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Abstract

We consider a general discrete time financial market with proportional

transaction costs as in [7] an [12]. In addition to the usual investment in

financial assets, we assume that the agents can invest part of their wealth

in industrial projects that yield a non-linear random return. We study the

problem of maximizing the utility of consumption on a finite time period. The

main difficulty comes from the non-linearity of the non financial assets’ return.

Our main result is to show that existence holds in the utility maximization

problem. As an intermediary step, we prove the closedness of the set AT

of attainable claims under a robust no-arbitrage property similar to the one

introduced in [12] and further discussed in [7]. This allows us to provide a

dual formulation for AT .

Key words : financial markets with transaction costs, non-linear returns, robust

no-arbitrage, super-hedging theorem, multivariate non-smooth utility maximization.
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1 Introduction

We consider a general discrete time market with proportional transaction costs as

in [6], [7] and [12]. Following the above papers, we model the wealth process by

a vector valued process (Vt), each component i corresponding to the number of

units of asset i which is held in the portfolio. The usual self-financing condition is

described by the constraints Vt − Vt−1 ∈ −Kt, where −Kt is the random convex set

of affordable exchanges at time t, given the value of the underlying assets and the

level of transaction costs.

In the case of efficient frictions where the transaction costs are positive (which

is formulated by the assumption that Kt is proper), a general version of the Fun-

damental Theorem of Asset Pricing was obtained by [6]. In the case where some of

the costs may be zero, a notion of ”robust no-arbitrage” was introduced by [12] and

further studied in [7]. This assumption can be interpreted as follows : there is no-

arbitrage even if we reduce the size of the proportional transaction costs (which are

not already equal to zero). In the above papers, it is shown that this assumption is

equivalent to the existence of a strictly consistent price system (see [12] for a precise

definition). It also implies the closedness of the set of attainable claims and allows

to provide a suitable dual formulation for this set.

In addition to the above setting, we assume in this paper that the financial

agent can invest part of its wealth in non-financial assets, e.g. industrial projects,

which are also subject to proportional costs (see [4], [8]), but, in opposition to usual

financial assets, yield non-linear returns. Our principal aim is to study the problem

of maximizing the utility of consumption over a finite time period. The analysis of

such a model differs from the usual setting in many aspects :

1. It follows from the non-linearity of the non-financial assets’ return that the set

AT (0) of attainable claims with zero initial endowment is not a cone. More generally,

the set of attainable claims with initial endowment x, AT (x), is not linear with

respect to x, i.e. x+ AT (0) 6= AT (x).

2. All transactions Vt − Vt−1 ∈ −Kt are not allowed since it is natural to impose a

non-negativity constraint on the level of investment in the non-financial assets. In

fact, the effective set of possible transactions at time t is a subset of −Kt which

depends on the initial endowment and all the transactions up to t.

3. The notion of no-arbitrage is not as clear as in pure financial market. Indeed, if

we have an initial investment y (in units) in some project which yields a non negative
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return in terms of cash, and, if we do nothing, at the time horizon T we end up with

a non-zero amount of cash g and we still have the investment y (in units). Since

(g, y) ≥ (0, y) there is an arbitrage, in the usual sense, if g 6= 0. However, from an

economic point of view this situation should be possible as the risk supported by

investing in a project also lies in the liquidation value of the investment which does

not appear in the above formulation.

In order to avoid trivial situations, we have to impose some no-arbitrage con-

dition. In view of 3. above, we define it only on AT (0), i.e. we assume that

AT (0)∩L0(Rd+N
+ ) = {0}, see the notations below. As the initial endowment in non-

financial asset is 0, this avoids the problem pointed out in 3. In order, to obtain the

usual closedness property of AT (0), we impose a ”robust no-arbitrage condition”.

Because of the non-linearity of the non-financial assets’ returns, we can not work

directly with the ”robust no-arbitrage condition” of [12]. We therefore extend this

definition. Our version can be interpreted as follows : there is no arbitrage even if

we slightly reduce the size of the proportional transaction costs between financial

assets and slightly increase the return of the non-financial ones. It also allows us to

provide a dual formulation for this set.

In the multivariate setting, the usual duality approach for the utility maximiza-

tion problem is much more complex than in the case of no transaction costs. The

reason is that, even when the utility function U is smooth (which is not assumed

here), its Fenchel transform Ũ may not be smooth. To surround this difficulty, we

can proceed as in [2] and [1] who reduce to the smooth case by approximating Ũ by

smooth convex functions. But this leads to long and technical proofs. In the paper

[10], a more direct argument is proposed. It consists in first deriving the duality

theorem in an abstract way. This allows to show that maximizing sequences for

the primal problem satisfy a uniform integrability condition. However, it turns out

that the one dimensional argument of [10] does not work directly in our multivariate

setting. We overcome this difficulty by introducing some auxiliary primal problem.

The rest of the paper is organized as follows. The model is described in Section 2.

We discuss our ”robust no-arbitrage” condition in Section 3. The utility maximiza-

tion problem is defined in Section 4 where we state our existence result. In Section

5, we show the closedness of the set attainable terminal wealth and we provide a

dual formulation for this set in Section 6. The last Section contains the proof of the

existence result.
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In all this paper, we shall repeatedly use the following notations. For x ∈ Rd+N ,

we shall often write x as (xF , xI) where xF ∈ Rd and xI ∈ RN . The exponent F

(resp. I) stands for ”financial” (resp. ”industrial”). Given E ⊂ Rd+N , we write

E = {(xF , 0N ) : x = (xF , xI) ∈ E}, where 0N denotes the zero of RN . We denote

by ‖ · ‖ the Euclidian norm and by ”·” the inner product of Rp, where p ∈ N is

given by the context. Rp+ will denote the set of elements of Rp with non negative

components. Given a probability space (Ω,F ,P) endowed with a filtration F =

(Ft)t∈T, T = {0, . . . , T} for some T ∈ N \ {0}, and a random set E, we denote

by L0(Ω × T, E) the set of processes Y = (Yt(ω))t∈T valued in E, by L0(E;Ft)
the set of Ft measurable random variables which take values in E P − a.s. For F-

adapted processes with values in E, we write L0(E;F). For P̃ ∼ P, we similarly

denote L1(Ω × T, P̃, E) (resp. L1(E; P̃,Ft)) the set of elements of L0(Ω × T, E)

(resp. L0(E;Ft)) which are P̃-integrable. For bounded random processes (resp. Ft
measurable random variables), we use the notation L∞(Ω×T, E) (resp. L∞(E;Ft)).
When P̃ = P, we omit the argument P, and similarly when t = T , we may omit the

argument Ft. Same thing for E when it is clearly given by the context. For a subset

E ∈ Rp, we denote by E∗ its positive polar in the sense of convex analysis, i.e. E∗

:= {y ∈ Rp : x · y ≥ 0 for all x ∈ E}. Given an event set B, we denote E1IB

= {1IBx : x ∈ E} where 1IB = 1 on B and 0 otherwise. These last notations are

naturally extended to random sets.

2 A financial Model with industrial investment

opportunities

2.1 Financial and industrial investment strategies

Set T = {0, . . . , T} for some T ∈ N \ {0} and let (Ω,F ,P) be a probability space

endowed with a filtration F = (Ft)t∈T. We assume that FT = F and that F0 is

trivial. Given two integers d ≥ 1 and N ≥ 1, we denote by K the set of C-valued

processes K such that Rd+N
+ \ {0} ⊂ int(Kt) P − a.s. for all t ∈ T. Here, we follow

[7] and say that a sequence of set-valued mappings (Kt)t∈T is a C-valued process if

there is a countable sequence of Rd+N -valued processes Xn = (Xn
t )t∈T such that for

every t ∈ T, P− a.s. only a finite but non-zero number of Xn
t is different from zero
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and Kt = cone{Xn
t , n ∈ N}. This means that Kt is the polyhedral cone generated

by the P− a.s. finite set {Xn
t , n ∈ N and Xn

t 6= 0}.

Given K ∈ K, we denote by A(K) the set of processes ξ ∈ L0(Rd+N ;F) such that

ξt ∈ −Kt and I(ξ)it :=
t∑

s=0

ξd+i
s ≥ 0 , 1 ≤ i ≤ N , P− a.s. for all t ∈ T .

The interpretation is the following. For 1 ≤ i ≤ d, the quantity (ξt)
i corresponds to

the number of units of financial asset i which are bought at time t, and
∑t

s=0 ξ
i
s is

the number of units of financial asset i which are held at time t. For 1 ≤ i ≤ N , the

quantity (ξt)
d+i corresponds to the variation of the level of investment in the i-th

industrial project. Then,
∑t

s=0 ξ
d+i
s is the level of investment in the i-th industrial

project at time t. The convex cone −Kt is the set of variations in the global portfolio

which are affordable, after possibly throwing out some units of the assets, at time t

given the price of the financial assets and the cost of one additional unit of invest-

ment in the industrial projects. Then, the condition ξt ∈ −Kt stands for the usual

self-financing condition. The process I(ξ) corresponds to the global investment in

the different industrial projects. The condition I(ξ)t ∈ RN+ P− a.s. means that it is

not possible to have a negative level of investment in an industrial project.

Due to the constraint on the level of investment, we also need to consider the case

where the strategy starts with an initial holding x = (xF , xI) ∈ Rd × RN+ . We

then extend the previous notation and define A(x;K) as the set of processes ξ ∈
L0(Rd+N ;F) such that

ξt ∈ −Kt and I(ξ)t + xI ∈ RN+ P− a.s. for all t ∈ T . (2.1)

Observe that A(K) = A(0;K).

The return associated to the industrial investment is modelled by a process R ∈ R,

the set of adapted processes with values in the set of mapping from RN+ into Rd+N .

A level of investment I(ξ)t in the industrial project at time t leads to a reward (in

units) Rt+1(I(ξ)t) at time t+1. Here, the fact that Rt+1 takes values in Rd+N means

that the reward consists in units of the financial assets. If the N last assets are

interpreted as industrial tools used for an industrial project, it is natural to assume
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that the reward consists in stocks or currencies, i.e. pure financial assets, while the

(relative) value of these tools may evolve in time.

The set of claims that can be reached with an initial holding x = (xF , xI) ∈ Rd×RN+
is then given by

AT (x;K,R) :=

{
x+

T∑

t=0

ξt +

T−1∑

t=0

Rt+1(xI + I(ξ)t) , ξ ∈ A(x;K)

}
.

For x = 0, we shall simply write AT (K,R) for AT (x;K,R).

Remark 2.1 Observe from (2.1) that for general x = (xF , xI) ∈ Rd×RN+ , we do not

have equality between A(x;K) and A(K), except if xI = 0. Similarly, AT (x;K,R)

differs from x + AT (K,R) in general, while AT (x;K,R) = xF + AT ((0d, x
I);K,R).

Also, observe that AT (K,R) is in general not a cone since Rt is not assumed to be

linear.

In all this paper, we shall assume that (K,R) ∈ K×R satisfies the above assumptions

P− a.s. for each t ∈ T :

(R1) Rt(0) = 0 and Rt is continuous.

(R2) For λ ∈ [0, 1] and (α, β) ∈ (L0(RN+ ))2, we have

λRt(α) + (1− λ)Rt(β)−Rt (λα + (1− λ)β) ∈ −K t .

(R3) There is some at ∈ L0(Rd+N) and L ∈ R such that λLt(α) = Lt(λα) P − a.s.

and Rt(α) + at + Lt(α) ∈ L0(Rd+N
+ ) for all (λ, α) ∈ L0(R+ × RN+ ).

The condition Rt(0) = 0 is natural since no investment in the industrial project

should yield no return. The condition (R2) is a concavity assumption. It means that,

up to an immediate transaction in terms of financial assets, the return induced by a

convex combination of industrial investments is better than the convex combination

of the returns induced by each of them. It implies that AT (x;K,R) is convex (see

Lemma 2.1 below). The last assumption is more technical. It imposes an affine lower

bound on the mapping x 7→ Rt(x)(ω) for almost every ω ∈ Ω. In the one dimensional

case, this means that R′(∞) > −∞ P − a.s. It is used only in the proof of Lemma

5.3 below and can be replaced by a weaker one as explained in Remark 5.1.

Observe that we do not impose non-negative returns, i.e. an investment in non-

financial assets may lead to a negative reward in terms of financial assets.
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2.2 Admissible consumption processes

A consumption process is a F-adapted process c = (ct)t∈T with values in Rd+. Given an

initial endowment x ∈ Rd×RN+ , we say that a consumption process c is x-admissible

if
(∑T

t=0 ct, 0N

)
∈ AT (x;K,R). We then define

CT (x;K,R) :=

{
c = (ct)t∈T ∈ L0(Rd+;F) :

(∑

t∈T
ct, 0N

)
∈ AT (x;K,R)

}
.

Observe that we only allow consumption in terms of financial assets. This formula-

tion is well understood when the financial assets are indeed currencies.

Lemma 2.1 Let (K,R) ∈ K×R be such that (R2) holds and fix x ∈ Rd×RN+ , then

AT (x;K,R) is convex, and so is CT (x;K,R).

Proof. Let x = (xF , xI) ∈ Rd × RN+ , g and g̃ be two elements of AT (x;K,R), and,

let ξ and ξ̃ be two elements of A(x;K) such that

x+

T∑

s=0

ξs +

T−1∑

s=0

Rs+1(xI + I(ξ)s) = g

and x+
T∑

s=0

ξ̃s +
T−1∑

s=0

Rs+1(xI + I(ξ̃)s) = g̃ .

For ε ∈ [0, 1], we define ξε = εξ + (1 − ε)ξ̃. Let ρε ∈ L0(Rd+N ;F) be defined by ρε0
= 0 and

ρεt+1 := εRt+1(xI + I(ξ)t) + (1− ε)Rt+1(xI + I(ξ̃)t)−Rt+1(xI + I(ξε)t) .

for 0 ≤ t ≤ T − 1. In view of (R2)

ρεt ∈ −Kt t ∈ T .

Then, ξ̂ε ∈ L0(Rd+N ;F) defined by

ξ̂εt := εξt + (1− ε)ξ̃t + ρεt t ∈ T

lies in A(x;K) and satisfies

x+
T∑

t=0

ξ̂εt +
T−1∑

t=0

Rt+1(xI + I(ξ̂ε)t) = εg + (1− ε)g̃ .

This concludes the proof. tu
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3 The robust no-arbitrage condition

In order to avoid trivial situations, we need to impose a no-arbitrage condition on

the global market. Extending in a natural way the usual notion of no-arbitrage, we

assume that

NA(K,R) : AT (K,R) ∩ L0(Rd+N
+ ) = {0} .

In this paper, we shall indeed impose a stronger condition, which is similar to the one

introduced by [12] and further studied by [7]. To this end, for K ∈ K, we define K 0

= (K0
t )t∈T by K0

t = Kt ∩ (−Kt) for t ∈ T, and we say that a couple (K̃, R̃) ∈ K×R
dominates (K,R) ∈ K ×R if, for each t ∈ T,

(D1) Kt \K0
t ⊂ ri(K̃t)

(D2) R̃t(0) ∈ Kt and R̃t(α)−Rt(α) ∈ ri(Kt) , α ∈ RN+ \ {0} .

We then assume that (K,R) satisfies the robust no-arbitrage property :

NAr(K,R) : NA(K̃, R̃) holds for some (K̃, R̃) which dominates (K,R).

In the context of pure financial models as in [12] and [7], the robust no-arbitrage

condition means that there is no arbitrage even if we slightly reduce the size of the

transaction costs which are not already equal to zero. In our context, the same

interpretation holds for the financial part of the model. As for the industrial part,

we assume that the no-arbitrage property is also stable under a slight increase of the

non-linear returns.

Remark 3.1 1. As observed in Remark 2.1, for general x = (xF , xI) ∈ Rd × RN+ ,

we do not have AT (x;K,R) = x + AT (K,R). In particular, there is no reason why

(AT (x;K,R)− x)∩L0(Rd+N
+ ;FT ) = {0} should hold. In our context, this condition

could be replaced by

NA(x;K,R) :

(
AT (x;K,R)− x−

T−1∑

t=0

Rt+1(xI)

)
∩ L0(Rd+N

+ ) = {0} ,

which could be interpreted as :”we can not do P− a.s. better than doing nothing”.

Since the exact meaning of this assertion is not clear, especially in the case where

Rt may have negative components, we shall not use it in this paper.

2. In the case where x = (xF , 0N ), then AT (x;K,R)−x−∑T−1
t=0 Rt+1(0) = AT (K,R)

and therefore NA(x;K,R) ⇔ NA(K,R), see (R1).
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Our first result shows that the NAr condition implies the closedness of AT (x;K,R).

Theorem 3.1 Let (K,R) ∈ K × R be such that (R1)-(R2)-(R3) and NAr(K,R)

hold. Then, for all x ∈ Rd × RN+ , AT (x;K,R) and CT (x;K,R) are closed in proba-

bility.

Proof. See Lemma 5.4 and Remark 5.2 below. tu

In Section 6, we shall provide a dual formulation for AT (x;K,R) and CT (x;K,R).

It is not the main aim of this paper but it will be useful in the proof of Theorem 4.1

below. As usual, the dual formulation is obtained by using the closure property of

AT (x;K,R).

4 Existence in the utility maximization problem

We now consider a sequence (Ut)t∈T of concave mappings from Rd+ into R such that

cl (dom(Ut)) = Rd+ , t ∈ T , (4.1)

where cl (dom(Ut)) denotes the closure of the effective domain of Ut, dom(Ut) :=

{c ∈ Rd : |Ut(c)| <∞}. It is natural to assume that Ut is Rd-non-decreasing in the

sense that

Ut(x) ≥ Ut(y) if x− y ∈ Rd+ , t ∈ T . (4.2)

The utility maximization problem is defined as

u(x) := sup
c∈CUT (x;K,R)

E

[∑

t∈T
Ut(ct)

]
, x ∈ Rd × RN+

where

CUT (x;K,R) :=

{
c ∈ CT (x;K,R) :

(∑

t∈T
Ut(ct)

)−
∈ L1(P)

}
.

Remark 4.1 We claim that CUT (x;K,R) 6= ∅ whenever x ∈ int(K0). This follows

from the following observations.

1. By assumption Rd+N
+ \ {0} ⊂ int(K0). It follows that (K0)∗ \ {0} ⊂ int(Rd+N

+ ).

In particular, for H1 = {y ∈ Rd+N : y1 = 1}, the set (K0)∗ ∩ H1 is compact and
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there is some ε > 0 such that yi ≥ ε for all 1 ≤ i ≤ d+N and y ∈ (K0)∗ ∩H1. Also

observe that, for y ∈ K∗0 , y1 = 0 implies y = 0.

2. Observe now that x ∈ int(K0) if and only if y · x > 0 for all y ∈ (K0)∗ ∩H1. It

then follows from 1. that, for x ∈ int(K0), we can find some x̃ ∈ Rd+N with x̃i > 0,

for i ≤ d, such that x− x̃ ∈ K0.

3. Letting x and x̃ be as in 2., we define the process c as cit = x̃i/T for all i ≤ d

and t ∈ T. Then, c ∈ CT (x̃;K,R) ⊂ CT (x;K,R) and ct ∈ dom(Ut) for all t ∈ T, see

(4.1).

As usual, we need to impose some additional conditions on the utility functions. In

our multivariate framework, it is natural to rewrite the usual Inada’s conditions in

terms of the Fenchel transforms associated to Ut

Ũt(y) = sup
x∈Rd+

Ut(x)− x · y , y ∈ Rd+ , t ∈ T .

In the smooth one dimensional case, the usual Inada’s conditions U ′t(0) = +∞ and

U ′t(+∞) = 0 are equivalent to dom(Ũt) ⊃ (0,∞). We therefore assume that

int(Rd+) ⊂ dom(Ũt) . (4.3)

For later use, observe that

Ũt(x) ≤ Ũt(y) if x− y ∈ Rd+ , t ∈ T . (4.4)

We shall also appeal to one of these two conditions :

(Ũ1) the sequence of functions Ũn
t (y) = supx∈Rd+, ‖x‖≤n U(x) − x · y is uniformly

bounded from below in y ∈ Rd+ and n ≥Mt for some Mt ∈ N.

or

(Ũ2) there is some et ∈ int(Rd+) such that the mapping Vt : r ∈ R+ 7→ Ũt(ret) is

stricly convex and lim
r→+∞

V ′t (r) = 0 (where V ′t denotes the right-hand derivative

of Vt).

Assumption (Ũ1) is trivially satisfied if Ut(0) > −∞. Assumption (Ũ2) means that

there is a direction along which Ũt is strictly convex. This generalizes the usual one

dimensional assumption : Ut is strictly concave, which implies the strict convexity

of Ũt in the one dimensional case.
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Following [9], [2] and [1], we finally impose the asymptotic elasticity condition

lim sup
`(y)→0

(
sup

q∈−∂Ũt(y)

q · y
)
/Ũt(y) < ∞ (4.5)

where ∂Ũt(y) denotes the subgradient of Ũt at y in the sense of convex analysis and

`(y) := inf
x∈Rd+ , ‖x‖=1

x · y .

We can now state our main result.

Theorem 4.1 Fix (K,R) ∈ K × R such that (R1) to (R3) and NAr(K,R) hold.

Let the conditions (4.1)-(4.2)-(4.3)-(4.5) hold. Assume further that, for each t ∈ T,

either (Ũ1) or (Ũ2) hold. Finally assume that u(x) < ∞ for some x ∈ int(K0).

Then,

(i) u(x) <∞ for all x ∈ Rd × RN+
(ii) for all x ∈ Rd × RN+ such that CUT (x;K,R) 6= ∅, there is some c∗ ∈ CUT (x;K,R)

such that

u(x) = E

[∑

t∈T
Ut(c

∗
t )

]
.

Remark 4.2 If the Ut’s are assumed to be strictly concave, then uniqueness holds

for the utility maximization problem.

Remark 4.3 In Remark 7.3 below, we discuss the assumption (4.5) which can be

replaced by a finitness condition on some auxiliary dual problem as in [10].

The remaining sections are organized as follow. In Section 5, we show thatAT (x;K,R)

is closed in probability as soon as (R1) to (R3) and NAr(K,R) hold. In Section 6,

we use this result to provide a dual formulation for the set of attainable claims. The

proof of Theorem 4.1 is given in Section 7.

5 The closure property

Observe that, because of the constraint (2.1), the sets AT (x;K,R) are not KT -solid,

i.e.

AT (x;K,R) + AT (x;K,R)− L0(KT ) .
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Indeed, f /∈ AT (x : K,R) whenever P
[
f /∈ Rd × RN+

]
> 0. In order to obtain a

suitable dual formulation for AT (x;K,R), see Section 6 below, we therefore introduce

the KT -solid envelope of AT (x;K,R) :

AsT (x;K,R) := AT (x;K,R)− L0(KT ) .

Since

AsT (x;K,R) ∩ L0(Rd × RN+ ) = AT (x;K,R) , (5.1)

passing fromAs
T (x;K,R) toAT (x;K,R) is straightforward. In particular, ifAs

T (x;K,R)

is closed in probability, then so is AT (x;K,R).

In this section, we prove the closedness of As
T (x;K,R). It is not of direct use for the

proof Theorem 4.1, i.e. the closedness of AT (x;K,R) is enough, but it will allow us

to establish a general dual formulation the set of elements g of AT (x;K,R) which

are ”bounded from below”, see Theorem 6.2 in the next section.

Observe that we can rewrite As
T (x;K,R) as

AsT (x;K,R) =

{
x+

T∑

t=0

ξt +
T−1∑

t=0

Rt+1(xI + I(ξ)t) , ξ ∈ As(x;K)

}
,

where, for x = (xF , xI) ∈ Rd × RN+ , As(x;K) is the set of adapted process ξ such

that

ξt ∈ −Kt and I(ξ)t1It≤T−1 + xI ∈ RN+ P− a.s. for all t ∈ T . (5.2)

We shall simply write As
T (K,R) and As(K) when x = 0.

The following Lemma can be compared to Lemma 5 in [7] and is the key result to

prove the closure property.

Lemma 5.1 Let (K,R) ∈ K ×R be such that NAr(K,R) hold. Let ξ ∈ As(K) be

such that
T∑

t=0

ξt +
T−1∑

t=0

Rt+1(I(ξ)t) = ε

for some ε ∈ K t0 with t0 ∈ T. Then, ε ∈ K0
t0

, and

I(ξ)t = 0 , ξt ∈ K0
t for all t ∈ T .

12



Proof. 1. First assume that P
[
ε /∈ K0

t0

]
> 0. By (D1), there is a set B ⊂

Ω of positive probability on which ε ∈ ri(K̃t0
). Hence, we can find some β ∈

L0(Rd+N
+ ;Ft0)\{0}, such that −ε+β ∈ −K̃t0

on B. Set ξ̂t = ξt+ (β− ε)1It=t0 . Since

β − ε takes values in Rd+N , we have I(ξ̂) = I(ξ) and

T∑

t=0

ξ̂t +
T−1∑

t=0

Rt+1(I(ξ̂)t) = β .

Set

rt+1 = R̃t+1(I(ξ̂)t)−Rt+1(I(ξ̃)t)

ξ̃0 = ξ̂0 and ξ̃t+1 = ξ̂t+1 − rt+1 , 0 ≤ t ≤ T − 1 .

By (D2), rt+1 ∈ Kt P− a.s. and ξ̃ ∈ As(K) ⊂ As(K̃) satisfies

T∑

t=0

ξ̃t +

T−1∑

t=0

R̃t+1(I(ξ̃)t) = β .

Since β ∈ L0(Rd+N
+ ;Ft0)\{0}, this contradicts NA(K̃, R̃) and therefore NAr(K,R).

2. If P [I(ξ)t∗ 6= 0] > 0 for some t∗ ∈ T \ {T}, then on a set B ⊂ Ω of positive

probability we have I(ξ)t∗ 6= 0. Set α := R̃t∗+1(I(ξ)t∗) − Rt∗+1(I(ξ)t∗). Then, by

(D2), α ∈ Kt∗+1 P − a.s. and α ∈ ri(K t∗+1) on B. We can then find some β ∈
L0(Rd+N

+ ;Ft∗+1) \ {0} such that α− β ∈ K t∗+1. Then,

−α + β +
T∑

t=0

ξt +
T−1∑

t=0

R̃t+1(I(ξ)t) = ε+ β + γ ,

where

γ :=
∑

t∈T\{t∗}
R̃t+1(I(ξ)t)−Rt+1(I(ξ)t) ∈

∑

t∈T\{t∗}
Kt P− a.s.

by (D2). Arguing as in 1., we obtain a contradiction to NA(K̃, R̃). Hence, I(ξ)t =

0 P− a.s. for all t < T . Since ε takes values in Rd+N , we must also have I(ξ)T = 0

P− a.s.

3. We already know from 2. that I(ξ)t = 0 for each t ∈ T. It follows that ξt ∈
−Kt for all t ∈ T. Assume that P

[
ξt∗ /∈ K0

t∗
]
> 0 for some t∗ ∈ T. By (D1), there is

a set B ⊂ Ω of positive probability on which we have ξt∗ ∈ −ri(K̃t∗). We can then

find some β ∈ L0(Rd+N
+ ;Ft∗) \ {0} such that ξt∗ + β ∈ −K̃t∗. Since

β +
T∑

t=0

ξt +
T−1∑

t=0

Rt+1(I(ξ)t) = β + ε ,
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we obtain a contradiction to NA(K̃, R̃) by the same arguments as in 1. tu

Before to go on with the proof of the closure property, we recall the following Lemma

which proof can be found in [5].

Lemma 5.2 Set G ⊂ F and E ⊂ Rd+N . Let (ηn)n≥1 be a sequence in L0(E;G).

Set Ω̃ := {lim infn→∞ ‖ηn‖ <∞}. Then, there is an increasing sequence of random

variables (τ(n))n≥1 in L0(N;G) such that τ(n)→∞ P− a.s. and , for each ω ∈ Ω̃,

ητ(n)(ω) converges to some η∗(ω) with η∗ ∈ L0(E;G).

As a consequence, we first obtain some additional property on R which will be useful

in the proof of Lemma 5.4 below.

Lemma 5.3 Let R ∈ R be such that (R1)-(R2)-(R3) hold. Let (ηn, αn)n≥1 be a

sequence in L0(R+ × RN+ ;Ft) such that (ηn, αn) → (∞, α) P − a.s. for some α ∈
L0(RN+ ). Then, there is a sequence (τn)n≥1 in L0(N;Ft) such that τn → ∞ P− a.s.

and

lim
n→∞

(ητn)−1Rt(η
τnατn)−Rt(α) = −ε

for some ε ∈ L0(Kt;Ft).

Proof. By (R1)-(R2),

(ηn)−1Rt(η
nαn)−Rt(α

n) ∈ −Kt on {ηn ≥ 1} . (5.3)

1. We claim that we can find some Y ∈ L∞(K∗t ) with Y i > 0 P − a.s. for all

i = 1, . . . , d+N . Then, on {ηn ≥ 1},

Y ·
[
(ηn)−1Rt(η

nαn) + (ηn)−1at + Lt(α
n)
]
≤ Y ·

[
Rt(α

n) + (ηn)−1at + Lt(α
n)
]
,

where at ∈ L0(Rd+N
+ ) and Lt ∈ R are given by (R3). Since Rt(α

n) converges P− a.s.

toRt(α), see (R1), (ηn)−1at+Lt(α
n) converges P−a.s. to Lt(α), and (ηn)−1Rt(η

nαn)+

(ηn)−1at + Lt(α
n) ∈ L0(Rd+N

+ ), we deduce that

lim inf
n→∞

∥∥(ηn)−1Rt(η
nαn)

∥∥ <∞ .

In view of Lemma 5.2, we can then find a sequence (τn)n≥1 in L0(N;Ft) such that

τn → ∞ P − a.s. and (ητn)−1Rt(η
τnατn) converges P − a.s. Since K t is closed, the

result then follows from (5.3).
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2. It remains to prove that we can find some Y ∈ L∞(K∗t ) with Y i > 0 P− a.s. for

all i = 1, . . . , d + N . Observe that for X ∈ L0(ri(Kt)) there is some Y ∈ L∞(K∗t )

such that Y · X > 0. Let ei be the vector of Rd+N defined by eji = 1Ii=j. Since Kt

dominates Rd+N
+ , i.e. Rd+N

+ \ {0} ⊂ ri(Kt), for each 1 ≤ i ≤ d + N we can find

some Yi ∈ K∗t such that Yi · ei > 0. Then, Y :=
∑d+N

i=1 Yi ∈ K∗t satisfies the required

property. tu

Remark 5.1 In the above proof, assumption (R3) was used only to show that

lim inf
n→∞

∥∥(ηn)−1Rt(η
nαn)

∥∥ <∞ P− a.s. (5.4)

Then, we could replace (R3) by : for all sequence (ηn, αn)n≥1 in L0(R+ × RN+ ;Ft)
such that (ηn, αn) → (∞, α) P− a.s. for some α ∈ L0(RN+ ), we have (5.4).

We can now state the main result of this section.

Lemma 5.4 Let (K,R) ∈ K×R be such that (R1)-(R2)-(R3) and NAr(K,R) hold.

For t ∈ T and α ∈ L0(RN+ ;Ft), let Y t,α(K) be the set of processes ξ ∈ L0(Rd+N ;F)

such that

ξs ∈ −Ks1Is≥t for all s ∈ T and I(ξ)s + α ∈ RN+ for all t ≤ s ≤ T − 1 P− a.s.

For t ∈ T, let Y t
T (K,R) denote the set of elements (α, g) ∈ L0(RN+ ;Ft)×L0(Rd+N ;FT )

such that there is some ξ ∈ Y t,α(K) for which

T∑

s=t

ξs +
T−1∑

s=t

Rs+1(I(ξ)s + α) = g .

Then, for all t ∈ T, Y t
T (K,R) is closed for the convergence in probability.

Remark 5.2 For x = (xF , xI) ∈ Rd × RN+ , the above Lemma readily implies that

AsT (x;K,R) is closed in probability since (xI , gn + (xF , 0N )) ∈ Y 0
T (K,R) if and only

if gn ∈ AsT (x;K,R). In view of (5.1), this shows that AT (x;K,R) is closed too and

so is CT (x;K,R).

Proof. We proceed by induction. For t = T , there is nothing to prove. We then

assume that Y t+1
T (K,R) is closed for some 0 ≤ t < T and show that this implies that

Y t
T (K,R) is closed too. Let (αn, gn)n≥1 be a sequence in Y t

T (K,R) that converges
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in probability to some (α, g) ∈ L0(RN+ ;Ft) × L0(Rd+N ;FT ). After passing to a

subsequence, we can assume that the convergence holds P − a.s. Let (ξn)n≥1 be a

sequence such that

ξn ∈ Y t,αn(K) and

T∑

s=t

ξns +

T−1∑

s=t

Rs+1(I(ξn)s + αn) = gn , n ≥ 1 . (5.5)

Set Ω̃ = {lim inf
n→∞

‖ξnt ‖ <∞} and observe that Ω̃ ∈ Ft.
1. By Lemma 5.2, if P

[
Ω̃
]

= 1, we can find an increasing sequence of random

variables (τ(n))n≥1 in L0(N;Ft) such that, for each ω ∈ Ω̃, ξ
τ(n)
t (ω) converges to

some ξt(ω) with ξt ∈ L0(Rd+N ;Ft). We then have

gτ(n) = ξ
τ(n)
t +Rt+1(I(ξτ(n))t + ατ(n))

+
T∑

s=t+1

ξ̃τ(n)
s +

T−1∑

s=t+1

Rs+1(I(ξ̃τ(n))s + I(ξτ(n))t + ατ(n))

where

ξ̃τ(n)
s = ξτ(n)

s 1Is≥t+1 , 0 ≤ s ≤ T .

Hence, (I(ξτ(n))t+ατ(n), gτ(n)−ξτ(n)
t −Rt+1(I(ξτ(n))t+ατ(n))) belongs to Y t+1

T (K,R).

Since Y t+1
T (K,R) is closed, we can find some ξ̃ ∈ L0(Rd+N ;F), with ξ̃s = 0 for

s < t+ 1, such that

T∑

s=t+1

ξ̃s +
T−1∑

s=t+1

Rs+1(I(ξ̃)s + I(ξ)t + α) = g − ξt −Rt+1(I(ξ)t + α) ,

where we used (R1) to pass to the limit in Rt+1. Set

ξ̄s = ξt1I{s=t} + ξ̃1I{t<s≤T} , s ∈ T .

Then,

T∑

s=t

ξ̄s +
T−1∑

s=t

Rs+1(I(ξ̄)s + α) = g

where, in view of (5.5),

ξ̄s ∈ −Ks1Is≥t for s ∈ T and I(ξ̄)s + α ∈ RN+ for t ≤ s ≤ T − 1 , P− a.s.
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This shows that (α, g) ∈ Y t
T (K,R).

2. We next consider the case where P
[
Ω̃
]
< 1. Since Ω̃ ∈ Ft, we can work separately

on Ω̃ and Ω̃c, by considering two alternative strategies depending on the occurrence

of Ω̃ or Ω̃c. We can then proceed as if P
[
Ω̃c
]

= 1.

2.a. Let ηnt := ‖ξnt ‖ + 1. Since, lim inf
n→∞

(ηnt )−1‖ξnt ‖ < ∞ P − a.s., we can find an

increasing sequence of random variables (τ(n))n≥1 in L0(N;Ft) such that

for each ω ∈ Ω̃c, (η
τ(n)
t )−1ξ

τ(n)
t converges to some ξ̄∗t in L0(Rd+N ;Ft).

Set

(ξ̄n, ḡn, ᾱn) := (η
τ(n)
t )−1(ξτ(n), gτ(n), ατ(n)) and η̄nt := η

τ(n)
t ,

so that

ḡn = ξ̄nt + (η̄nt )−1Rt+1

(
η̄nt (I(ξ̄n)t + ᾱn)

)
(5.6)

+
T∑

s=t+1

ξ̄ns +
T−1∑

s=t+1

(η̄nt )−1Rs+1

(
η̄nt (I(ξ̄n)s + ᾱn)

)
.

Set

rns+1 := Rs+1

(
I(ξ̄n)s + ᾱn

)
− (η̄nt )−1Rs+1

(
η̄nt (I(ξ̄n)s + ᾱn)

)
, t+ 1 ≤ s ≤ T − 1 .

(5.7)

In view of (R1)-(R2), rns+1 ∈ Ks+1, t+ 1 ≤ s ≤ T − 1, P− a.s. Set

ξ̃ns := ξ̄ns 1Is≥t+1 − rns 1Is≥t+2 ∈ −Ks , s ∈ T . (5.8)

Since I(ξ) does not depend on the d first component of ξ, we have

I(ξ̄n)s = I(ξ̃n)s + I(ξ̄n)t , s ≥ t+ 1 . (5.9)

Since ᾱn + I(ξ̄n)t → I(ξ̄∗)t P− a.s., we deduce from Lemma 5.3 that there is some

ε ∈ L0(Kt+1;Ft+1) and an increasing sequence of random variables (σ(n))n≥1 in

L0(N;Ft+1) such that

lim
n→∞

(η̄
σ(n)
t )−1Rt+1

(
η̄
σ(n)
t (I(ξ̄σ(n))t + ᾱσ(n))

)
−Rt+1

(
I(ξ̄∗)t

)
= −ε , (5.10)

where σ(n) goes to ∞ P− a.s. Since by (5.6)-(5.7)-(5.8)-(5.9)

ḡσ(n) = ξ̄
σ(n)
t + (η̄

σ(n)
t )−1Rt+1

(
η̄
σ(n)
t (I(ξ̄σ(n))t + ᾱσ(n))

)

+
T∑

s=t+1

ξ̃σ(n)
s +

T−1∑

s=t+1

Rs+1

(
I(ξ̃σ(n))s + I(ξ̄σ(n))t + ᾱσ(n))

)
,
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we deduce as above that (I(ξ̄σ(n))t+ᾱ
σ(n), ḡσ(n) −(η̄

σ(n)
t )−1Rt+1

(
η̄
σ(n)
t (I(ξ̄σ(n))t + ᾱσ(n))

)

−ξ̄σ(n)
t ) belongs to Y t+1

T (K,R). Since Y t+1
T (K,R) is closed and (ḡn, ᾱn) goes to 0

P− a.s., we can find some adapted process ξ̃∗ such that

ξ̃∗s ∈ −Ks1Is≥t+1 for s ∈ T , I(ξ̃∗)s + I(ξ̄∗)t ∈ RN+ for all s ∈ T \ {T} P− a.s.

0 = lim
n→∞

(η̄
σ(n)
t )−1Rt+1

(
η̄
σ(n)
t (I(ξ̄σ(n))t + ᾱσ(n))

)
+ ξ̄∗t +

T∑

s=t+1

ξ̃∗s

+
T−1∑

s=t+1

Rs+1

(
I(ξ̃∗)s + I(ξ̄∗)t

)
,

and it follows from (5.10) that

L0(Kt+1;Ft+1) 3 ε = Rt+1

(
I(ξ̄∗)t

)
+

T∑

s=t+1

ξ̃∗s + ξ̄∗t +
T−1∑

s=t+1

Rs+1

(
I(ξ̃∗)s + I(ξ̄∗)t

)
.

We then define

ξ̂∗s := ξ̄∗t 1Is=t + ξ̃∗s1Is≥t+1 , s ∈ T . (5.11)

With this new notation, we have I(ξ̂∗)s1Is≤T−1 ∈ RN+ , ξ̂∗s ∈ −Ks1Is≥t for all s ∈ T,

and

ε =
T∑

s=t

ξ̂∗s +
T−1∑

s=t

Rs+1

(
I(ξ̂∗)s

)
. (5.12)

By Lemma 5.1, we must have ε ∈ K0
t+1,

I(ξ̂∗)s = 0 and ξ̂∗s ∈ K0
s for all s ∈ T . (5.13)

Finally, letting

ξ̌∗s := ξ̂∗s − ε 1Is=t+1 , s ∈ T ,

we deduce from (5.11)-(5.12)-(5.13) and (R1) that

ξ̌∗ ∈ As(K) , ξ̌∗s ∈ −Ks1Is≥t for all s ∈ T and
T∑

s=t

ξ̌∗s = 0 . (5.14)
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2.b. Since ‖ξ̄∗t ‖ = ‖ξ̌∗t ‖ = 1 on Ω̃, there is a partition of Ω̃ into disjoint subsets

Γi ∈ Ft such that Γi ⊂ {(ξ̌∗t )i 6= 0} for i = 1, . . . , d. We then define

ξ̌ns =
d∑

i=1

(
ξns − βn,it ξ̌∗s

)
1IΓi s ∈ T

with βn,it = (ξnt )i/(ξ̌∗t )
i on Γi, i = 1, . . . , d. Since, by (5.14) and the definition of ξn,

T∑

s=t

ξ̌ns =

T∑

s=t

ξns , ξ̌ns ∈ −Ks1Is≥t and I(ξ̌n)s = I(ξn)s , s ∈ T ,

it follows that ξ̌n ∈ Y t,αn(K) and

T∑

s=t

ξ̌ns +
T−1∑

s=t

Rs+1(I(ξ̌n)s + αn) = gn n ≥ 1 .

We can then proceed as in [7] and obtain the required result by repeating the above

argument with (ξ̌n)n≥1 instead of (ξn)n≥1 and by iterating this procedure a finite

number of times. tu

6 Dual formulation for attainable terminal wealth

In this section, we provide a dual characterization of the set of attainable terminal

wealth. To this end, given K ∈ K and P̃ ∼ P, we define ZT (K, P̃) as the set of

adapted processes Z = (ZF , ZI) ∈ L1(Rd+N ; P̃,F) such that :

(i) (ZF
t , 0N ) ∈ ri((Kt)

∗) for each t ∈ T and ZT ∈ (KT )∗ \ {0} P− a.s.,

(ii) ZF is a P̃-martingale.

Remark 6.1 Recall that, by assumption, Rd+N
+ \ {0} ⊂ int(KT ) P− a.s. It follows

that (KT )∗ \ {0} ⊂ int(Rd+N
+ ) P − a.s. This shows that ZT ∈ int(Rd+N

+ ) P − a.s.

whenever Z ∈ ZT (K, P̃) for some P̃ ∼ P.

We start with a series of Lemmas which are similar to results in [12] and [7].

Lemma 6.1 Fix (K,R) ∈ K×R satisfying (R1)-(R2)-(R3) and NAr(K,R). Then,

for all P̃ ∼ P, there is a process Z ∈ ZT (K, P̃) ∩ L∞ such that

sup
g∈AsT (K,R)∩L1(P̃)

EP̃[ZT · g] < ∞ .
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Proof. Since, by Remark 5.2, As
T (K,R) is closed in probability, As

T (K,R) ∩ L1(P̃)

is closed in L1(P̃). By Lemma 2.1 it is also convex. In view of NA(K,R), which

is trivially implied by NAr(K,R), it then follows from the Hahn-Banach separation

theorem that, for each φ ∈ L1(Rd+N
+ ; P̃) \ {0}, we can find η ∈ L∞(Rd+N) such that

EP̃ [η · g] < EP̃ [η · φ] for all g ∈ As
T (K,R) ∩ L1(P̃) .

Since −L0(KT ) ⊂ AsT (K,R), we must have η ∈ L0((KT )∗). Using a standard ex-

haustion argument, we also obtain that P [η = 0] = 0. Set Zt = (ZF
t , Z

I
t ) = E [η | Ft].

Then, ZF is a martingale. Since
∑

t∈T−L0(Kt;Ft) ⊂ AsT (K,R), we must have

EP̃ [η · g] ≤ 0 for all g ∈
∑

t∈T
−L1

(
Kt; P̃,Ft

)
.

In particular, this shows that (ZF
t , 0N ) ∈ L0(ri((Kt)

∗)). The rest of the proof then

goes as in Corollary 1 in [7] by using Lemma 5.1 and the fact that the K t = Kt∩Rd+N

are countabily generated (see the remark after Corollary 1 in [7]). tu

Remark 6.2 Observe that x ∈ K0 if and only if y · x ≥ 0 for all y ∈ (K0)∗ ∩ H1,

where H1 = {y ∈ Rd+N : y1 = 1}. Using 1. of Remark 4.1, we then deduce that, for

any x ∈ Rd×RN+ , we can find some x̂ = (x̂1, 0d−1+N ) ∈ Rd×RN+ such that x̂−x ∈ K0.

Corollary 6.1 Fix (K,R) ∈ K × R such that (R1) to (R3) and NAr(K,R) hold.

Fix x = (0d, x
I) ∈ Rd×RN+ . Then, for all P̃ ∼ P, there is some Z ∈ ZT (K, P̃)∩L∞

such that :

a(xI ;Z, P̃) := sup
g∈AsT (x;K,R)∩L1(P̃)

EP̃ [ZT · g] < ∞ .

Proof. In view of Remark 6.2, there is some x̂ ∈ Rd+N such that x̂ − x ∈ K0.

It follows that As
T (x;K,R) ⊂ As

T (x̂;K,R). Then, the required result is a direct

consequence of Lemma 6.1. Indeed, we can find some Z which satisfies the assertions

of Lemma 6.1. Since As
T (x;K,R) − x̂ ⊂ As

T (x̂;K,R) − x̂ = As
T (K,R), see Remark

2.1, it follows that

sup
g∈AsT (x;K,R)∩L1(P̃)

EP̃[ZT · (g − x̂)] ≤ sup
g∈AsT (K,R)∩L1(P̃)

EP̃[ZT · g]

where ZT · x̂ ∈ L∞ since ZT ∈ L∞. tu
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Lemma 6.2 Fix (K,R) ∈ K×R such that (R1) to (R3) and NAr(K,R) hold. Fix

x = (xF , xI) ∈ Rd × RN+ , g ∈ L0(Rd+N ;FT ) and P̃ ∼ P such that g ∈ L1(Rd+N ; P̃).

Then,

EP̃
[
ZT · g − ZF

0 · xF
]
− a(xI ;Z, P̃) ≤ 0 for all Z = (ZF , ZI) ∈ ZT (K, P̃)

implies g ∈ As
T (x;K,R).

Proof. Fix some P̃ such that g ∈ L1(Rd+N ; P̃). Assume that g /∈ As
T (x;K,R)∩L1(P̃).

Since, by Lemma 2.1 and Remark 5.2, As
T (x;K,R) ∩ L1(P̃) is closed in L1(P̃) and

convex, we can find some η ∈ L∞(Rd+N) such that

sup
g∈AsT (x;K,R)∩L1(P̃)

EP̃
[
η · (g − (xF , 0N ))

]
< EP̃

[
η · (g − (xF , 0N ))

]
.

Set Zt := EP̃[η | Ft]. The same argument as in Lemma 6.1 shows that ZF is a

P̃-martingale with ZT ∈ L0(K∗T ) and (ZF , 0N )t ∈ L0((Kt)
∗;Ft) for each t ∈ T. Fix

Ẑ ∈ ZT (K, P̃) ∩ L∞ such that a(xI ; Ẑ, P̃) <∞ (which is possible by Corollary 6.1).

For ε > 0 sufficiently small, we have Zε := εẐ + (1− ε)Z ∈ ZT (K, P̃) and

a(xI ;Zε, P̃) = sup
g∈AsT (x;K,R)∩L1(P̃)

EP̃
[
Zε
T · (g − (xF , 0N ))

]
< EP̃

[
Zε
T · (g − (xF , 0N ))

]
,

where we used the fact As
T (x;K,R)− (xF , 0N ) = AsT ((0d, x

I);K,R). This leads to a

contradiction since (Zε)F is a martingale. tu

We can now state a first version of the so-called super-hedging theorem.

Theorem 6.1 Fix (K,R) ∈ K × R such that (R1) to (R3) and NAr(K,R) hold.

Fix x = (xF , xI) ∈ Rd × RN+ . Then, we have the equivalence between

(i) g ∈ AsT (x;K,R)

(ii) for some P̃ ∼ P such that g ∈ L1(Rd+N ; P̃), we have for each Z = (ZF , ZI)

∈ ZT (K, P̃)

EP̃
[
ZT · g − ZF

0 · xF
]
− a(xI ;Z, P̃) ≤ 0 .

(iii) for all P̃ ∼ P such that g ∈ L1(Rd+N ; P̃), we have for each Z = (ZF , ZI)

∈ ZT (K, P̃)

EP̃
[
ZT · g − ZF

0 · xF
]
− a(xI ;Z, P̃) ≤ 0 .
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Proof. Since ZF is a martingale, (i) implies (iii) by definition of a(xI ;Z, P̃) and

the fact that g − (xF , 0N )) ∈ AsT ((0d, x
I);K,R). Obviously (iii) implies (ii). The

implication (ii) ⇒ (i) follows from Lemma 6.2. tu

In the case where the claim is uniformly bounded from below for the natural partial

order induced by KT , we can obtain a version of the super-hedging theorem which

does not depend on the integrability properties of g.

Theorem 6.2 Fix (K,R) ∈ K × R such that (R1) to (R3) and NAr(K,R) hold.

Fix x = (xF , xI) ∈ Rd×RN+ and let g be an element of L0(Rd+N) such that g+c ∈ KT

for some constant c ∈ Rd+N . Then, we have the equivalence between

(i) g ∈ AsT (x;K,R)

(ii) for each P̃ ∼ P and Z = (ZF , ZI) ∈ ZT (K, P̃)

EP̃
[
ZT · g − ZF

0 · xF
]
− a(xI ;Z, P̃) ≤ 0 .

(iii) for some P̃ ∼ P, we have for each Z = (ZF , ZI) ∈ ZT (K, P̃)

EP̃
[
ZT · g − ZF

0 · xF
]
− a(xI ;Z, P̃) ≤ 0 .

Proof. 1. Let g ∈ As
T (x;K,R) be such that g + c ∈ KT for some constant c =

(cF , 0N ) ∈ Rd+N . For k ≥ 1, set Bk = {‖g + c‖ ≤ k}. Then, 1IBk goes to 1 P − a.s.

as k → ∞. For each k ≥ 1, define gk := (g + c)1IBk . Since g + c ∈ L0(KT ), gk ∈
AsT (x + c;K,R) = cF + AsT (x;K,R) for all k ≥ 1. Since gk is bounded, we deduce

from Theorem 6.1 that, for each P̃ ∼ P and Z = (ZF , ZI) ∈ ZT (K, P̃), we must have

EP̃
[
ZT · gk − ZF

0 · (xF + cF )
]
− a(xI ;Z, P̃) ≤ 0 .

Since gk ∈ L0(KT ) and ZT ∈ L0((KT )∗), we have ZT · gk ≥ 0 P− a.s. Using Fatou’s

Lemma, we then deduce that

EP̃
[
ZT · (g + c)− ZF

0 · (xF + cF )
]
− a(xI ;Z, P̃) ≤ 0 for all k ≥ 1 ,

and (ii) follows from the martingale property of ZF .

2. To see that (ii) implies (i), we define P̃ ∼ P by P̃ = (e−‖g‖/E
[
e−‖g‖

]
) · P. Then,

g ∈ L1(Rd+N ; P̃) and the result follows from Theorem 6.1.

3. Obviously (ii) implies (iii). It remains to check the converse implication. Fix P̃
such that (iii) holds, P̂ ∼ P and let Ht := EP̃

[
dP̂/dP̃ | Ft

]
. Then, for Ẑ ∈ ZT (K, P̂),

we have Z̃ := (HtẐt)t∈T ∈ ZT (K, P̃) and a(xI ; Ẑ, P̂) = a(xI ; Z̃, P̃). This shows that

(iii) implies (ii). tu
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Remark 6.3 Observe from (5.1) that Theorems 6.1 and 6.2 actually provide a dual

formulation for AT (x;K,R). It suffices to add the condition g ∈ L0(Rd × RN+ ).

Remark 6.4 It is clear from the proofs that the results of this Section still hold if

we replace (R1)-(R2)-(R3) by the assumption that AT (x;K,R) is closed.

Remark 6.5 Although the dual formulation we obtained is already much more

general than what we need for the proof of Theorem 4.1, we think that a more

precise description of the natural set of dual variables could be obtained by means of

Lemma 5.4, which is actually much stronger than the version we used in the proofs.

We leave this point for future research.

7 Proof of the existence result for the optimal

consumption problem

As already explained in the introduction, the one dimensional argument of [10] does

not work directly in our multivariate setting. We therefore surround this difficulty

by introducing the auxiliary primal problem :

u1(x1) := u(x1, 0d−1+N ), x1 ∈ R+ , (7.1)

and dualize the value function u1 as follows. Our set of dual variables is defined as

D(y1) =
{

(Y, α) ∈ L1(Ω× T,Rd+)× R+ : ∀x1 ∈ R+, ∀c ∈ CT ((x1, 0d−1+N );K,R)

E

[∑

t∈T
Yt · ct − y1x1

]
≤ α,

}
, y1 ∈ R+ (7.2)

and we consider the dual problem

ũ1(y1) = inf
(Y,α)∈D(y1)

E

[∑

t∈T
Ũt(Yt) + α

]
, y1 ∈ R+ . (7.3)

Recall that by convention L1(Ω× T,Rd+) = L1(Ω× T,Rd+;P).

Remark 7.1 By Remark 6.2, we can find some x = (x1, 0d−1+N ) ∈ Rd+N such that

the constant consumption process c defined by cit = 1 for all t ∈ T and i ≤ d belongs

to CUT (x;K,R). It then follows from the definition of D(y1) that, for each α ∈ R+,

the set {Y : (Y, α) ∈ D(y1)} is bounded in L1(Ω× T,Rd+).
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The abstract duality relation can be stated as follows.

Lemma 7.1 Under the assumptions of Theorem 4.1, we have the duality relations :

ũ1(y1) = sup
x1∈R+

[
u1(x1)− x1y1

]
, y1 ∈ R+ (7.4)

u1(x1) = inf
y1∈R+

[
ũ1(x1)− x1y1

]
, x1 ∈ R+ . (7.5)

Proof. We only establish (7.4). The other relation (7.5) follows from (7.4) and

general bidual properties of Legendre-transform, see e.g. [11].

By definitions of Ũt andD(y1), we have for all x1, y1 ∈ R+, c ∈ CT ((x1, 0d−1+N );K,R),

and (Y, α) ∈ D(y1) :

E

[∑

t∈T
Ut(ct)

]
≤ E

[∑

t∈T
Ũt(Yt) + Yt · ct

]
≤ E

[∑

t∈T
Ũt(Yt) + α

]
+ x1y1 , (7.6)

and so

w(y1) := sup
x1∈R+

[
u1(x1)− x1y1

]
≤ ũ1(y1), ∀y1 ∈ R+ . (7.7)

We now fix some y1 ∈ R+. In order to prove (7.4), we can assume w.l.o.g. that w(y1)

< ∞.

1. For n > 0, we define Cn as :

Cn =
{
c = (ct)t ∈ L0(Rd+;F) : |ct| ≤ n, t ∈ T

}
.

The sets Cn are compact for the weak topology σ(L∞(Ω × T,Rd+), L1(Ω × T,Rd+)).

Moreover, it is clear from its definition that D(y1) is a closed convex subset of

L1(Ω× T,Rd+). We may then apply the Min-max theorem to get :

sup
c∈Cn

inf
(Y,α)∈D(y1)

E

[∑

t∈T
(Ut(ct)− Yt · ct) + α

]

= inf
(Y,α)∈D(y1)

sup
c∈Cn

E

[∑

t∈T
(Ut(ct)− Yt · ct) + α

]
.

By setting

Ũn
t (y) = sup

c∈Rd+,|c|≤n
[Ut(c)− c · y] , y ∈ Rd+ ,
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we then deduce that

sup
c∈Cn

inf
(Y,α)∈D(y1)

E

[∑

t∈T
(Ut(ct)− Yt · ct) + α

]

= inf
(Y,α)∈D(y1)

E

[∑

t∈T
Ũn
t (Yt) + α

]
:= ũn1 (y1) . (7.8)

For later use, observe that

Ũn
t (y) ≥ Ũn

t (z) if z − y ∈ Rd+ and Ũn
t ≤ Ũk

t if k ≥ n . (7.9)

2. For any Z = (ZF , ZI) ∈ ZT (K,P), we have from the P-martingale property of

ZFand Theorem 6.2 : ∀x1 ∈ R+, ∀c ∈ CT ((x1, 0d−1+N );K,R),

E

[
ZF
T ·
∑

t∈T
ct − Z1

0x
1

]
= E

[∑

t∈T
ZF
t · ct − Z1

0x
1

]

≤ a(0N ;Z,P).

It follows that the pairs (Y, α) defined by

Y =
y1

Z1
0

ZF , α =
y1

Z1
0

a(0N ;Z,P) , (7.10)

belong to D(y1). Here, we use the convention 0/0 = 0 and we observe from Remark

4.1 and the martingale property of ZF that Z1
0 = 0 implies ZF = 0.

Now, for x1 ∈ R+, let c = (ct) ∈ L0(Rd+;F) be such that

E

[∑

t∈T
Yt · ct − y1x1

]
≤ α, ∀(Y, α) ∈ D(y1).

By taking (Y, α) in the form (7.10), we deduce that

E

[
ZF
T ·
∑

t∈T
ct − Z1

0x
1

]
≤ a(0N ;Z, P ), ∀ Z ∈ ZT (K,P).

By Theorem 6.2, this means (ct) ∈ CT ((x1, 0d−1+N );K,R). Therefore, we have the

duality relation between the sets C(x1) and D(y1) in the sense that, for any x1 ∈ R+,

an element c = (ct) in L0(Rd+;F) belongs to CT ((x1, 0d−1+N );K,R) if and only if

E

[∑

t∈T
Yt · ct − y1x1

]
≤ α , ∀(Y, α) ∈ D(y1) .
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It follows that

sup
(Y,α)∈D(y1)

E

[∑

t∈T
Yt · ct − α

]
= inf

{
y1x1 : x1 ≥ 0 s.t. c ∈ CT ((x1, 0d−1+N );K,R)

}
,

and therefore

lim
n→∞

sup
c∈Cn

inf
(Y,α)∈D(y1)

E

[∑

t∈T
(Ut(ct)− Yt · ct) + α

]

= sup
x1∈R+

sup
c∈CT ((x1,0d−1+N );K,R)

E

[∑

t∈T
Ut(ct) − x1y1

]
= w(y1) . (7.11)

3. Identifying relations (7.8) and (7.11), we get

lim
n→∞

ũn1 (y1) = w(y1) , (7.12)

and so we have to show that

lim
n→∞

ũn1 (y1) = ũ1(y1) . (7.13)

Let (Y n, αn) be a sequence in D(y1) such that

lim
n→∞

E

[∑

t∈T
Ũn
t (Y n

t ) + αn

]
= lim

n→∞
ũn1 (y1) = w(y1) .

By Komlos lemma on L0(Ω × T), see e.g. [3], there exists a sequence (Ŷ n) ∈
conv(Y n, . . . , Y n+1, . . .) which converges a.e. to a process Ŷ , taking possibly infi-

nite values. Moreover, by convexity of Ũn
t and (7.9), we have, by (7.12),

lim inf
n→∞

E

[∑

t∈T
Ũn
t (Ŷ n

t ) + α̂n

]
≤ lim

n→∞
ũn1 (y1) = w(y1) , (7.14)

where α̂n is constructed from (αk)k≥n with the same convex combinations than Ŷ n.

For sake of simplicity, we consider separately the case where either (Ũ1) holds for

each t ∈ T or (Ũ2) holds for each t ∈ T. The case where (Ũ1) holds for some t ∈ T
and (Ũ2) holds for the other is obtained by combining a. and b. below in an obvious

way.

a. If condition (Ũ1) holds for each t ∈ T, it follows from (7.14) that the nonnegative

sequence (α̂n) is bounded since w(y1) <∞. In particular, it converges (after possibly
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passing to a subsequence) to some α̂ ≥ 0, which by Remark 7.1 shows that Ŷ is

finite a.s. Since D(y1) is closed for the convergence in probability, we conclude that

(Ŷ , α̂) ∈ D(y1). Under (Ũ1), the sequence
(
Ũn
t (Ŷ n)−

)
is uniformly integrable. Since

Ũn
t converges to Ũt uniformly on compact sets, it then follows from Fatou’s lemma

that

lim inf
n→∞

E

[∑

t∈T
Ũn
t (Ŷ n

t ) + α̂n

]
≥ E

[∑

t∈T
Ũt(Ŷt) + α̂

]
≥ ũ1(y1) .

Since we obviously have ũn1 (y1) ≤ ũ1(y1), the inequality (7.14) implies (7.13), i.e.

(7.4), see (7.7).

b. We now assume that condition (Ũ2) holds for all t ∈ T. Let us consider the

sequence of nonincreasing convex functions ϕt := (−Vt)−1 on R+. Obviously, we can

assume that ‖et‖ = 1 for each t ∈ T. We then define

`t : y ∈ Rd 7→ min

{
x · y : x ∈ Rd with ‖x‖t :=

d∑

i=1

|xi|eit = 1

}
.

With this notation, we have y−`t(y)et ∈ Rd+ for all y ∈ Rd. Since ϕt in non-increasing

and Ũn
t ≤ Ũt, it follows from (7.9) that

E
[
ϕt

(
Ũn
t (Ŷ n

t )−
)]
≤ E

[
ϕt

(
Ũn
t (`t(Ŷ

n
t )et)

−
)]

≤ ϕt(0) + E
[
`t(Ŷ

n
t )
]

≤ ϕt(0) + E
[
X(et) · Ŷ n

t

]
, with X(et) = (1/e1

t , . . . , 1/e
d
t ) .

By 2. of Remark 4.1, we can find some x(et) > 0 such that (x(et), 0d−1+N )−X(et)

∈ K0 for all t ∈ T. Then, (X(et))t∈T ∈ CT (x(e);K,R) where x(e)i =
∑

t∈T x(et)1Ii=1.

It then follows from the above inequality and the definition of D(y1) that

E

[∑

t∈T
ϕt

(
Ũn
t (Ŷ n

t )−
)]

≤
∑

t∈T
ϕt(0) + x(e)1y1 + α̂n . (7.15)

Now, by l’Hopital rule, ϕt(r)/r goes to infinity when r goes to infinity, and so there

exists some positive r̄t > 0 such that ϕt(r) ≥ 2r for all r ≥ r̄t. Hence, for all n,

Ũn
t (Ŷ n

t )− ≤ r̄t +
1

2
ϕt

(
Ũn
t (Ŷ n

t )−
)
,
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and by (7.15)

E

[∑

t∈T
Ũn
t (Ŷ n

t )−
]
≤ C̄(y1) +

1

2
α̂n ,

where C̄(y1) =
∑

t∈T r̄t + 1
2
(ϕt(0) + x(e)1y1). We then deduce that

1

2
α̂n − C̄(y1) ≤ E

[∑

t∈T
Ũn
t (Ŷ n

t )

]
+ α̂n

so that by (7.14), after possibly passing to a subsequence, for n large enough

1

2
α̂n ≤ w(y1) + 1 + C̄(y1) < ∞ ,

which proves that the sequence (α̂n) is bounded. After possibly passing to a subse-

quence, we can then assume that it converges to some α̂ ∈ R+. It then follows from

(7.15) and La-Vallee-Poussin theorem that the sequence
(
Ũn
t (Ŷ n)−

)
is uniformly

integrable. The proof is then concluded as in a. tu

Remark 7.2 1. Assume that for some x̂1 > 0, u1(x̂1) < ∞. Then, by the duality

relation (7.5) in Lemma 7.1, there exists some y1 ∈ R+ such that ũ1(y1) <∞. Hence,

for this y1, there exists some (Y, α) ∈ D(y1) such that
∑

t∈T Ũt(Yt) ∈ L1(P) . In view

of (7.6), this implies that u1(x̃1) <∞ for all x̃1 ≥ 0.

2. Fix x ∈ int(K0). Then, by 2. and 3. of Remark 4.1, there exists some x̂ =

(x̂1, 0d−1+N ) with x̂1 > 0 such that x − (x̂1, 0d−1+N ) ∈K0 and CUT (x̂;K,R) 6= ∅. Since

CT (x̂;K,R) ⊂ CT (x;K,R), the finiteness of u(x) implies the finiteness of u1(x̂1) =

u(x̂).

3. Finally, let x ∈ Rd × RN+ be such that CUT (x;K,R) 6= ∅, then, by Remark 6.2,

there is some x̃1 > 0 such that u(x̃1, 0d−1+N ) ≥ u(x).

4. Combining 2. with 1. and then 3. proves (i) of Theorem 4.1.

We go on preparing the proof of Theorem 4.1 with three more Lemmas.

Lemma 7.2 Assume that (4.2)-(4.3)-(4.5) hold, then there is some βt > 0 such that

for all λ ∈ (0, 1]

Ũt(λy) ≤ Cλ
t + λ−βtŨt(y)+ for all y ∈ dom(Ũt) ,

for some Cλ
t ≥ 0.
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Proof. Arguing as in the proof of Lemma 4.1 in [2], we first obtain that there is

some bt > and βt > 0 such that

Ũt(λy) ≤ λ−βtŨt(y)+ for all y ∈ int(Rd+) with `(y) ≤ bt .

Since, for y ∈ int(Rd+), `(y) > bt implies that yi > bt for all i ≤ d, we deduce from

(4.4) that

Ũt(λy) ≤ Ũt(λbt1) for all y ∈ int(Rd+) with `(y) > bt ,

where 1 is the vector of Rd with all components equal to 1. The result is then

obtained by setting Cλ
t := Ũt(λbt1)+ which is finite by (4.3). tu

Lemma 7.3 Let the condition (4.1)-(4.3)-(4.5) hold. Let y1 ∈ R+ and (Y, α) ∈
D(y1) be such that

(∑

t∈T
Ũt(Yt)

)
∈ L1(P) .

Then,
(∑

t∈T
Ũt(λYt)

)
∈ L1(P) , for all λ ∈ (0, 1] .

Proof. 1. First observe that Ũt(λYt)
− ∈ L1(P) for each t ∈ T and λ ∈ (0, 1]. Indeed,

given xF ∈ int(Rd+), we have by definition of Ũt

Ut(x
F ) ≤ Ũt(λYt) + λYt · xF .

Since Yt ∈ L1(P) and Ut(x
F ) is finite, this implies that Ũt(λYt)

− ∈ L1(P).

2. From 1., it suffices to show that Ũt(Yt)
+ ∈ L1(P) implies that Ũt(λYt)

+ ∈ L1(P)

for all λ ∈ (0, 1]. Fix λ ∈ (0, 1], by Lemma 7.2, we have

Ũt(λYt)
+ ≤ Cλ

t + λ−βtŨt(Yt)
+ ,

which, by 1., shows that Ũt(λYt)
+ ∈ L1(P) and concludes the proof. tu

Lemma 7.4 Fix (K,R) ∈ K×R such that (R1) to (R3) and NAr(K,R) hold. Fix

x ∈ Rd×RN+ , and let (cn)n≥1 be a sequence in CT (x;K,R). Then, there is a sequence

(c̃n)n≥1 such that c̃n ∈ conv(ck , k ≥ n), for each n ≥ 1, which converges P− a.s. to

some c̃ ∈ CT (x;K,R).
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Proof. We set x = (xF , xI). Since cin ≥ 0 for each 1 ≤ i ≤ d + N , we deduce from

Komlos Lemma (see e.g. Lemma A1.1 in [3] ) that there is a sequence (c̃n)n≥1 such

that c̃n ∈ conv(ck , k ≥ n), for each n ≥ 1, which converges P − a.s. to some c̃ ∈
L0([0,∞];F). By Lemma 2.1, c̃n ∈ CT (x;K,R) for each n ≥ 1. Since, by Remark

5.2, CT (x;K,R) is closed, it suffices to show that ‖∑t∈T c̃t‖ <∞. To see this, recall

from Theorem 6.2 and Lemma 6.1 that there is some Z = (ZF , ZI) ∈ ZT (K,P) such

that

E

[
ZF
T ·
(∑

t∈T
(cn)t

)]
≤ ZF

0 · xF + a(xI ;Z,P) < ∞ , n ≥ 1 .

By Remark 6.1, we have Z i
T > 0 P− a.s. for all 1 ≤ i ≤ d, sending n to∞ and using

Fatou’s Lemma then leads to the required result. tu

We can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1 Item (i) has already been proved in Remark 7.2. We prove

(ii).

1. Let (cn)n≥1 be a sequence in CT (x;K,R) such that

u(x) = lim
n→∞

E

[∑

t∈T
Ut(c

n
t )

]
.

Since Ut is convex, it follows from Lemma 7.4 that, after possibly passing to convex

combinations, we can assume that cn converges P − a.s. to some c∗ ∈ CT (x;K,R).

We shall prove in 2. that

{(∑

t∈T
Ut(c

n
t )

)+}

n≥1

is uniformly integrable . (7.16)

Then, using Fatou’s Lemma and the continuity of Ut, we obtain

u(x) = lim
n→∞

E

[∑

t∈T
Ut(c

n
t )

]
≤ E

[
lim sup
n→∞

∑

t∈T
Ut(c

n
t )

]
= E

[∑

t∈T
Ut(c

∗
t )

]
.

2. To prove (7.16), we assume to the contrary that the sequence is not uniformly

integrable and work towards a contradiction. If (7.16) does not hold then, after
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possibly passing to a subsequence, we can find some δ > 0 and a sequence (An
k)k,n

such that, for each n ≥ 1, (An
k)nk=1 forms a disjoint partition of Ω such that

E

[(∑

t∈T
Ut(c

k
t )

)+

1IAnk

]
≥ δ , 1 ≤ k ≤ n , n ≥ 1 . (7.17)

By possibly adding a constant to the Ut’s, we can assume that there is some r ∈ Rd+
such that mint∈T Ut(r) ≥ 0.

Now, by Remark 7.2, there exists some y1 ∈ R+ such that ũ1(y1) < ∞. Hence,

for this y1, there exists some (Y, α) ∈ D(y1) such that
(∑

t∈T
Ũt(Yt)

)
∈ L1(P) .

Then, by Lemma 7.3,
(∑

t∈T
Ũt(λYt)

)
∈ L1(P) , for all λ ∈ (0, 1] .

Observe from Remark 6.2, that we can find some x̂1 > 0 such that the process r+ ck

belongs to CT ((x̂1, 0d−1+N );R,K) for all k ≥ 1. It then follows, by definitions of Ũt

and D(y1), that for each λ > 0 and n ≥ 1

n∑

k=1

E

[∑

t∈T
Ut(r + ckt )1IAnk

]
≤ E

[∑

t∈T
Ũt(λYt)

]
+ λ

n∑

k=1

E

[
YT ·

(∑

t∈T
r + ckt

)
1IAnk

]

≤ E

[∑

t∈T
Ũt(λYt)

]
+ nλ

(
y1x̂1 + α

)
.

Since Ut is Rd-non-decreasing, see (4.2), we have Ut(r+ckt ) ≥ Ut(ckt )+. It then follows

from (7.17) that

nδ ≤ E

[∑

t∈T
Ũt(λYt)

]
+ nλ

(
y1x̂1 + α

)
for all n ≥ 1 and λ > 0 .

Dividing by n ≥ 1 and sending n to ∞ in the above inequality, we obtain

δ ≤ λ
(
y1x̂1 + α

)
for all λ > 0 . (7.18)

Sending λ to 0 then leads to the required contradiction since δ > 0. tu
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Remark 7.3 1. Since D(λy1) = λD(y1) for all λ ≥ 1, the above proof goes through

if we replace the assumption (4.5) by

ũ1(y1) <∞ for all y1 > 0 . (7.19)

Moreover, as explained above, it follows from Remark 6.2 that u(x) <∞ whenever

ũ1(y1) <∞ for some y1 ≥ 0. Hence, if (7.19) holds, then the assumption u(x) <∞
for some x ∈ int(K0) can be dropped too.

2. Since ũ1 is non-increasing, it follows from Lemma 7.3 that (7.19) is implied by

(4.5) and the condition u(x) <∞ for some x ∈ int(K0).
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