a split exact sequence of (As, As)-bimodules

0 → As η′
s−→ A

εs−→ As → 0,

hence we deduce the Lemma from Proposition 2.1. �

By Proposition 3.2 and Lemma 3.3, we have already obtained an action “up to isomorphism”
of BW on Kb(A) :

Proposition 3.4. The map s 7→ Fs extends to a morphism from BW to the group of isomor-

phism classes of invertible objects of Kb(Aen-modgr).
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3.3. Rigidification. The key point here is that the rigidification of the braid relations at
the homotopy category level is equivalent to the one at the derived category level, where the
problem is trivial, since we have a genuine action of W .

3.3.1. Consider the morphism of Aen-modules A⊗As A → As that sends 1⊗ 1 to 1. It induces
a quasi-isomorphism Fs−1(−1)

∼
→ As. We denote its inverse (a morphism in Db(Aen-modgr))

by fs−1 .

Now, let v ∈ BW and v = t1 · · · tm = u1 · · ·un be two decompositions in elements of S∪ S−1.
By Proposition 3.4, the invertible objects Ft1 · · ·Ftm and Fu1

· · ·Fun of Kb(Aen-modgr) are
isomorphic, hence

Hom�(Ft1 · · ·Ftm , Fu1
· · ·Fun) ≃ End�(A) = k,

where � ∈ {Kb(Aen-modgr), Db(Aen-modgr)}. It follows that the canonical morphism

HomKb(Aen-modgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun)

∼
→ HomDb(Aen-modgr)(Ft1 · · ·Ftm , Fu1

· · ·Fun)

is an isomorphism.
So, we have a unique isomorphism

γt,u ∈ HomKb(Aen-modgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun)

such that the induced element in HomDb(Aen-modgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun) corresponds to

c(t1,...,tm),(u1,...,un) : At1 · · ·Atm

∼
→ Au1

· · ·Aun

via the quasi-isomorphisms ft1 · · · ftm and fu1
· · · fun.

We now define Gv as the limit of the functors Ft1 · · ·Ftm , where t = (t1, . . . , tm) runs over
the decompositions of v in S ∪ S−1, with the transitive system of isomorphisms γt,u.

There are unique isomorphisms mv,v′ : GvGv′
∼
→ Gvv′ for v, v′ ∈ BW and m1 : G1

∼
→ A in

Kb(Aen-modgr) that are compatible with the isomorphisms ct,u, in Db(Aen-modgr). So, we get
the following result :

Theorem 3.5. The family (Gv, mv,v′ , m1) defines an action of BW on Kb(A-modgr).

This means we have a monoidal functor from

• the strict monoidal category with set of objects BW , with only arrows the identity maps
and with tensor product given by multiplication

• to the strict monoidal category of endofunctors of Kb(A-modgr).

Remark 3.6. Using tensor products on the right, one obtains a right action of BW on
Kb(A-modgr). This action commutes trivially with the left action of BW , so, we have an
action of BW × Bopp

W on Kb(A-modgr).

3.3.2. We denote by BW the full subcategory of Kb(Aen-modgr) with objects the Gv for v ∈
BW . The product Gv⊠Gv′ = Gvv′ provides BW with the structure of a strict monoidal category.
Define G∗

v as Gv−1 .
We have obtained our “categorification” of the braid group :

Theorem 3.7. The category BW is a strict rigid monoidal category. Its “decategorification” is

a quotient of BW .

Conjecture 3.8. The decategorification of BW is equal to BW .

Remark 3.9. One can show that the conjecture is true in type An, as a consequence of
[KhovSei, Corollary 1.2].
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3.3.3. Let C = A/(A ·AW
+ ) be the coinvariant algebra. Then, we get by restriction of functors

an action of BW on Kb(C-modgr) and on Kb(C-mod). We get as well monoidal functors
from BW to the category of self-equivalences of Kb(C-modgr) or Kb(C-mod). Note that we
get also right actions, and this gives a monoidal functor from BW × Bopp

W to the category of
self-equivalences of Kb(C-modgr) or Kb(C-mod).

Remark 3.10. Let C be the smallest full subcategory of (A⊗A)-modgr containing the objects
A ⊗As A and closed under finite direct sums, direct summands and tensor products. This is a
monoidal subcategory of (A⊗A)-modgr which is a categorification of the Hecke algebra of W ,
according to Soergel. The quotient C̄ of C by the smallest additive tensor ideal subcategory
containing the A⊗A〈s,t〉 A, where s, t ∈ S and mst 6= ∞, is a categorification of the Temperley-
Lieb quotient of the Hecke algebra.

When W has type An, an action of C̄ on an algebraic triangulated category is the same as
the data on an An-configuration of spherical objects [SeiTho, §2.c].

4. Principal block of a semi-simple complex Lie algebra

4.1. Review of category O.

4.1.1. Let g = Lie G, h ⊆ b a Cartan and a Borel subalgebra. Let O be the Bernstein-
Gelfand-Gelfand category of finitely generated g-modules which are diagonalizable for h and
locally finite for b. Denote by Z the center of the enveloping algebra U of g. Let P ⊂ h∗ be
the weight lattice, Q ⊂ h∗ be the root lattice, R (resp. R+) be the set of roots (resp. positive
roots) and Π the set of simple roots.

4.1.2. We have a decomposition O =
⊕

θ Oθ, where Oθ is the subcategory of modules with
central character θ. Let D be a duality on O that fixes simple modules (up to isomorphism).

Let ∆(χ) = U ⊗U(b) Cχ be the Verma module associated to χ ∈ h∗. It has a unique simple
quotient L(χ). We denote a projective cover of L(χ) by P (χ). We put ∇(χ) = D∆(χ).

Consider the dot action of W on h∗, w · λ = w(λ + ρ) − ρ (we denote by Ẇ the group W
acting via the dot action on h∗), where ρ is the half-sum of the positive roots.

Given λ ∈ h∗, let ξ(λ) be the character by which Z acts on L(λ) and mλ be its kernel, an
element of Specm Z, the maximal spectrum of Z. The morphism h∗ → Specm Z, λ 7→ mλ

induces an isomorphism h∗/Ẇ
∼
→ Specm Z, i.e., an isomorphism of algebras h : Z

∼
→ AẆ

where A = C[h∗]. The simple objects in Oθ are those L(λ) with ξ(λ) = θ.

4.1.3. Consider B the set of intersections of orbits of Ẇ and of Q on h∗. For d ∈ B, we denote
by Od (or by Oµ for a µ ∈ d) the thick subcategory of O generated by the L(λ) for λ ∈ d.
Then, O =

⊕

d∈B Od is the decomposition of O into blocks.

Let Λ ∈ h∗/P and λ ∈ Λ. We have a root system RΛ = {α ∈ R|〈λ, α∨〉 ∈ Z} with set of
simple roots ΠΛ ⊂ R+, Weyl group WΛ = {w ∈ W |w(λ)− λ ∈ Q} and set of simple reflections
SΛ (they depend only on Λ). Note that RΛ = R if and only if Λ = P . We define

Λ+ = {λ ∈ Λ|〈λ + ρ, α∨〉 ≥ 0 for all α ∈ Πλ}

Λ++ = {λ ∈ Λ|〈λ + ρ, α∨〉 > 0 for all α ∈ Πλ}.

Then, Λ+ is a fundamental domain for the action of ẆΛ on Λ. The module L(λ) is finite
dimensional if and only if λ ∈ P++.
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4.1.4. We define a translation functor between Od and Od′ when d, d′ ∈ B are in the same
P -orbit. Take Λ ∈ h∗/P and λ, µ ∈ Λ+. Let ν be the only element in W (µ − λ) ∩ Λ++. Then,
we define T µ

λ : Oλ → Oµ, M 7→ prµ(M ⊗ L(ν)) where prµ : O → Oµ is the projection functor.
Since −w0ν ∈ Λ++ and L(ν)∗ ≃ L(−w0ν), it follows that the functors T µ

λ and T λ
µ are left and

right adjoint to each other.
Let d ∈ B containing 0. The corresponding block O0 = Od is the principal block of O. Note

that d = W · 0 is a regular W -orbit and we put L(w) = L(w · 0), etc...

For s ∈ S, we fix µ ∈ P+ with stabilizer {1, s} in Ẇ . We put T s = T µ
0 and Ts = T 0

µ and
Θs = TsT

s : O0 → O0.

4.1.5. Let Fs = Fs be the complex of functors on O0 given by 0 → Θs

ε′s−→ id → 0 where ε′s is
the counit of adjunction (id is in degree 1).

Let Fs−1 = 0 → id
ηs
−→ Θs → 0, where ηs is the unit of the other adjunction. Then, Rickard

[Ri, Proposition 2.2] proved that Fs and Fs−1 are inverse self-equivalences of Kb(O0) (this
follows from §2.2.3 by the classical character calculation [T sTs] = 2[id]).

It is easy and classical that the Fs induce an action of W on K0(O0) (the reflection s ∈ S
acts as [Fs]). This realizes the regular representation of W . A permutation basis for this action
is provided by {[∆(w)]}w∈W .

It seems difficult to check directly that the Fs satisfy the braid relations. Using the equiva-
lence between O0 and perverse sheaves on the flag variety, this can be deduced from §5.

4.2. Link with bimodules.

4.2.1. We start by recalling results of Soergel [Soe1, Soe2, Soe3] relating the category O to
modules over the coinvariant algebra.

Let Λ ∈ h∗/P . We denote by CΛ = A/(A · AWΛ

+ ) the coinvariant algebra of (WΛ, SΛ)
and pΛ : A → CΛ the canonical surjection. Let λ ∈ Λ+. We denote by tλ : A → A the
translation by λ, given by f 7→ (z 7→ f(z + λ)) We have Soergel’s Endomorphismensatz [Soe1,
Endomorphismensatz 7] :

Theorem 4.1. The image of the composite morphism Z
h

−→ AẆ →֒ A
tλ−→ A

pΛ
−→ CΛ is CWλ

Λ

and the canonical morphism Z → End(P (w0 · λ)) factors through this morphism Z → CWλ

Λ .

The induced morphism σλ : CWλ

Λ
∼
→ End(P (w0 · λ)) is an isomorphism.

Let us now recall Soergel’s Struktursatz [Soe1, Struktursatz 9] :

Theorem 4.2. The functor Hom(P (w0 · λ),−) : Oλ-proj → CWλ

Λ -mod is fully faithful.

Let µ ∈ Λ be regular (i.e., with trivial stabilizer in WΛ).
There is an isomorphism φ : T µ

λ P (w0 · λ)
∼
→ P (w0 · µ). Any such isomorphism φ induces a

commutative diagram [Soe1, Bemerkung p.431]

CWλ

Λ

σλ

��

inclusion // CΛ

σµ

��
End(P (w0 · λ))

φ∗T 0
λ // End(P (w0 · µ))
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This gives us an isomorphism, via the adjunction (T µ
λ , T λ

µ ) :

ResCΛ

C
Wλ
Λ

Hom(P (w0 · µ), ?)
∼
→ Hom(T µ

λ P (w0 · λ), ?)
∼
→ Hom(P (w0 · λ), T λ

µ (?))

between functors Oµ → CWλ

Λ -mod. So, we have a commutative diagram, with fully faithful
horizontal functors

Oµ-proj

T λ
µ

��

Hom(P (w0·µ),?)
// CΛ-mod

Res
��

Oλ-proj
Hom(P (w0·λ),?)

// CWλ

Λ -mod

4.2.2. From the last commutative diagram, we deduce

Proposition 4.3. There is a commutative diagram with fully faithful horizontal arrows

Kb(O0-proj)
Hom(P (w0),−)

//

Fs

��

Kb(C-mod)

Fs

��

Kb(O0-proj)
Hom(P (w0),−)

// Kb(C-mod)

So, we deduce from Theorem 3.5 the following : given v ∈ BW and v = t1 · · · tm = u1 · · ·un

two decompositions in elements of S ∪ S−1, there is an isomorphism Ft1 · · ·Ftm

∼
→ Fu1

· · ·Fun

between functors on Db(O0) coming by restriction from the isomorphism between functors on
Kb(A-modgr). These form a transitive system of isomorphisms, i.e.

Theorem 4.4. The functors Fs induce an action of BW on Db(O0).

More precisely,

Theorem 4.5. There is a monoidal functor from BW to the category of self-equivalences of

Db(O0) sending Gs to Fs.

Remark 4.6. One has a similar statement for the deformed category O.
Note that we deduce from §3.3.3 that there is also a right action of BW on Db(O0). We

leave it to the reader to check that this corresponds to the actions using Zuckerman functors,
or equivalently, Arkhipov functors.

In the graded setting (mixed perverse sheaves for example), the left and right actions of
BW should be swapped by the self-Koszul duality equivalence, cf [BerFreKhov] (and [BeiGi,
Conjecture 5.18] for an analog in the equivariant case).

Various constructions have been given of weak actions of braid groups on Db(O0), cf [AnStr,
Ar, KhomMaz, MazStr, Str].

5. Flag varieties

5.1. Classical results. Let G be a semi-simple complex algebraic group with Weyl group W .
Let W = {w}w∈W . The braid group BW of W is isomorphic to the group with set of

generators W and relations ww′ = w′′ when ww′ = w′′ and l(w′′) = l(w) + l(w′).

Let B be the flag variety of G. We decompose

B × B =
∐

w∈W

O(w)
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into orbits for the diagonal G-action. Consider the first and second projections

O(w)
pw

||zz
zz

zz
zz qw

""D
DD

DD
DD

D

B B

Then, we have a functor

Fw = R(pw)!(qw)∗ : Db(B) → Db(B)

where Db(B) is the derived category of bounded complexes of constructible sheaves of C-vector
spaces over B.

First and last projections induce an isomorphism

O(w) ×B O(w′)
∼
→ O(ww′) when l(ww′) = l(w) + l(w′).

This induces an isomorphism (cf §6.2)

γw,w′ : FwFw′
∼
→ Fww′ when l(ww′) = l(w) + l(w′).

For s ∈ S, then Fs is obtained as in §2.2.1 for the canonical morphism πs : B → Ps, where Ps is
the variety of parabolic subgroups of type s. So, Fs is invertible, with inverse Fs−1 = R(ps)∗(qs)

!.
It follows that Fw is invertible for w ∈ W , with inverse Fw−1 = R(pw)∗(qw)!, hence we get a
morphism from BW to the group of isomorphism classes of invertible functors on Db(B).

5.2. Genuine braid group action. We have a commutative diagram

FxFyFz

γx,yFz //

Fxγy,z

��

FxyFz

γxy,z

��
FxFyz γx,yz

// Fxyz

for x, y, z ∈ W such that l(x) + l(y) + l(z) = l(xyz), by Theorem 6.2.
Let b ∈ BW and b = t1 · · · tm = u1 · · ·un with ui ∈ W ∪ W−1. Applying braid relations and

the corresponding isomorphisms γ, we get various isomorphisms Ft1 · · ·Ftm

∼
→ Fu1

· · ·Fun. By
Deligne [De3], they are all equal. Let us denote by γt·,u· their common value.

We now define

F̃b = lim
(t1,··· ,tn)

Ft1 · · ·Ftn

where (t1, · · · , tn) runs over the set of sequences of elements of W∪W−1 such that b = t1 · · · tn
and where we are using the transitive system of isomorphisms γt·,s·.

We have now the following result

Theorem 5.1. The assignment b 7→ F̃b defines an action of BW on Db(B).

Remark 5.2. Deligne [De3] defines a variety Ob with two morphisms pb, qb : Ob → B for any
b ∈ B+

W . Then, the action of b on Db(B) is given by pb!q
∗
b .

5.3. Link with bimodules.
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5.3.1. Fix a Borel subgroup B of G. We consider the setting of §3 with k = C and V ∗ the
complexified character group of B. In this section, we will consider the algebra A with double
grading, i.e., V ∗ is in degree 2.

Let C
∼
→ H∗(B,C) be the Borel isomorphism (send a character of B to the Chern class of

the corresponding line bundle) and denote by β its inverse.
Let I be a subset of S, WI the subgroup of W generated by I, W I be the set of min-

imal right coset representatives of W/WI and PI the parabolic subgroup of G of type I
containing B. Put PI = G/PI . Denote by πI : B → PI the canonical morphism. The
map π∗

I :
⊕

i Hom(CPI
,CPI

[i]) →
⊕

i Hom(CB,CB[i]) induces, via β, an isomorphism βI :
⊕

i Hom(CPI
,CPI

[i])
∼
→ CWI .

5.3.2. Consider the full subcategory Db
σ(PI) of Db(PI) of complexes whose cohomology sheaves

are smooth along B-orbits. Given w ∈ W I , let Lw be the perverse sheaf corresponding to
the intersection cohomology complex of BwPI/PI . Let LI =

⊕

w∈W I Lw. The dg-algebra
R End(LI) is formal and let RI =

⊕

i Hom(LI ,LI [i]). We have an equivalence LI⊗? from the
category RI-dgperf of perfect differential graded RI-modules to Db

σ(PI).
The functor

⊕

i Hom(CPI
, ?[i]) : Db

σ(PI) → CWI -modgr restricts to a fully faithful functor
on the full subcategory containing the LI [i]. So, we get a fully faithful functor RI-dgperf →
K(CWI -dgmod), hence a fully faithful functor HI : Db

σ(PI) → K(CWI -dgmod), where we
denote by K(CWI -dgmod) the homotopy category of differential graded CWI -modules.

As in §4.2, we get a commutative diagram

Db
σ(B)

H //

RπI∗

��

K(C-dgmod)

Res
��

Db
σ(PI)

HI

// K(CWI -dgmod)

and we deduce

Proposition 5.3. Let s ∈ S. There is a commutative diagram with fully faithful horizontal

arrows

Db
σ(B)

H //

Fs

��

K(C-dgmod)

Fs

��
Db

σ(B)
H

// K(C-dgmod)

In particular, we get a monoidal functor from BW to the category of self-equivalences of
Db

σ(B).

Remark 5.4. We believe the monoidal functor above is the restriction of a functor with values
in Db(B).

6. Appendix : associativity of kernel transforms

6.1. Classical isomorphisms.
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6.1.1. We consider here

• schemes of finite type over a field of characteristic p ≥ 0 and the derived category of
constructible sheaves of Λ-modules, where Λ is a torsion ring with torsion prime to p or
Λ is a Qℓ-algebra, for l prime to p

or
• locally compact topological spaces of finite soft c-dimension and the derived category of

constructible sheaves of C-vector spaces.

We will quote results pertaining to either of the two settings above, depending on the con-
venience of references. The maps involved will be concatenations of canonical isomorphisms.

We denote a derived functor with the same notation as the original functor : we write ⊗ for
⊗L, f! for Rf!, etc...

6.1.2. Let f : Y → X and g : Z → Y be two morphisms. There are canonical isomorphisms
[KaScha, 2.6.6 and 2.3.9]

(fg)!
∼
→ f!g! and (fg)∗

∼
→ g∗f ∗.

These isomorphisms satisfy a cocycle property (cf [De1, Théorème 5.1.8] for the case (−)!) :

Lemma 6.1. Consider X3
w

−→ X2
v

−→ X1
u

−→ X0. Then, the following diagrams are commu-

tative

w∗v∗u∗ //

��

w∗(uv)∗

��

u!v!w! //

��

(uv)!w!

��
(vw)∗u∗ // (uvw)∗ u!(vw)!

// (uvw)!

We will take the liberty to identify the functors v∗u∗ and (uv)∗ through the canonical iso-
morphism.

There are canonical isomorphisms [KaScha, 2.6.18]

f ∗(−1 ⊗−2)
∼
→ (f ∗−1) ⊗ (f ∗−2) and (−1 ⊗−2) ⊗−3

∼
→ −1 ⊗ (−2 ⊗−3)

We identify the bifunctors f ∗(−1 ⊗−2) and (f ∗−1) ⊗ (f ∗−2) through the canonical isomor-
phism. Given Ai ∈ Db(X), i ∈ {1, 2, 3}, we identify (A1 ⊗ A2) ⊗ A3 with A1 ⊗ (A2 ⊗ A3) and
we denote this object by A1 ⊗ A2 ⊗ A3.

Let X ′

f ′

��

g′ // X

f

��
S ′

g
// S

be a cartesian square. Then, there is the canonical base change isomor-

phism [KaScha, 2.6.20] :

g∗f!
∼
→ f ′

! g
′∗.

We have a canonical isomorphism [KaScha, 2.6.19]

−1 ⊗ (f!−2)
∼
→ f!(f

∗ −1 ⊗−2).

6.2. Kernel transforms.
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6.2.1. Let us define a 2-category K.

• The 0-arrows are the varieties.
• 1-arrows : Hom(X, Y ) is the family of (K, U) where U is a variety over Y × X and

K ∈ Db(U).

• 2-arrows : Hom((K, U), (K ′, U ′)) is the set of (φ, f) where f : U
∼
→ U ′ is an isomorphism

of (Y × X)-varieties and φ : K
∼
→ f ∗K ′.

We define the composition of 1-arrows. Consider the following diagram where the square is
cartesian

(2) V ×Y U
β

zzvvvvvvvvv
α

$$H
HHHHHHHH

V
p4

��~~
~~

~~
~ p3

$$I
IIIIIIIII U

p2

zzuuuuuuuuuu
p1

  @
@@

@@
@@

Z Y X

Let K ∈ Db(U) and L ∈ Db(V ). We put L⊠K = β∗L ⊗ α∗K. The composition (L, V )(K, U)
is defined to be (L⊠K, V ×Y U).

Let us consider now the diagram with all squares cartesian

W ×Z V ×Y U
b

vvnnnnnnnnnnnn
a

((PPPPPPPPPPPP

W ×Z V
δ

zzuuuuuuuuu
γ

((QQQQQQQQQQQQQQ
V ×Y U

β

vvmmmmmmmmmmmmmm
α

$$H
HHHHHHHH

W
p6

~~}}
}}

}}
}} p5

$$J
JJJJJJJJJ V

p4

vvmmmmmmmmmmmmmmmmm
p3

((QQQQQQQQQQQQQQQQ U
p2

zzuuuuuuuuuu
p1

  @
@@

@@
@@

T Z Y X

and take M ∈ Db(W ). We have

(M ⊠ L)⊠K = b∗(δ∗M ⊗ γ∗L) ⊗ (αa)∗K
∼
→ (δb)∗M ⊗ a∗(β∗L ⊗ α∗K) = M ⊠ (L⊠K).

This provides the associativity isomorphisms for K. With our conventions, we will write M ⊠
L⊠K for the objects in the isomorphism above. It is straightforward to check that K is indeed
a 2-category.

6.2.2. We put ΦK = Φp2,p1

K = p2!(K ⊗ p∗1−) : Db(X) → Db(Y ).

Let cL,K : ΦLΦK
∼
→ ΦL⊠K be defined as the composition

p4!(L ⊗ p∗3p2!(K ⊗ p∗1−)) → p4!(L ⊗ β!α
∗(K ⊗ p∗1−))

→ p4!β!(β
∗L ⊗ α∗(K ⊗ p∗1−))

→ (p4β)!((β
∗L ⊗ α∗K) ⊗ α∗p∗1−)

→ (p4β)!((β
∗L ⊗ α∗K) ⊗ (p1α)∗−).
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Let (φ, f) ∈ HomK((K, U), (K ′, U ′)). We have a commutative diagram

U

p2

����
��
��
��
��
��
��
�

p1

��0
00

00
00

00
00

00
00

f ∼

��
U ′

p′2~~}}
}}

}}
}

p′1   A
AA

AA
AA

A

Y X

and we define Φ(φ, f) as the composition

p2!(K ⊗ p∗1−)
∼
→ p′2!f!(f

∗K ′ ⊗ f ∗p
′∗
1 −)

∼
→ p′2!(K

′ ⊗ p
′∗
1 −).

Theorem 6.2. Φ is a 2-functor from K to the 2-category of triangulated categories.

We have cM⊠L,K ◦ (cM,LΦK) = cM,L⊠K ◦ (ΦMcL,K), i.e., the following diagram commutes :

ΦMΦLΦK
//

��

ΦM⊠LΦK

��
ΦMΦL⊠K

// ΦM⊠L⊠K

6.2.3. The next two Lemmas deal with composition of base change isomorphisms.
For the first Lemma, see [De1, Lemme 5.2.5] :

Lemma 6.3. Let X2

f2 //

h2

��

X1

f1 //

h1

��

X

h

��
S2 g2

// S1 g1

// S

be a diagram with all squares cartesian. Then, the

following diagram commutes

(g1g2)
∗h!

//

��

h2!(f1f2)
∗

g∗
2g

∗
1h!

// g∗
2h1!f

∗
1

// h2!f
∗
2 f ∗

1

OO

The second Lemma is [De1, Lemme 5.2.4] :
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Lemma 6.4. Let X ′
2

f ′
2

��

g2 // X2

f2

��
X ′

1

f ′
1

��

g1 // X1

f1

��
S ′

g
// S

be a diagram with all squares cartesian. Let A ∈ Db(S ′).

Then, the following diagram commutes

A ⊗ g∗(f1f2)!−

��

// A ⊗ (f ′
1f

′
2)!g

∗
2−

// (f ′
1f

′
2)!((f

′
1f

′
2)

∗A ⊗ g∗
2−)

A ⊗ g∗f1!f2!−

��

f ′
1!f

′
2!(f

′
2
∗f ′

1
∗A ⊗ g∗

2−)

OO

A ⊗ f ′
1!g

∗
1f2!− // f ′

1!(f
′
1
∗A ⊗ g∗

1f2!−) // f ′
1!(f

′
1
∗A ⊗ f ′

2!g
∗
2−)

OO

Lemma 6.5. Let f : Y → X and A, B ∈ Db(X) and C ∈ Db(Y ). Then, the following diagram

commutes

A ⊗ B ⊗ f!C //

��

f!(f
∗(A ⊗ B) ⊗ C)

��
A ⊗ f!(f

∗B ⊗ C) // f!(f
∗A ⊗ f ∗B ⊗ C)

Proof. The corresponding statement for f! replaced by f∗ is easy, the key point is that the

composition f ∗ f∗η
−−→ f ∗f∗f

∗ εf∗

−−→ f ∗ is the identity of f ∗, where η and ε are the unit and counit
of the adjoint pair (f ∗, f∗). The Lemma follows easily from this (in the algebraic case, we
have only to check in addition the trivial case where f is an open immersion thanks to the
transitivity of Lemma 6.4, whereas in the topological case we use the embedding f!C ⊂ f∗C
for C injective). �

Lemma 6.6. Let X ′

f ′

��

g′ // X

f

��
S ′

g
// S

be a cartesian square. Let A ∈ Db(S) and B ∈ Db(X). Then,

the following diagram commutes

g∗A ⊗ g∗f!B //

��

g∗A ⊗ f ′
! g

′∗B // f ′
! (f

′∗g∗A ⊗ g′∗B) // f ′
! (g

′∗f ∗A ⊗ g′∗B)

��
g∗(A ⊗ f!B) // g∗f!(f

∗A ⊗ B) // f ′
! g

′∗(f ∗A ⊗ B)
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Proof. As in the previous Lemma, one reduces to proving the analog of the Lemma with ?!

replaced by ?∗. This follows then from the easily checked commutativity of the two diagrams

f ′∗g∗f∗ //

��

f ′∗f ′
∗g

′∗

��

g∗ //

��

g∗f∗f
∗

��

g′∗f ∗f∗ // g′∗ f ′
∗f

′∗g∗ // f ′
∗g

′∗f ∗

where we have used the units and counits of the adjoint pairs (f ∗, f∗) and (f ′∗, f ′
∗). �

Proof of the Theorem. We will show the commutativity of the following diagram

Φp6,p5

M Φp4β,p1α
L⊠K

ζ

��

cM,L⊠K

))SSSSSSSSSSSSSSS

ΦMΦLΦK

ΦMcL,K

55kkkkkkkkkkkkkkk

cM,LΦK ))SSSSSSSSSSSSSSS Φp6δ,γ
δ∗M Φβ,p1α

L⊠K

cδ∗M,L⊠K // ΦM⊠L⊠K

Φp6δ,p3γ
M⊠L Φp2,p1

K

ξ

OO

cM⊠L,K

55kkkkkkkkkkkkkkk

where ζ is the composition

p6! (M ⊗ p∗5(p4β)!(β
∗L ⊗ α∗K ⊗ (p1α)∗−)) → p6! (M ⊗ p∗5p4!β!(β

∗L ⊗ α∗K ⊗ (p1α)∗−))

→ p6! (M ⊗ δ!γ
∗β!(β

∗L ⊗ α∗K ⊗ (p1α)∗−))

→ p6!δ! (δ
∗M ⊗ γ∗β!(β

∗L ⊗ α∗K ⊗ (p1α)∗−))

→ (p6δ)! (δ
∗M ⊗ γ∗β!(β

∗L ⊗ α∗K ⊗ (p1α)∗−))

and ξ the composition

(p6δ)! (δ
∗M ⊗ γ∗L ⊗ (p3γ)∗p2!(K ⊗ p∗1−)) → (p6δ)! (δ

∗M ⊗ γ∗L ⊗ γ∗p∗3p2!(K ⊗ p∗1−))

→ (p6δ)! (δ
∗M ⊗ γ∗(L ⊗ p∗3p2!(K ⊗ p∗1−)))

→ (p6δ)! (δ
∗M ⊗ γ∗(L ⊗ β!α

∗(K ⊗ p∗1−)))

→ (p6δ)! (δ
∗M ⊗ γ∗(L ⊗ β!(α

∗K ⊗ α∗p∗1−)))

→ (p6δ)! (δ
∗M ⊗ γ∗(L ⊗ β!(α

∗K ⊗ (p1α)∗−)))

→ (p6δ)! (δ
∗M ⊗ γ∗β!(β

∗L ⊗ α∗K ⊗ (p1α)∗−))

Let u and v be the compositions

u : p6!(M ⊗ p∗5p4!−) → p6!(M ⊗ δ!γ
∗−) → p6!δ!(δ

∗M ⊗ γ∗−) → (p6δ)!(δ
∗M ⊗ γ∗−)

and

v : L⊗p∗3p2!(K⊗p∗1−) → L⊗β!α
∗(K⊗p∗1−) → β!(β

∗L⊗α∗(K⊗p∗1−)) → β!(β
∗L⊗α∗K⊗(p1α)∗−).

Then, one has trivially

ζ(ΦMcL,K) = u(L ⊗ p∗3p2!(K ⊗ p∗1−)) ◦ p6!(M ⊗ p∗5p4!v) = ξ(cM,LΦK).
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The equality cM,L⊠K = cδ∗M,L⊠Kζ follows from Lemma 6.4 applied to g = p5, g1 = γ, g2 = a,
f1 = p4, f2 = β, f ′

1 = δ, f ′
2 = b and A = M and from Lemma 6.1 applied to u = p6, v = δ and

w = b.

The equality cM⊠L,K = cδ∗M,L⊠Kξ follows from Lemma 6.3 applied to f1 = α, f2 = a, g1 = p3,
g2 = γ, h = p2, h1 = β and h2 = b, from Lemma 6.5 applied to f = b, A = δ∗M , B = γ∗L and
C = (αa)∗(K ⊗ p∗1−) and from Lemma 6.6 applied to f = β, g = γ, f ′ = b, g′ = a, A = L and
B = α∗(K ⊗ p∗1−). �
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