open science

Optimal consumption in discrete time financial models with industrial investment opportunities and non-linear returns

Bruno Bouchard, Huyên Pham

- To cite this version:

Bruno Bouchard, Huyên Pham. Optimal consumption in discrete time financial models with industrial investment opportunities and non-linear returns. 2004. hal-00002978

HAL Id: hal-00002978
https://hal.science/hal-00002978
Preprint submitted on 29 Sep 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PRÉPUBLICATIONS DU LABORATOIRE

DE PROBABILITÉS \& MODÈLES ALÉATOIRES

4, place Jussieu - Case 188-75 252 Paris cedex 05 http://www.proba.jussieu.fr

Optimal consumption in discrete time
 financial models with industrial investment opportunities and non-linear returns

B. BOUCHARD \& H. PHAM

SEPTEMBRE 2004

Prépublication $\mathrm{n}^{o} 928$

Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599,
Université Paris VI \& Université Paris VII, 4, place Jussieu, Case 188, F-75252 Paris Cedex 05.
\&
CREST, Laboratoire de Finance-Assurance

Optimal consumption in discrete time financial models with industrial investment opportunities and non-linear returns

Bruno BOUCHARD
Laboratoire de Probabilités et
Modèles Aléatoires
CNRS, UMR 7599
Université Paris 6
e-mail: bouchard@ccr.jussieu.fr and CREST

Huyên PHAM

Laboratoire de Probabilités et
Modèles Aléatoires
CNRS, UMR 7599
Université Paris 7
e-mail: pham@math.jussieu.fr and CREST

September 7, 2004

Abstract

We consider a general discrete time financial market with proportional transaction costs as in [7] an [12]. In addition to the usual investment in financial assets, we assume that the agents can invest part of their wealth in industrial projects that yield a non-linear random return. We study the problem of maximizing the utility of consumption on a finite time period. The main difficulty comes from the non-linearity of the non financial assets' return. Our main result is to show that existence holds in the utility maximization problem. As an intermediary step, we prove the closedness of the set A_{T} of attainable claims under a robust no-arbitrage property similar to the one introduced in [12] and further discussed in [7]. This allows us to provide a dual formulation for A_{T}.

Key words : financial markets with transaction costs, non-linear returns, robust no-arbitrage, super-hedging theorem, multivariate non-smooth utility maximization.

MSC Classification (2000): 60 G42.

1 Introduction

We consider a general discrete time market with proportional transaction costs as in [6], [7] and [12]. Following the above papers, we model the wealth process by a vector valued process $\left(V_{t}\right)$, each component i corresponding to the number of units of asset i which is held in the portfolio. The usual self-financing condition is described by the constraints $V_{t}-V_{t-1} \in-K_{t}$, where $-K_{t}$ is the random convex set of affordable exchanges at time t, given the value of the underlying assets and the level of transaction costs.

In the case of efficient frictions where the transaction costs are positive (which is formulated by the assumption that K_{t} is proper), a general version of the Fundamental Theorem of Asset Pricing was obtained by [6]. In the case where some of the costs may be zero, a notion of "robust no-arbitrage" was introduced by [12] and further studied in [7]. This assumption can be interpreted as follows: there is noarbitrage even if we reduce the size of the proportional transaction costs (which are not already equal to zero). In the above papers, it is shown that this assumption is equivalent to the existence of a strictly consistent price system (see [12] for a precise definition). It also implies the closedness of the set of attainable claims and allows to provide a suitable dual formulation for this set.

In addition to the above setting, we assume in this paper that the financial agent can invest part of its wealth in non-financial assets, e.g. industrial projects, which are also subject to proportional costs (see [4], [8]), but, in opposition to usual financial assets, yield non-linear returns. Our principal aim is to study the problem of maximizing the utility of consumption over a finite time period. The analysis of such a model differs from the usual setting in many aspects :

1. It follows from the non-linearity of the non-financial assets' return that the set $A_{T}(0)$ of attainable claims with zero initial endowment is not a cone. More generally, the set of attainable claims with initial endowment $x, A_{T}(x)$, is not linear with respect to x, i.e. $x+A_{T}(0) \neq A_{T}(x)$.
2. All transactions $V_{t}-V_{t-1} \in-K_{t}$ are not allowed since it is natural to impose a non-negativity constraint on the level of investment in the non-financial assets. In fact, the effective set of possible transactions at time t is a subset of $-K_{t}$ which depends on the initial endowment and all the transactions up to t.
3. The notion of no-arbitrage is not as clear as in pure financial market. Indeed, if we have an initial investment y (in units) in some project which yields a non negative
return in terms of cash, and, if we do nothing, at the time horizon T we end up with a non-zero amount of cash g and we still have the investment y (in units). Since $(g, y) \geq(0, y)$ there is an arbitrage, in the usual sense, if $g \neq 0$. However, from an economic point of view this situation should be possible as the risk supported by investing in a project also lies in the liquidation value of the investment which does not appear in the above formulation.

In order to avoid trivial situations, we have to impose some no-arbitrage condition. In view of 3 . above, we define it only on $A_{T}(0)$, i.e. we assume that $A_{T}(0) \cap L^{0}\left(\mathbb{R}_{+}^{d+N}\right)=\{0\}$, see the notations below. As the initial endowment in nonfinancial asset is 0 , this avoids the problem pointed out in 3. In order, to obtain the usual closedness property of $A_{T}(0)$, we impose a "robust no-arbitrage condition". Because of the non-linearity of the non-financial assets' returns, we can not work directly with the "robust no-arbitrage condition" of [12]. We therefore extend this definition. Our version can be interpreted as follows : there is no arbitrage even if we slightly reduce the size of the proportional transaction costs between financial assets and slightly increase the return of the non-financial ones. It also allows us to provide a dual formulation for this set.

In the multivariate setting, the usual duality approach for the utility maximization problem is much more complex than in the case of no transaction costs. The reason is that, even when the utility function U is smooth (which is not assumed here), its Fenchel transform \tilde{U} may not be smooth. To surround this difficulty, we can proceed as in [2] and [1] who reduce to the smooth case by approximating \tilde{U} by smooth convex functions. But this leads to long and technical proofs. In the paper [10], a more direct argument is proposed. It consists in first deriving the duality theorem in an abstract way. This allows to show that maximizing sequences for the primal problem satisfy a uniform integrability condition. However, it turns out that the one dimensional argument of [10] does not work directly in our multivariate setting. We overcome this difficulty by introducing some auxiliary primal problem.

The rest of the paper is organized as follows. The model is described in Section 2. We discuss our "robust no-arbitrage" condition in Section 3. The utility maximization problem is defined in Section 4 where we state our existence result. In Section 5, we show the closedness of the set attainable terminal wealth and we provide a dual formulation for this set in Section 6. The last Section contains the proof of the existence result.

In all this paper, we shall repeatedly use the following notations. For $x \in \mathbb{R}^{d+N}$, we shall often write x as $\left(x^{F}, x^{I}\right)$ where $x^{F} \in \mathbb{R}^{d}$ and $x^{I} \in \mathbb{R}^{N}$. The exponent F (resp. I) stands for "financial" (resp. "industrial"). Given $E \subset \mathbb{R}^{d+N}$, we write $\underline{E}=\left\{\left(x^{F}, 0_{N}\right): x=\left(x^{F}, x^{I}\right) \in E\right\}$, where 0_{N} denotes the zero of \mathbb{R}^{N}. We denote by $\|\cdot\|$ the Euclidian norm and by "." the inner product of \mathbb{R}^{p}, where $p \in \mathbb{N}$ is given by the context. \mathbb{R}_{+}^{p} will denote the set of elements of \mathbb{R}^{p} with non negative components. Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ endowed with a filtration $\mathbb{F}=$ $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{T}}, \mathbb{T}=\{0, \ldots, T\}$ for some $T \in \mathbb{N} \backslash\{0\}$, and a random set E, we denote by $L^{0}(\Omega \times \mathbb{T}, E)$ the set of processes $Y=\left(Y_{t}(\omega)\right)_{t \in \mathbb{T}}$ valued in E, by $L^{0}\left(E ; \mathcal{F}_{t}\right)$ the set of \mathcal{F}_{t} measurable random variables which take values in $E \mathbb{P}-$ a.s. For \mathbb{F} adapted processes with values in E, we write $L^{0}(E ; \mathbb{F})$. For $\tilde{\mathbb{P}} \sim \mathbb{P}$, we similarly denote $L^{1}(\Omega \times \mathbb{T}, \tilde{\mathbb{P}}, E)$ (resp. $\left.L^{1}\left(E ; \tilde{\mathbb{P}}, \mathcal{F}_{t}\right)\right)$ the set of elements of $L^{0}(\Omega \times \mathbb{T}, E)$ (resp. $L^{0}\left(E ; \mathcal{F}_{t}\right)$) which are $\tilde{\mathbb{P}}$-integrable. For bounded random processes (resp. \mathcal{F}_{t} measurable random variables), we use the notation $L^{\infty}(\Omega \times \mathbb{T}, E)\left(\right.$ resp. $\left.L^{\infty}\left(E ; \mathcal{F}_{t}\right)\right)$. When $\tilde{\mathbb{P}}=\mathbb{P}$, we omit the argument \mathbb{P}, and similarly when $t=T$, we may omit the $\operatorname{argument} \mathcal{F}_{t}$. Same thing for E when it is clearly given by the context. For a subset $E \in \mathbb{R}^{p}$, we denote by E^{*} its positive polar in the sense of convex analysis, i.e. E^{*} $:=\left\{y \in \mathbb{R}^{p}: x \cdot y \geq 0\right.$ for all $\left.x \in E\right\}$. Given an event set B, we denote $E \mathbb{I}_{B}$ $=\left\{\mathbb{I}_{B} x: x \in E\right\}$ where $\mathbb{I}_{B}=1$ on B and 0 otherwise. These last notations are naturally extended to random sets.

2 A financial Model with industrial investment opportunities

2.1 Financial and industrial investment strategies

Set $\mathbb{T}=\{0, \ldots, T\}$ for some $T \in \mathbb{N} \backslash\{0\}$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space endowed with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in \mathbb{T}}$. We assume that $\mathcal{F}_{T}=\mathcal{F}$ and that \mathcal{F}_{0} is trivial. Given two integers $d \geq 1$ and $N \geq 1$, we denote by \mathcal{K} the set of \mathcal{C}-valued processes K such that $\mathbb{R}_{+}^{d+N} \backslash\{0\} \subset \operatorname{int}\left(K_{t}\right) \mathbb{P}-$ a.s. for all $t \in \mathbb{T}$. Here, we follow [7] and say that a sequence of set-valued mappings $\left(K_{t}\right)_{t \in \mathbb{T}}$ is a \mathcal{C}-valued process if there is a countable sequence of \mathbb{R}^{d+N}-valued processes $X^{n}=\left(X_{t}^{n}\right)_{t \in \mathbb{T}}$ such that for every $t \in \mathbb{T}, \mathbb{P}-$ a.s. only a finite but non-zero number of X_{t}^{n} is different from zero
and $K_{t}=\operatorname{cone}\left\{X_{t}^{n}, n \in \mathbb{N}\right\}$. This means that K_{t} is the polyhedral cone generated by the $\mathbb{P}-$ a.s. finite set $\left\{X_{t}^{n}, n \in \mathbb{N}\right.$ and $\left.X_{t}^{n} \neq 0\right\}$.

Given $K \in \mathcal{K}$, we denote by $\mathcal{A}(K)$ the set of processes $\xi \in L^{0}\left(\mathbb{R}^{d+N} ; \mathbb{F}\right)$ such that

$$
\xi_{t} \in-K_{t} \quad \text { and } \quad I(\xi)_{t}^{i}:=\sum_{s=0}^{t} \xi_{s}^{d+i} \geq 0,1 \leq i \leq N, \mathbb{P}-\text { a.s. for all } t \in \mathbb{T}
$$

The interpretation is the following. For $1 \leq i \leq d$, the quantity $\left(\xi_{t}\right)^{i}$ corresponds to the number of units of financial asset i which are bought at time t, and $\sum_{s=0}^{t} \xi_{s}^{i}$ is the number of units of financial asset i which are held at time t. For $1 \leq i \leq N$, the quantity $\left(\xi_{t}\right)^{d+i}$ corresponds to the variation of the level of investment in the i-th industrial project. Then, $\sum_{s=0}^{t} \xi_{s}^{d+i}$ is the level of investment in the i-th industrial project at time t. The convex cone $-K_{t}$ is the set of variations in the global portfolio which are affordable, after possibly throwing out some units of the assets, at time t given the price of the financial assets and the cost of one additional unit of investment in the industrial projects. Then, the condition $\xi_{t} \in-K_{t}$ stands for the usual self-financing condition. The process $I(\xi)$ corresponds to the global investment in the different industrial projects. The condition $I(\xi)_{t} \in \mathbb{R}_{+}^{N} \mathbb{P}-$ a.s. means that it is not possible to have a negative level of investment in an industrial project.

Due to the constraint on the level of investment, we also need to consider the case where the strategy starts with an initial holding $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$. We then extend the previous notation and define $\mathcal{A}(x ; K)$ as the set of processes $\xi \in$ $L^{0}\left(\mathbb{R}^{d+N} ; \mathbb{F}\right)$ such that

$$
\begin{equation*}
\xi_{t} \in-K_{t} \quad \text { and } \quad I(\xi)_{t}+x^{I} \in \mathbb{R}_{+}^{N} \quad \mathbb{P}-\text { a.s. for all } t \in \mathbb{T} . \tag{2.1}
\end{equation*}
$$

Observe that $\mathcal{A}(K)=\mathcal{A}(0 ; K)$.

The return associated to the industrial investment is modelled by a process $R \in \mathcal{R}$, the set of adapted processes with values in the set of mapping from \mathbb{R}_{+}^{N} into \mathbb{R}^{d+N}. A level of investment $I(\xi)_{t}$ in the industrial project at time t leads to a reward (in units) $R_{t+1}\left(I(\xi)_{t}\right)$ at time $t+1$. Here, the fact that R_{t+1} takes values in $\underline{\mathbb{R}}^{d+N}$ means that the reward consists in units of the financial assets. If the N last assets are interpreted as industrial tools used for an industrial project, it is natural to assume
that the reward consists in stocks or currencies, i.e. pure financial assets, while the (relative) value of these tools may evolve in time.

The set of claims that can be reached with an initial holding $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$ is then given by

$$
A_{T}(x ; K, R):=\left\{x+\sum_{t=0}^{T} \xi_{t}+\sum_{t=0}^{T-1} R_{t+1}\left(x^{I}+I(\xi)_{t}\right), \xi \in \mathcal{A}(x ; K)\right\}
$$

For $x=0$, we shall simply write $A_{T}(K, R)$ for $A_{T}(x ; K, R)$.

Remark 2.1 Observe from (2.1) that for general $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, we do not have equality between $\mathcal{A}(x ; K)$ and $\mathcal{A}(K)$, except if $x^{I}=0$. Similarly, $A_{T}(x ; K, R)$ differs from $x+A_{T}(K, R)$ in general, while $A_{T}(x ; K, R)=x^{F}+A_{T}\left(\left(0_{d}, x^{I}\right) ; K, R\right)$. Also, observe that $A_{T}(K, R)$ is in general not a cone since R_{t} is not assumed to be linear.

In all this paper, we shall assume that $(K, R) \in \mathcal{K} \times \mathcal{R}$ satisfies the above assumptions $\mathbb{P}-$ a.s. for each $t \in \mathbb{T}$:
(R1) $R_{t}(0)=0$ and R_{t} is continuous.
(R2) For $\lambda \in[0,1]$ and $(\alpha, \beta) \in\left(L^{0}\left(\mathbb{R}_{+}^{N}\right)\right)^{2}$, we have

$$
\lambda R_{t}(\alpha)+(1-\lambda) R_{t}(\beta)-R_{t}(\lambda \alpha+(1-\lambda) \beta) \in-\underline{K}_{t} .
$$

(R3) There is some $a_{t} \in L^{0}\left(\mathbb{R}^{d+N}\right)$ and $L \in \mathcal{R}$ such that $\lambda L_{t}(\alpha)=L_{t}(\lambda \alpha) \mathbb{P}-$ a.s. and $R_{t}(\alpha)+a_{t}+L_{t}(\alpha) \in L^{0}\left(\mathbb{R}_{+}^{d+N}\right)$ for all $(\lambda, \alpha) \in L^{0}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}^{N}\right)$.
The condition $R_{t}(0)=0$ is natural since no investment in the industrial project should yield no return. The condition (R2) is a concavity assumption. It means that, up to an immediate transaction in terms of financial assets, the return induced by a convex combination of industrial investments is better than the convex combination of the returns induced by each of them. It implies that $A_{T}(x ; K, R)$ is convex (see Lemma 2.1 below). The last assumption is more technical. It imposes an affine lower bound on the mapping $x \mapsto R_{t}(x)(\omega)$ for almost every $\omega \in \Omega$. In the one dimensional case, this means that $R^{\prime}(\infty)>-\infty \mathbb{P}-$ a.s. It is used only in the proof of Lemma 5.3 below and can be replaced by a weaker one as explained in Remark 5.1.

Observe that we do not impose non-negative returns, i.e. an investment in nonfinancial assets may lead to a negative reward in terms of financial assets.

2.2 Admissible consumption processes

A consumption process is a \mathbb{F}-adapted process $c=\left(c_{t}\right)_{t \in \mathbb{T}}$ with values in \mathbb{R}_{+}^{d}. Given an initial endowment $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, we say that a consumption process c is x-admissible if $\left(\sum_{t=0}^{T} c_{t}, 0_{N}\right) \in A_{T}(x ; K, R)$. We then define

$$
\mathcal{C}_{T}(x ; K, R):=\left\{c=\left(c_{t}\right)_{t \in \mathbb{T}} \in L^{0}\left(\mathbb{R}_{+}^{d} ; \mathbb{F}\right):\left(\sum_{t \in \mathbb{T}} c_{t}, 0_{N}\right) \in A_{T}(x ; K, R)\right\} .
$$

Observe that we only allow consumption in terms of financial assets. This formulation is well understood when the financial assets are indeed currencies.

Lemma 2.1 Let $(K, R) \in \mathcal{K} \times \mathcal{R}$ be such that (R2) holds and fix $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, then $A_{T}(x ; K, R)$ is convex, and so is $\mathcal{C}_{T}(x ; K, R)$.

Proof. Let $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}, g$ and \tilde{g} be two elements of $A_{T}(x ; K, R)$, and, let ξ and $\tilde{\xi}$ be two elements of $\mathcal{A}(x ; K)$ such that

$$
\begin{aligned}
& x+\sum_{s=0}^{T} \xi_{s}+\sum_{s=0}^{T-1} R_{s+1}\left(x^{I}+I(\xi)_{s}\right)=g \\
& x+\sum_{s=0}^{T} \tilde{\xi}_{s}+\sum_{s=0}^{T-1} R_{s+1}\left(x^{I}+I(\tilde{\xi})_{s}\right)=\tilde{g} .
\end{aligned}
$$

For $\varepsilon \in[0,1]$, we define $\xi^{\varepsilon}=\varepsilon \xi+(1-\varepsilon) \tilde{\xi}$. Let $\rho^{\varepsilon} \in L^{0}\left(\mathbb{R}^{d+N} ; \mathbb{F}\right)$ be defined by ρ_{0}^{ε} $=0$ and

$$
\rho_{t+1}^{\varepsilon}:=\varepsilon R_{t+1}\left(x^{I}+I(\xi)_{t}\right)+(1-\varepsilon) R_{t+1}\left(x^{I}+I(\tilde{\xi})_{t}\right)-R_{t+1}\left(x^{I}+I\left(\xi^{\varepsilon}\right)_{t}\right) .
$$

for $0 \leq t \leq T-1$. In view of (R2)

$$
\rho_{t}^{\varepsilon} \in-\underline{K}_{t} \quad t \in \mathbb{T} .
$$

Then, $\hat{\xi}^{\varepsilon} \in L^{0}\left(\mathbb{R}^{d+N} ; \mathbb{F}\right)$ defined by

$$
\hat{\xi}_{t}^{\varepsilon}:=\varepsilon \xi_{t}+(1-\varepsilon) \tilde{\xi}_{t}+\rho_{t}^{\varepsilon} \quad t \in \mathbb{T}
$$

lies in $\mathcal{A}(x ; K)$ and satisfies

$$
x+\sum_{t=0}^{T} \hat{\xi}_{t}^{\varepsilon}+\sum_{t=0}^{T-1} R_{t+1}\left(x^{I}+I\left(\hat{\xi}^{\varepsilon}\right)_{t}\right)=\varepsilon g+(1-\varepsilon) \tilde{g} .
$$

This concludes the proof.

3 The robust no-arbitrage condition

In order to avoid trivial situations, we need to impose a no-arbitrage condition on the global market. Extending in a natural way the usual notion of no-arbitrage, we assume that

$$
N A(K, R): \quad A_{T}(K, R) \cap L^{0}\left(\mathbb{R}_{+}^{d+N}\right)=\{0\} .
$$

In this paper, we shall indeed impose a stronger condition, which is similar to the one introduced by [12] and further studied by [7]. To this end, for $K \in \mathcal{K}$, we define \underline{K}^{0} $=\left(\underline{K}_{t}^{0}\right)_{t \in \mathbb{T}}$ by $\underline{K}_{t}^{0}=\underline{K}_{t} \cap\left(-\underline{K}_{t}\right)$ for $t \in \mathbb{T}$, and we say that a couple $(\tilde{K}, \tilde{R}) \in \mathcal{K} \times \mathcal{R}$ dominates $(K, R) \in \mathcal{K} \times \mathcal{R}$ if, for each $t \in \mathbb{T}$,
(D1) $\underline{K}_{t} \backslash \underline{K}_{t}^{0} \subset \operatorname{ri}\left(\underline{\tilde{K}}_{t}\right)$
(D2) $\quad \tilde{R}_{t}(0) \in \underline{K}_{t} \quad$ and $\quad \tilde{R}_{t}(\alpha)-R_{t}(\alpha) \in \operatorname{ri}\left(\underline{K}_{t}\right), \alpha \in \mathbb{R}_{+}^{N} \backslash\{0\}$.
We then assume that (K, R) satisfies the robust no-arbitrage property :

$$
N A^{r}(K, R): N A(\tilde{K}, \tilde{R}) \text { holds for some }(\tilde{K}, \tilde{R}) \text { which dominates }(K, R) \text {. }
$$

In the context of pure financial models as in [12] and [7], the robust no-arbitrage condition means that there is no arbitrage even if we slightly reduce the size of the transaction costs which are not already equal to zero. In our context, the same interpretation holds for the financial part of the model. As for the industrial part, we assume that the no-arbitrage property is also stable under a slight increase of the non-linear returns.

Remark 3.1 1. As observed in Remark 2.1, for general $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, we do not have $A_{T}(x ; K, R)=x+A_{T}(K, R)$. In particular, there is no reason why $\left(A_{T}(x ; K, R)-x\right) \cap L^{0}\left(\mathbb{R}_{+}^{d+N} ; \mathcal{F}_{T}\right)=\{0\}$ should hold. In our context, this condition could be replaced by

$$
N A(x ; K, R):\left(A_{T}(x ; K, R)-x-\sum_{t=0}^{T-1} R_{t+1}\left(x^{I}\right)\right) \cap L^{0}\left(\mathbb{R}_{+}^{d+N}\right)=\{0\},
$$

which could be interpreted as :"we can not do $\mathbb{P}-$ a.s. better than doing nothing". Since the exact meaning of this assertion is not clear, especially in the case where R_{t} may have negative components, we shall not use it in this paper.
2. In the case where $x=\left(x^{F}, 0_{N}\right)$, then $A_{T}(x ; K, R)-x-\sum_{t=0}^{T-1} R_{t+1}(0)=A_{T}(K, R)$ and therefore $N A(x ; K, R) \Leftrightarrow N A(K, R)$, see (R1).

Our first result shows that the $N A^{r}$ condition implies the closedness of $A_{T}(x ; K, R)$.
Theorem 3.1 Let $(K, R) \in \mathcal{K} \times \mathcal{R}$ be such that (R1)-(R2)-(R3) and $N A^{r}(K, R)$ hold. Then, for all $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}, A_{T}(x ; K, R)$ and $\mathcal{C}_{T}(x ; K, R)$ are closed in probability.

Proof. See Lemma 5.4 and Remark 5.2 below.

In Section 6, we shall provide a dual formulation for $A_{T}(x ; K, R)$ and $\mathcal{C}_{T}(x ; K, R)$. It is not the main aim of this paper but it will be useful in the proof of Theorem 4.1 below. As usual, the dual formulation is obtained by using the closure property of $A_{T}(x ; K, R)$.

4 Existence in the utility maximization problem

We now consider a sequence $\left(U_{t}\right)_{t \in \mathbb{T}}$ of concave mappings from \mathbb{R}_{+}^{d} into \mathbb{R} such that

$$
\begin{equation*}
\operatorname{cl}\left(\operatorname{dom}\left(U_{t}\right)\right)=\mathbb{R}_{+}^{d}, t \in \mathbb{T}, \tag{4.1}
\end{equation*}
$$

where $\mathrm{cl}\left(\operatorname{dom}\left(U_{t}\right)\right)$ denotes the closure of the effective domain of $U_{t}, \operatorname{dom}\left(U_{t}\right):=$ $\left\{c \in \mathbb{R}^{d}:\left|U_{t}(c)\right|<\infty\right\}$. It is natural to assume that U_{t} is \mathbb{R}^{d}-non-decreasing in the sense that

$$
\begin{equation*}
U_{t}(x) \geq U_{t}(y) \quad \text { if } x-y \in \mathbb{R}_{+}^{d}, t \in \mathbb{T} \tag{4.2}
\end{equation*}
$$

The utility maximization problem is defined as

$$
u(x):=\sup _{c \in \mathcal{C}_{T}^{U}(x ; K, R)} \mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}\right)\right], x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}
$$

where

$$
\mathcal{C}_{T}^{U}(x ; K, R):=\left\{c \in \mathcal{C}_{T}(x ; K, R):\left(\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}\right)\right)^{-} \in L^{1}(\mathbb{P})\right\}
$$

Remark 4.1 We claim that $\mathcal{C}_{T}^{U}(x ; K, R) \neq \emptyset$ whenever $x \in \operatorname{int}\left(K_{0}\right)$. This follows from the following observations.

1. By assumption $\mathbb{R}_{+}^{d+N} \backslash\{0\} \subset \operatorname{int}\left(K_{0}\right)$. It follows that $\left(K_{0}\right)^{*} \backslash\{0\} \subset \operatorname{int}\left(\mathbb{R}_{+}^{d+N}\right)$. In particular, for $H_{1}=\left\{y \in \mathbb{R}^{d+N}: y^{1}=1\right\}$, the set $\left(K_{0}\right)^{*} \cap H_{1}$ is compact and
there is some $\varepsilon>0$ such that $y^{i} \geq \varepsilon$ for all $1 \leq i \leq d+N$ and $y \in\left(K_{0}\right)^{*} \cap H_{1}$. Also observe that, for $y \in K_{0}^{*}, y^{1}=0$ implies $y=0$.
2. Observe now that $x \in \operatorname{int}\left(K_{0}\right)$ if and only if $y \cdot x>0$ for all $y \in\left(K_{0}\right)^{*} \cap H_{1}$. It then follows from 1. that, for $x \in \operatorname{int}\left(K_{0}\right)$, we can find some $\tilde{x} \in \mathbb{R}^{d+N}$ with $\tilde{x}^{i}>0$, for $i \leq d$, such that $x-\tilde{x} \in K_{0}$.
3. Letting x and \tilde{x} be as in 2., we define the process c as $c_{t}^{i}=\tilde{x}^{i} / T$ for all $i \leq d$ and $t \in \mathbb{T}$. Then, $c \in \mathcal{C}_{T}(\tilde{x} ; K, R) \subset \mathcal{C}_{T}(x ; K, R)$ and $c_{t} \in \operatorname{dom}\left(U_{t}\right)$ for all $t \in \mathbb{T}$, see (4.1).

As usual, we need to impose some additional conditions on the utility functions. In our multivariate framework, it is natural to rewrite the usual Inada's conditions in terms of the Fenchel transforms associated to U_{t}

$$
\tilde{U}_{t}(y)=\sup _{x \in \mathbb{R}_{+}^{d}} U_{t}(x)-x \cdot y \quad, y \in \mathbb{R}_{+}^{d}, t \in \mathbb{T}
$$

In the smooth one dimensional case, the usual Inada's conditions $U_{t}^{\prime}(0)=+\infty$ and $U_{t}^{\prime}(+\infty)=0$ are equivalent to $\operatorname{dom}\left(\tilde{U}_{t}\right) \supset(0, \infty)$. We therefore assume that

$$
\begin{equation*}
\operatorname{int}\left(\mathbb{R}_{+}^{d}\right) \subset \operatorname{dom}\left(\tilde{U}_{t}\right) \tag{4.3}
\end{equation*}
$$

For later use, observe that

$$
\begin{equation*}
\tilde{U}_{t}(x) \leq \tilde{U}_{t}(y) \quad \text { if } x-y \in \mathbb{R}_{+}^{d}, t \in \mathbb{T} \tag{4.4}
\end{equation*}
$$

We shall also appeal to one of these two conditions :
$(\tilde{U} 1)$ the sequence of functions $\tilde{U}_{t}^{n}(y)=\sup _{x \in \mathbb{R}_{+}^{d},\|x\| \leq n} U(x)-x \cdot y$ is uniformly bounded from below in $y \in \mathbb{R}_{+}^{d}$ and $n \geq M_{t}$ for some $M_{t} \in \mathbb{N}$.
or
$(\tilde{U} 2)$ there is some $e_{t} \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right)$ such that the mapping $V_{t}: r \in \mathbb{R}_{+} \mapsto \tilde{U}_{t}\left(r e_{t}\right)$ is stricly convex and $\lim _{r \rightarrow+\infty} V_{t}^{\prime}(r)=0$ (where V_{t}^{\prime} denotes the right-hand derivative of V_{t}).

Assumption $(\tilde{U} 1)$ is trivially satisfied if $U_{t}(0)>-\infty$. Assumption $(\tilde{U} 2)$ means that there is a direction along which \tilde{U}_{t} is strictly convex. This generalizes the usual one dimensional assumption : U_{t} is strictly concave, which implies the strict convexity of \tilde{U}_{t} in the one dimensional case.

Following [9], [2] and [1], we finally impose the asymptotic elasticity condition

$$
\begin{equation*}
\limsup _{\ell(y) \rightarrow 0}\left(\sup _{q \in-\partial \tilde{U}_{t}(y)} q \cdot y\right) / \tilde{U}_{t}(y)<\infty \tag{4.5}
\end{equation*}
$$

where $\partial \tilde{U}_{t}(y)$ denotes the subgradient of \tilde{U}_{t} at y in the sense of convex analysis and

$$
\ell(y):=\inf _{x \in \mathbb{R}_{+}^{d},\|x\|=1} x \cdot y .
$$

We can now state our main result.
Theorem 4.1 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ such that (R1) to (R3) and $N A^{r}(K, R)$ hold. Let the conditions (4.1)-(4.2)-(4.3)-(4.5) hold. Assume further that, for each $t \in \mathbb{T}$, either (\tilde{U} 1) or (U 2) hold. Finally assume that $u(x)<\infty$ for some $x \in \operatorname{int}\left(K_{0}\right)$. Then,
(i) $u(x)<\infty$ for all $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$
(ii) for all $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$ such that $\mathcal{C}_{T}^{U}(x ; K, R) \neq \emptyset$, there is some $c^{*} \in \mathcal{C}_{T}^{U}(x ; K, R)$ such that

$$
u(x)=\mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{*}\right)\right]
$$

Remark 4.2 If the U_{t} 's are assumed to be strictly concave, then uniqueness holds for the utility maximization problem.

Remark 4.3 In Remark 7.3 below, we discuss the assumption (4.5) which can be replaced by a finitness condition on some auxiliary dual problem as in [10].

The remaining sections are organized as follow. In Section 5 , we show that $A_{T}(x ; K, R)$ is closed in probability as soon as (R1) to (R3) and $N A^{r}(K, R)$ hold. In Section 6, we use this result to provide a dual formulation for the set of attainable claims. The proof of Theorem 4.1 is given in Section 7.

5 The closure property

Observe that, because of the constraint (2.1), the sets $A_{T}(x ; K, R)$ are not K_{T}-solid, i.e.

$$
A_{T}(x ; K, R) \nsupseteq \quad A_{T}(x ; K, R)-L^{0}\left(K_{T}\right) .
$$

Indeed, $f \notin A_{T}(x: K, R)$ whenever $\mathbb{P}\left[f \notin \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}\right]>0$. In order to obtain a suitable dual formulation for $A_{T}(x ; K, R)$, see Section 6 below, we therefore introduce the K_{T}-solid envelope of $A_{T}(x ; K, R)$:

$$
A_{T}^{s}(x ; K, R):=A_{T}(x ; K, R)-L^{0}\left(K_{T}\right)
$$

Since

$$
\begin{equation*}
A_{T}^{s}(x ; K, R) \cap L^{0}\left(\mathbb{R}^{d} \times \mathbb{R}_{+}^{N}\right)=A_{T}(x ; K, R) \tag{5.1}
\end{equation*}
$$

passing from $A_{T}^{s}(x ; K, R)$ to $A_{T}(x ; K, R)$ is straightforward. In particular, if $A_{T}^{s}(x ; K, R)$ is closed in probability, then so is $A_{T}(x ; K, R)$.

In this section, we prove the closedness of $A_{T}^{s}(x ; K, R)$. It is not of direct use for the proof Theorem 4.1, i.e. the closedness of $A_{T}(x ; K, R)$ is enough, but it will allow us to establish a general dual formulation the set of elements g of $A_{T}(x ; K, R)$ which are "bounded from below", see Theorem 6.2 in the next section.

Observe that we can rewrite $A_{T}^{s}(x ; K, R)$ as

$$
A_{T}^{s}(x ; K, R)=\left\{x+\sum_{t=0}^{T} \xi_{t}+\sum_{t=0}^{T-1} R_{t+1}\left(x^{I}+I(\xi)_{t}\right), \xi \in \mathcal{A}^{s}(x ; K)\right\}
$$

where, for $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}, \mathcal{A}^{s}(x ; K)$ is the set of adapted process ξ such that

$$
\begin{equation*}
\xi_{t} \in-K_{t} \quad \text { and } \quad I(\xi)_{t} \mathbb{I}_{t \leq T-1}+x^{I} \in \mathbb{R}_{+}^{N} \quad \mathbb{P}-\text { a.s. for all } t \in \mathbb{T} \tag{5.2}
\end{equation*}
$$

We shall simply write $A_{T}^{s}(K, R)$ and $\mathcal{A}^{s}(K)$ when $x=0$.

The following Lemma can be compared to Lemma 5 in [7] and is the key result to prove the closure property.

Lemma 5.1 Let $(K, R) \in \mathcal{K} \times \mathcal{R}$ be such that $N A^{r}(K, R)$ hold. Let $\xi \in \mathcal{A}^{s}(K)$ be such that

$$
\sum_{t=0}^{T} \xi_{t}+\sum_{t=0}^{T-1} R_{t+1}\left(I(\xi)_{t}\right)=\epsilon
$$

for some $\epsilon \in \underline{K}_{t_{0}}$ with $t_{0} \in \mathbb{T}$. Then, $\epsilon \in \underline{K}_{t_{0}}^{0}$, and

$$
I(\xi)_{t}=0, \xi_{t} \in \underline{K}_{t}^{0} \quad \text { for all } \quad t \in \mathbb{T}
$$

Proof. 1. First assume that $\mathbb{P}\left[\epsilon \notin \underline{K}_{t_{0}}^{0}\right]>0$. By (D1), there is a set $B \subset$ Ω of positive probability on which $\epsilon \in \operatorname{ri}\left(\underline{\tilde{K}}_{t_{0}}\right)$. Hence, we can find some $\beta \in$ $L^{0}\left(\underline{\mathbb{R}}_{+}^{d+N} ; \mathcal{F}_{t_{0}}\right) \backslash\{0\}$, such that $-\epsilon+\beta \in-\underline{K}_{t_{0}}$ on B. Set $\hat{\xi}_{t}=\xi_{t}+(\beta-\epsilon) \mathbb{I}_{t=t_{0}}$. Since $\beta-\epsilon$ takes values in $\underline{\mathbb{R}}^{d+N}$, we have $I(\hat{\xi})=I(\xi)$ and

$$
\sum_{t=0}^{T} \hat{\xi}_{t}+\sum_{t=0}^{T-1} R_{t+1}\left(I(\hat{\xi})_{t}\right)=\beta
$$

Set

$$
\begin{aligned}
r_{t+1} & =\tilde{R}_{t+1}\left(I(\hat{\xi})_{t}\right)-R_{t+1}\left(I(\tilde{\xi})_{t}\right) \\
\tilde{\xi}_{0} & =\hat{\xi}_{0} \text { and } \tilde{\xi}_{t+1}=\hat{\xi}_{t+1}-r_{t+1}, \quad 0 \leq t \leq T-1
\end{aligned}
$$

By (D2), $r_{t+1} \in \underline{K}_{t} \mathbb{P}-$ a.s. and $\tilde{\xi} \in \mathcal{A}^{s}(K) \subset \mathcal{A}^{s}(\tilde{K})$ satisfies

$$
\sum_{t=0}^{T} \tilde{\xi}_{t}+\sum_{t=0}^{T-1} \tilde{R}_{t+1}\left(I(\tilde{\xi})_{t}\right)=\beta
$$

Since $\beta \in L^{0}\left(\underline{\mathbb{R}}_{+}^{d+N} ; \mathcal{F}_{t_{0}}\right) \backslash\{0\}$, this contradicts $N A(\tilde{K}, \tilde{R})$ and therefore $N A^{r}(K, R)$. 2. If $\mathbb{P}\left[I(\xi)_{t^{*}} \neq 0\right]>0$ for some $t^{*} \in \mathbb{T} \backslash\{T\}$, then on a set $B \subset \Omega$ of positive probability we have $I(\xi)_{t^{*}} \neq 0$. Set $\alpha:=\tilde{R}_{t^{*}+1}\left(I(\xi)_{t^{*}}\right)-R_{t^{*}+1}\left(I(\xi)_{t^{*}}\right)$. Then, by (D2), $\alpha \in \underline{K}_{t^{*}+1} \mathbb{P}-$ a.s. and $\alpha \in \operatorname{ri}\left(\underline{K}_{t^{*}+1}\right)$ on B. We can then find some $\beta \in$ $L^{0}\left(\underline{\mathbb{R}}_{+}^{d+N} ; \mathcal{F}_{t^{*}+1}\right) \backslash\{0\}$ such that $\alpha-\beta \in \underline{K}_{t^{*}+1}$. Then,

$$
-\alpha+\beta+\sum_{t=0}^{T} \xi_{t}+\sum_{t=0}^{T-1} \tilde{R}_{t+1}\left(I(\xi)_{t}\right)=\epsilon+\beta+\gamma
$$

where

$$
\gamma:=\sum_{t \in \mathbb{T} \backslash\left\{t^{*}\right\}} \tilde{R}_{t+1}\left(I(\xi)_{t}\right)-R_{t+1}\left(I(\xi)_{t}\right) \in \sum_{t \in \mathbb{T} \backslash\left\{t^{*}\right\}} \underline{K}_{t} \mathbb{P}-\text { a.s. }
$$

by (D2). Arguing as in 1., we obtain a contradiction to $N A(\tilde{K}, \tilde{R})$. Hence, $I(\xi)_{t}=$ $0 \mathbb{P}-$ a.s. for all $t<T$. Since ϵ takes values in \mathbb{R}^{d+N}, we must also have $I(\xi)_{T}=0$ \mathbb{P} - a.s.
3. We already know from 2. that $I(\xi)_{t}=0$ for each $t \in \mathbb{T}$. It follows that $\xi_{t} \in$ $-\underline{K}_{t}$ for all $t \in \mathbb{T}$. Assume that $\mathbb{P}\left[\xi_{t^{*}} \notin \underline{K}_{t^{*}}^{0}\right]>0$ for some $t^{*} \in \mathbb{T}$. By (D1), there is a set $B \subset \Omega$ of positive probability on which we have $\xi_{t^{*}} \in-\operatorname{ri}\left(\underline{\tilde{K}}_{t^{*}}\right)$. We can then find some $\beta \in L^{0}\left(\underline{\mathbb{R}}_{+}^{d+N} ; \mathcal{F}_{t^{*}}\right) \backslash\{0\}$ such that $\xi_{t^{*}}+\beta \in-\underline{\tilde{K}}_{t^{*}}$. Since

$$
\beta+\sum_{t=0}^{T} \xi_{t}+\sum_{t=0}^{T-1} R_{t+1}\left(I(\xi)_{t}\right)=\beta+\epsilon
$$

we obtain a contradiction to $N A(\tilde{K}, \tilde{R})$ by the same arguments as in 1 .

Before to go on with the proof of the closure property, we recall the following Lemma which proof can be found in [5].

Lemma 5.2 Set $\mathcal{G} \subset \mathcal{F}$ and $E \subset \mathbb{R}^{d+N}$. Let $\left(\eta^{n}\right)_{n \geq 1}$ be a sequence in $L^{0}(E ; \mathcal{G})$. Set $\tilde{\Omega}:=\left\{\liminf _{n \rightarrow \infty}\left\|\eta^{n}\right\|<\infty\right\}$. Then, there is an increasing sequence of random variables $(\tau(n))_{n \geq 1}$ in $L^{0}(\mathbb{N} ; \mathcal{G})$ such that $\tau(n) \rightarrow \infty \mathbb{P}-$ a.s. and, for each $\omega \in \tilde{\Omega}$, $\eta^{\tau(n)}(\omega)$ converges to some $\eta^{*}(\omega)$ with $\eta^{*} \in L^{0}(E ; \mathcal{G})$.

As a consequence, we first obtain some additional property on R which will be useful in the proof of Lemma 5.4 below.

Lemma 5.3 Let $R \in \mathcal{R}$ be such that (R1)-(R2)-(R3) hold. Let $\left(\eta^{n}, \alpha^{n}\right)_{n \geq 1}$ be a sequence in $L^{0}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}^{N} ; \mathcal{F}_{t}\right)$ such that $\left(\eta^{n}, \alpha^{n}\right) \rightarrow(\infty, \alpha) \mathbb{P}-$ a.s. for some $\alpha \in$ $L^{0}\left(\mathbb{R}_{+}^{N}\right)$. Then, there is a sequence $\left(\tau_{n}\right)_{n \geq 1}$ in $L^{0}\left(\mathbb{N} ; \mathcal{F}_{t}\right)$ such that $\tau_{n} \rightarrow \infty \mathbb{P}-$ a.s. and

$$
\lim _{n \rightarrow \infty}\left(\eta^{\tau_{n}}\right)^{-1} R_{t}\left(\eta^{\tau_{n}} \alpha^{\tau_{n}}\right)-R_{t}(\alpha)=-\epsilon
$$

for some $\epsilon \in L^{0}\left(\underline{K}_{t} ; \mathcal{F}_{t}\right)$.
Proof. By (R1)-(R2),

$$
\begin{equation*}
\left(\eta^{n}\right)^{-1} R_{t}\left(\eta^{n} \alpha^{n}\right)-R_{t}\left(\alpha^{n}\right) \in-\underline{K}_{t} \quad \text { on }\left\{\eta^{n} \geq 1\right\} . \tag{5.3}
\end{equation*}
$$

1. We claim that we can find some $Y \in L^{\infty}\left(K_{t}^{*}\right)$ with $Y^{i}>0 \mathbb{P}-$ a.s. for all $i=1, \ldots, d+N$. Then, on $\left\{\eta^{n} \geq 1\right\}$,

$$
Y \cdot\left[\left(\eta^{n}\right)^{-1} R_{t}\left(\eta^{n} \alpha^{n}\right)+\left(\eta^{n}\right)^{-1} a_{t}+L_{t}\left(\alpha^{n}\right)\right] \leq Y \cdot\left[R_{t}\left(\alpha^{n}\right)+\left(\eta^{n}\right)^{-1} a_{t}+L_{t}\left(\alpha^{n}\right)\right],
$$

where $a_{t} \in L^{0}\left(\mathbb{R}_{+}^{d+N}\right)$ and $L_{t} \in \mathcal{R}$ are given by (R3). Since $R_{t}\left(\alpha^{n}\right)$ converges $\mathbb{P}-$ a.s. to $R_{t}(\alpha)$, see (R1), $\left(\eta^{n}\right)^{-1} a_{t}+L_{t}\left(\alpha^{n}\right)$ converges $\mathbb{P}-$ a.s. to $L_{t}(\alpha)$, and $\left(\eta^{n}\right)^{-1} R_{t}\left(\eta^{n} \alpha^{n}\right)+$ $\left(\eta^{n}\right)^{-1} a_{t}+L_{t}\left(\alpha^{n}\right) \in L^{0}\left(\mathbb{R}_{+}^{d+N}\right)$, we deduce that

$$
\liminf _{n \rightarrow \infty}\left\|\left(\eta^{n}\right)^{-1} R_{t}\left(\eta^{n} \alpha^{n}\right)\right\|<\infty
$$

In view of Lemma 5.2, we can then find a sequence $\left(\tau_{n}\right)_{n \geq 1}$ in $L^{0}\left(\mathbb{N} ; \mathcal{F}_{t}\right)$ such that $\tau_{n} \rightarrow \infty \mathbb{P}-$ a.s. and $\left(\eta^{\tau_{n}}\right)^{-1} R_{t}\left(\eta^{\tau_{n}} \alpha^{\tau_{n}}\right)$ converges $\mathbb{P}-$ a.s. Since \underline{K}_{t} is closed, the result then follows from (5.3).
2. It remains to prove that we can find some $Y \in L^{\infty}\left(K_{t}^{*}\right)$ with $Y^{i}>0 \mathbb{P}$ - a.s. for all $i=1, \ldots, d+N$. Observe that for $X \in L^{0}\left(\operatorname{ri}\left(K_{t}\right)\right)$ there is some $Y \in L^{\infty}\left(K_{t}^{*}\right)$ such that $Y \cdot X>0$. Let e_{i} be the vector of \mathbb{R}^{d+N} defined by $e_{i}^{j}=\mathbb{I}_{i=j}$. Since K_{t} dominates \mathbb{R}_{+}^{d+N}, i.e. $\mathbb{R}_{+}^{d+N} \backslash\{0\} \subset \operatorname{ri}\left(K_{t}\right)$, for each $1 \leq i \leq d+N$ we can find some $Y_{i} \in K_{t}^{*}$ such that $Y_{i} \cdot e_{i}>0$. Then, $Y:=\sum_{i=1}^{d+N} Y_{i} \in K_{t}^{*}$ satisfies the required property.

Remark 5.1 In the above proof, assumption (R3) was used only to show that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|\left(\eta^{n}\right)^{-1} R_{t}\left(\eta^{n} \alpha^{n}\right)\right\|<\infty \quad \mathbb{P}-\text { a.s. } \tag{5.4}
\end{equation*}
$$

Then, we could replace (R3) by : for all sequence $\left(\eta^{n}, \alpha^{n}\right)_{n \geq 1}$ in $L^{0}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}^{N} ; \mathcal{F}_{t}\right)$ such that $\left(\eta^{n}, \alpha^{n}\right) \rightarrow(\infty, \alpha) \mathbb{P}-$ a.s. for some $\alpha \in L^{0}\left(\mathbb{R}_{+}^{N}\right)$, we have (5.4).

We can now state the main result of this section.
Lemma 5.4 Let $(K, R) \in \mathcal{K} \times \mathcal{R}$ be such that (R1)-(R2)-(R3) and $N A^{r}(K, R)$ hold. For $t \in \mathbb{T}$ and $\alpha \in L^{0}\left(\mathbb{R}_{+}^{N} ; \mathcal{F}_{t}\right)$, let $\mathcal{Y}^{t, \alpha}(K)$ be the set of processes $\xi \in L^{0}\left(\mathbb{R}^{d+N} ; \mathbb{F}\right)$ such that
$\xi_{s} \in-K_{s} \mathbb{I}_{s \geq t}$ for all $s \in \mathbb{T} \quad$ and $\quad I(\xi)_{s}+\alpha \in \mathbb{R}_{+}^{N}$ for all $t \leq s \leq T-1 \mathbb{P}-$ a.s. For $t \in \mathbb{T}$, let $Y_{T}^{t}(K, R)$ denote the set of elements $(\alpha, g) \in L^{0}\left(\mathbb{R}_{+}^{N} ; \mathcal{F}_{t}\right) \times L^{0}\left(\mathbb{R}^{d+N} ; \mathcal{F}_{T}\right)$ such that there is some $\xi \in \mathcal{Y}^{t, \alpha}(K)$ for which

$$
\sum_{s=t}^{T} \xi_{s}+\sum_{s=t}^{T-1} R_{s+1}\left(I(\xi)_{s}+\alpha\right)=g
$$

Then, for all $t \in \mathbb{T}, Y_{T}^{t}(K, R)$ is closed for the convergence in probability.
Remark 5.2 For $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, the above Lemma readily implies that $A_{T}^{s}(x ; K, R)$ is closed in probability since $\left(x^{I}, g_{n}+\left(x^{F}, 0_{N}\right)\right) \in Y_{T}^{0}(K, R)$ if and only if $g_{n} \in A_{T}^{s}(x ; K, R)$. In view of (5.1), this shows that $A_{T}(x ; K, R)$ is closed too and so is $\mathcal{C}_{T}(x ; K, R)$.

Proof. We proceed by induction. For $t=T$, there is nothing to prove. We then assume that $Y_{T}^{t+1}(K, R)$ is closed for some $0 \leq t<T$ and show that this implies that $Y_{T}^{t}(K, R)$ is closed too. Let $\left(\alpha^{n}, g^{n}\right)_{n \geq 1}$ be a sequence in $Y_{T}^{t}(K, R)$ that converges
in probability to some $(\alpha, g) \in L^{0}\left(\mathbb{R}_{+}^{N} ; \mathcal{F}_{t}\right) \times L^{0}\left(\mathbb{R}^{d+N} ; \mathcal{F}_{T}\right)$. After passing to a subsequence, we can assume that the convergence holds $\mathbb{P}-$ a.s. Let $\left(\xi^{n}\right)_{n \geq 1}$ be a sequence such that

$$
\begin{equation*}
\xi^{n} \in \mathcal{Y}^{t, \alpha^{n}}(K) \quad \text { and } \quad \sum_{s=t}^{T} \xi_{s}^{n}+\sum_{s=t}^{T-1} R_{s+1}\left(I\left(\xi^{n}\right)_{s}+\alpha^{n}\right)=g^{n} \quad, n \geq 1 \tag{5.5}
\end{equation*}
$$

Set $\tilde{\Omega}=\left\{\liminf _{n \rightarrow \infty}\left\|\xi_{t}^{n}\right\|<\infty\right\}$ and observe that $\tilde{\Omega} \in \mathcal{F}_{t}$.

1. By Lemma 5.2, if $\mathbb{P}[\tilde{\Omega}]=1$, we can find an increasing sequence of random variables $(\tau(n))_{n \geq 1}$ in $L^{0}\left(\mathbb{N} ; \mathcal{F}_{t}\right)$ such that, for each $\omega \in \tilde{\Omega}, \xi_{t}^{\tau(n)}(\omega)$ converges to some $\xi_{t}(\omega)$ with $\xi_{t} \in L^{0}\left(\mathbb{R}^{d+N} ; \mathcal{F}_{t}\right)$. We then have

$$
\begin{aligned}
g^{\tau(n)} & =\xi_{t}^{\tau(n)}+R_{t+1}\left(I\left(\xi^{\tau(n)}\right)_{t}+\alpha^{\tau(n)}\right) \\
& +\sum_{s=t+1}^{T} \tilde{\xi}_{s}^{\tau(n)}+\sum_{s=t+1}^{T-1} R_{s+1}\left(I\left(\tilde{\xi}^{\tau(n)}\right)_{s}+I\left(\xi^{\tau(n)}\right)_{t}+\alpha^{\tau(n)}\right)
\end{aligned}
$$

where

$$
\tilde{\xi}_{s}^{\tau(n)}=\xi_{s}^{\tau(n)} \mathbb{I}_{s \geq t+1}, 0 \leq s \leq T
$$

Hence, $\left(I\left(\xi^{\tau(n)}\right)_{t}+\alpha^{\tau(n)}, g^{\tau(n)}-\xi_{t}^{\tau(n)}-R_{t+1}\left(I\left(\xi^{\tau(n)}\right)_{t}+\alpha^{\tau(n)}\right)\right)$ belongs to $Y_{T}^{t+1}(K, R)$. Since $Y_{T}^{t+1}(K, R)$ is closed, we can find some $\tilde{\xi} \in L^{0}\left(\mathbb{R}^{d+N} ; \mathbb{F}\right)$, with $\tilde{\xi}_{s}=0$ for $s<t+1$, such that

$$
\sum_{s=t+1}^{T} \tilde{\xi}_{s}+\sum_{s=t+1}^{T-1} R_{s+1}\left(I(\tilde{\xi})_{s}+I(\xi)_{t}+\alpha\right)=g-\xi_{t}-R_{t+1}\left(I(\xi)_{t}+\alpha\right)
$$

where we used (R1) to pass to the limit in R_{t+1}. Set

$$
\bar{\xi}_{s}=\xi_{t} \mathbb{I}_{\{s=t\}}+\tilde{\xi} \mathbb{I}_{\{t<s \leq T\}}, s \in \mathbb{T}
$$

Then,

$$
\sum_{s=t}^{T} \bar{\xi}_{s}+\sum_{s=t}^{T-1} R_{s+1}\left(I(\bar{\xi})_{s}+\alpha\right)=g
$$

where, in view of (5.5),

$$
\bar{\xi}_{s} \in-K_{s} \mathbb{I}_{s \geq t} \text { for } s \in \mathbb{T} \quad \text { and } \quad I(\bar{\xi})_{s}+\alpha \in \mathbb{R}_{+}^{N} \text { for } t \leq s \leq T-1, \mathbb{P}-\text { a.s. }
$$

This shows that $(\alpha, g) \in Y_{T}^{t}(K, R)$.
2. We next consider the case where $\mathbb{P}[\tilde{\Omega}]<1$. Since $\tilde{\Omega} \in \mathcal{F}_{t}$, we can work separately on $\tilde{\Omega}$ and $\tilde{\Omega}^{c}$, by considering two alternative strategies depending on the occurrence of $\tilde{\Omega}$ or $\tilde{\Omega}^{c}$. We can then proceed as if $\mathbb{P}\left[\tilde{\Omega}^{c}\right]=1$.
2.a. Let $\eta_{t}^{n}:=\left\|\xi_{t}^{n}\right\|+1$. Since, $\liminf _{n \rightarrow \infty}\left(\eta_{t}^{n}\right)^{-1}\left\|\xi_{t}^{n}\right\|<\infty \mathbb{P}-$ a.s., we can find an increasing sequence of random variables $(\tau(n))_{n \geq 1}$ in $L^{0}\left(\mathbb{N} ; \mathcal{F}_{t}\right)$ such that for each $\omega \in \tilde{\Omega}^{c},\left(\eta_{t}^{\tau(n)}\right)^{-1} \xi_{t}^{\tau(n)}$ converges to some $\bar{\xi}_{t}^{*}$ in $L^{0}\left(\mathbb{R}^{d+N} ; \mathcal{F}_{t}\right)$.

Set

$$
\left(\bar{\xi}^{n}, \bar{g}^{n}, \bar{\alpha}^{n}\right):=\left(\eta_{t}^{\tau(n)}\right)^{-1}\left(\xi^{\tau(n)}, g^{\tau(n)}, \alpha^{\tau(n)}\right) \quad \text { and } \quad \bar{\eta}_{t}^{n}:=\eta_{t}^{\tau(n)},
$$

so that

$$
\begin{align*}
\bar{g}^{n} & =\bar{\xi}_{t}^{n}+\left(\bar{\eta}_{t}^{n}\right)^{-1} R_{t+1}\left(\bar{\eta}_{t}^{n}\left(I\left(\bar{\xi}^{n}\right)_{t}+\bar{\alpha}^{n}\right)\right) \tag{5.6}\\
& +\sum_{s=t+1}^{T} \bar{\xi}_{s}^{n}+\sum_{s=t+1}^{T-1}\left(\bar{\eta}_{t}^{n}\right)^{-1} R_{s+1}\left(\bar{\eta}_{t}^{n}\left(I\left(\bar{\xi}^{n}\right)_{s}+\bar{\alpha}^{n}\right)\right) .
\end{align*}
$$

Set

$$
\begin{equation*}
r_{s+1}^{n}:=R_{s+1}\left(I\left(\bar{\xi}^{n}\right)_{s}+\bar{\alpha}^{n}\right)-\left(\bar{\eta}_{t}^{n}\right)^{-1} R_{s+1}\left(\bar{\eta}_{t}^{n}\left(I\left(\bar{\xi}^{n}\right)_{s}+\bar{\alpha}^{n}\right)\right), t+1 \leq s \leq T-1 . \tag{5.7}
\end{equation*}
$$

In view of (R1)-(R2), $r_{s+1}^{n} \in \underline{K}_{s+1}, t+1 \leq s \leq T-1, \mathbb{P}-$ a.s. Set

$$
\begin{equation*}
\tilde{\xi}_{s}^{n}:=\bar{\xi}_{s}^{n} \mathbb{I}_{s \geq t+1}-r_{s}^{n} \mathbb{\mathbb { I }}_{s \geq t+2} \in-K_{s}, s \in \mathbb{T} . \tag{5.8}
\end{equation*}
$$

Since $I(\xi)$ does not depend on the d first component of ξ, we have

$$
\begin{equation*}
I\left(\bar{\xi}^{n}\right)_{s}=I\left(\tilde{\xi}^{n}\right)_{s}+I\left(\bar{\xi}^{n}\right)_{t}, s \geq t+1 \tag{5.9}
\end{equation*}
$$

Since $\bar{\alpha}^{n}+I\left(\bar{\xi}^{n}\right)_{t} \rightarrow I\left(\bar{\xi}^{*}\right)_{t} \mathbb{P}-$ a.s., we deduce from Lemma 5.3 that there is some $\epsilon \in L^{0}\left(\underline{K}_{t+1} ; \mathcal{F}_{t+1}\right)$ and an increasing sequence of random variables $(\sigma(n))_{n \geq 1}$ in $L^{0}\left(\mathbb{N} ; \mathcal{F}_{t+1}\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\bar{\eta}_{t}^{\sigma(n)}\right)^{-1} R_{t+1}\left(\bar{\eta}_{t}^{\sigma(n)}\left(I\left(\bar{\xi}^{\sigma(n)}\right)_{t}+\bar{\alpha}^{\sigma(n)}\right)\right)-R_{t+1}\left(I\left(\bar{\xi}^{*}\right)_{t}\right)=-\epsilon, \tag{5.10}
\end{equation*}
$$

where $\sigma(n)$ goes to $\infty \mathbb{P}$ - a.s. Since by (5.6)-(5.7)-(5.8)-(5.9)

$$
\begin{aligned}
\bar{g}^{\sigma(n)} & =\bar{\xi}_{t}^{\sigma(n)}+\left(\bar{\eta}_{t}^{\sigma(n)}\right)^{-1} R_{t+1}\left(\bar{\eta}_{t}^{\sigma(n)}\left(I\left(\bar{\xi}^{\sigma(n)}\right)_{t}+\bar{\alpha}^{\sigma(n)}\right)\right) \\
& \left.+\sum_{s=t+1}^{T} \tilde{\xi}_{s}^{\sigma(n)}+\sum_{s=t+1}^{T-1} R_{s+1}\left(I\left(\tilde{\xi}^{\sigma(n)}\right)_{s}+I\left(\bar{\xi}^{\sigma(n)}\right)_{t}+\bar{\alpha}^{\sigma(n)}\right)\right),
\end{aligned}
$$

we deduce as above that $\left(I\left(\overline{\xi^{\sigma(n)}}\right)_{t}+\bar{\alpha}^{\sigma(n)}, \bar{g}^{\sigma(n)}-\left(\bar{\eta}_{t}^{\sigma(n)}\right)^{-1} R_{t+1}\left(\bar{\eta}_{t}^{\sigma(n)}\left(I\left(\bar{\xi}^{\sigma(n)}\right)_{t}+\bar{\alpha}^{\sigma(n)}\right)\right)\right.$ $-\bar{\xi}_{t}^{\sigma(n)}$) belongs to $Y_{T}^{t+1}(K, R)$. Since $Y_{T}^{t+1}(K, R)$ is closed and $\left(\bar{g}^{n}, \bar{\alpha}^{n}\right)$ goes to 0 \mathbb{P} - a.s., we can find some adapted process $\tilde{\xi}^{*}$ such that

$$
\begin{aligned}
\tilde{\xi}_{s}^{*} & \in-K_{s} \mathbb{I}_{s \geq t+1} \text { for } s \in \mathbb{T}, I\left(\tilde{\xi}^{*}\right)_{s}+I\left(\bar{\xi}^{*}\right)_{t} \in \mathbb{R}_{+}^{N} \text { for all } s \in \mathbb{T} \backslash\{T\} \mathbb{P}-\text { a.s. } \\
0 & =\lim _{n \rightarrow \infty}\left(\bar{\eta}_{t}^{\sigma(n)}\right)^{-1} R_{t+1}\left(\bar{\eta}_{t}^{\sigma(n)}\left(I\left(\bar{\xi}^{\sigma(n)}\right)_{t}+\bar{\alpha}^{\sigma(n)}\right)\right)+\bar{\xi}_{t}^{*}+\sum_{s=t+1}^{T} \tilde{\xi}_{s}^{*} \\
& +\sum_{s=t+1}^{T-1} R_{s+1}\left(I\left(\tilde{\xi}^{*}\right)_{s}+I\left(\bar{\xi}^{*}\right)_{t}\right)
\end{aligned}
$$

and it follows from (5.10) that
$L^{0}\left(\underline{K}_{t+1} ; \mathcal{F}_{t+1}\right) \ni \epsilon=R_{t+1}\left(I\left(\bar{\xi}^{*}\right)_{t}\right)+\sum_{s=t+1}^{T} \tilde{\xi}_{s}^{*}+\bar{\xi}_{t}^{*}+\sum_{s=t+1}^{T-1} R_{s+1}\left(I\left(\tilde{\xi}^{*}\right)_{s}+I\left(\bar{\xi}^{*}\right)_{t}\right)$.
We then define

$$
\begin{equation*}
\hat{\xi}_{s}^{*}:=\bar{\xi}_{t}^{*} \mathbb{1}_{s=t}+\tilde{\xi}_{s}^{*} \mathbb{I}_{s \geq t+1}, \quad s \in \mathbb{T} \tag{5.11}
\end{equation*}
$$

With this new notation, we have $I\left(\hat{\xi}^{*}\right)_{s} \mathbb{I}_{s \leq T-1} \in \mathbb{R}_{+}^{N}, \hat{\xi}_{s}^{*} \in-K_{s} \mathbb{I}_{s \geq t}$ for all $s \in \mathbb{T}$, and

$$
\begin{equation*}
\epsilon=\sum_{s=t}^{T} \hat{\xi}_{s}^{*}+\sum_{s=t}^{T-1} R_{s+1}\left(I\left(\hat{\xi}^{*}\right)_{s}\right) \tag{5.12}
\end{equation*}
$$

By Lemma 5.1, we must have $\epsilon \in \underline{K}_{t+1}^{0}$,

$$
\begin{equation*}
I\left(\hat{\xi}^{*}\right)_{s}=0 \quad \text { and } \quad \hat{\xi}_{s}^{*} \in \underline{K}_{s}^{0} \quad \text { for all } \quad s \in \mathbb{T} \tag{5.13}
\end{equation*}
$$

Finally, letting

$$
\check{\xi}_{s}^{*}:=\hat{\xi}_{s}^{*}-\epsilon \mathbb{1}_{s=t+1}, \quad s \in \mathbb{T}
$$

we deduce from (5.11)-(5.12)-(5.13) and (R1) that

$$
\begin{equation*}
\check{\xi}^{*} \in \mathcal{A}^{s}(K), \check{\xi}_{s}^{*} \in-\underline{K}_{s} \mathbb{I}_{s \geq t} \quad \text { for all } s \in \mathbb{T} \quad \text { and } \quad \sum_{s=t}^{T} \check{\xi}_{s}^{*}=0 \tag{5.14}
\end{equation*}
$$

2.b. Since $\left\|\bar{\xi}_{t}^{*}\right\|=\left\|\check{\xi}_{t}^{*}\right\|=1$ on $\tilde{\Omega}$, there is a partition of $\tilde{\Omega}$ into disjoint subsets $\Gamma_{i} \in \mathcal{F}_{t}$ such that $\Gamma_{i} \subset\left\{\left(\check{\zeta}_{t}^{*}\right)^{i} \neq 0\right\}$ for $i=1, \ldots, d$. We then define

$$
\check{\xi}_{s}^{n}=\sum_{i=1}^{d}\left(\xi_{s}^{n}-\beta_{t}^{n, i} \check{\xi}_{s}^{*}\right) \mathbb{I}_{\Gamma_{i}} \quad s \in \mathbb{T}
$$

with $\beta_{t}^{n, i}=\left(\xi_{t}^{n}\right)^{i} /\left(\check{\xi}_{t}^{*}\right)^{i}$ on $\Gamma_{i}, i=1, \ldots, d$. Since, by (5.14) and the definition of ξ^{n},

$$
\sum_{s=t}^{T} \check{\xi}_{s}^{n}=\sum_{s=t}^{T} \xi_{s}^{n} \quad, \quad \check{\xi}_{s}^{n} \in-K_{s} \mathbb{I}_{s \geq t} \text { and } I\left(\check{\xi}^{n}\right)_{s}=I\left(\xi^{n}\right)_{s}, s \in \mathbb{T}
$$

it follows that $\check{\xi}^{n} \in \mathcal{Y}^{t, \alpha^{n}}(K)$ and

$$
\sum_{s=t}^{T} \check{\xi}_{s}^{n}+\sum_{s=t}^{T-1} R_{s+1}\left(I\left(\check{\xi}^{n}\right)_{s}+\alpha^{n}\right)=g^{n} \quad n \geq 1
$$

We can then proceed as in [7] and obtain the required result by repeating the above argument with $\left(\check{\xi}^{n}\right)_{n \geq 1}$ instead of $\left(\xi^{n}\right)_{n \geq 1}$ and by iterating this procedure a finite number of times.

6 Dual formulation for attainable terminal wealth

In this section, we provide a dual characterization of the set of attainable terminal wealth. To this end, given $K \in \mathcal{K}$ and $\tilde{\mathbb{P}} \sim \mathbb{P}$, we define $\mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$ as the set of adapted processes $Z=\left(Z^{F}, Z^{I}\right) \in L^{1}\left(\mathbb{R}^{d+N} ; \tilde{\mathbb{P}}, \mathbb{F}\right)$ such that :
(i) $\left(Z_{t}^{F}, 0_{N}\right) \in \operatorname{ri}\left(\left(\underline{K}_{t}\right)^{*}\right)$ for each $t \in \mathbb{T}$ and $Z_{T} \in\left(K_{T}\right)^{*} \backslash\{0\} \mathbb{P}-$ a.s.,
(ii) Z^{F} is a $\tilde{\mathbb{P}}$-martingale.

Remark 6.1 Recall that, by assumption, $\mathbb{R}_{+}^{d+N} \backslash\{0\} \subset \operatorname{int}\left(K_{T}\right) \mathbb{P}$ - a.s. It follows that $\left(K_{T}\right)^{*} \backslash\{0\} \subset \operatorname{int}\left(\mathbb{R}_{+}^{d+N}\right) \mathbb{P}-$ a.s. This shows that $Z_{T} \in \operatorname{int}\left(\mathbb{R}_{+}^{d+N}\right) \mathbb{P}-$ a.s. whenever $Z \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$ for some $\tilde{\mathbb{P}} \sim \mathbb{P}$.

We start with a series of Lemmas which are similar to results in [12] and [7].
Lemma 6.1 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ satisfying (R1)-(R2)-(R3) and $N A^{r}(K, R)$. Then, for all $\tilde{\mathbb{P}} \sim \mathbb{P}$, there is a process $Z \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}}) \cap L^{\infty}$ such that

$$
\sup _{g \in A_{T}^{s}(K, R) \cap L^{1}(\tilde{\mathbb{P}})} \mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g\right]<\infty
$$

Proof. Since, by Remark 5.2, $A_{T}^{s}(K, R)$ is closed in probability, $A_{T}^{s}(K, R) \cap L^{1}(\tilde{\mathbb{P}})$ is closed in $L^{1}(\tilde{\mathbb{P}})$. By Lemma 2.1 it is also convex. In view of $N A(K, R)$, which is trivially implied by $N A^{r}(K, R)$, it then follows from the Hahn-Banach separation theorem that, for each $\phi \in L^{1}\left(\mathbb{R}_{+}^{d+N} ; \tilde{\mathbb{P}}\right) \backslash\{0\}$, we can find $\eta \in L^{\infty}\left(\mathbb{R}^{d+N}\right)$ such that

$$
\mathbb{E}^{\tilde{\mathbb{P}}}[\eta \cdot g]<\mathbb{E}^{\tilde{\mathbb{P}}}[\eta \cdot \phi] \quad \text { for all } g \in A_{T}^{s}(K, R) \cap L^{1}(\tilde{\mathbb{P}})
$$

Since $-L^{0}\left(K_{T}\right) \subset A_{T}^{s}(K, R)$, we must have $\eta \in L^{0}\left(\left(K_{T}\right)^{*}\right)$. Using a standard exhaustion argument, we also obtain that $\mathbb{P}[\eta=0]=0$. Set $Z_{t}=\left(Z_{t}^{F}, Z_{t}^{I}\right)=\mathbb{E}\left[\eta \mid \mathcal{F}_{t}\right]$. Then, Z^{F} is a martingale. Since $\sum_{t \in \mathbb{T}}-L^{0}\left(\underline{K}_{t} ; \mathcal{F}_{t}\right) \subset A_{T}^{s}(K, R)$, we must have

$$
\mathbb{E}^{\tilde{\mathbb{P}}}[\eta \cdot g] \leq 0 \quad \text { for all } g \in \sum_{t \in \mathbb{T}}-L^{1}\left(\underline{K}_{t} ; \tilde{\mathbb{P}}, \mathcal{F}_{t}\right)
$$

In particular, this shows that $\left(Z_{t}^{F}, 0_{N}\right) \in L^{0}\left(\operatorname{ri}\left(\left(\underline{K}_{t}\right)^{*}\right)\right)$. The rest of the proof then goes as in Corollary 1 in [7] by using Lemma 5.1 and the fact that the $\underline{K}_{t}=K_{t} \cap \mathbb{R}^{d+N}$ are countabily generated (see the remark after Corollary 1 in [7]).

Remark 6.2 Observe that $x \in K_{0}$ if and only if $y \cdot x \geq 0$ for all $y \in\left(K_{0}\right)^{*} \cap H_{1}$, where $H_{1}=\left\{y \in \mathbb{R}^{d+N}: y^{1}=1\right\}$. Using 1. of Remark 4.1, we then deduce that, for any $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, we can find some $\hat{x}=\left(\hat{x}^{1}, 0_{d-1+N}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$ such that $\hat{x}-x \in K_{0}$.

Corollary 6.1 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ such that (R1) to (R3) and $N A^{r}(K, R)$ hold. Fix $x=\left(0_{d}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$. Then, for all $\tilde{\mathbb{P}} \sim \mathbb{P}$, there is some $Z \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}}) \cap L^{\infty}$ such that:

$$
a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right):=\sup _{g \in A_{T}^{s}(x ; K, R) \cap L^{1}(\tilde{\mathbb{P}})} \mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g\right]<\infty
$$

Proof. In view of Remark 6.2, there is some $\hat{x} \in \underline{\mathbb{R}}^{d+N}$ such that $\hat{x}-x \in K_{0}$. It follows that $A_{T}^{s}(x ; K, R) \subset A_{T}^{s}(\hat{x} ; K, R)$. Then, the required result is a direct consequence of Lemma 6.1. Indeed, we can find some Z which satisfies the assertions of Lemma 6.1. Since $A_{T}^{s}(x ; K, R)-\hat{x} \subset A_{T}^{s}(\hat{x} ; K, R)-\hat{x}=A_{T}^{s}(K, R)$, see Remark 2.1, it follows that

$$
\sup _{g \in A_{T}^{s}(x ; K, R) \cap L^{1}(\tilde{\mathbb{P}})} \mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot(g-\hat{x})\right] \leq \sup _{g \in A_{T}^{s}(K, R) \cap L^{1}(\tilde{\mathbb{P}})} \mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g\right]
$$

where $Z_{T} \cdot \hat{x} \in L^{\infty}$ since $Z_{T} \in L^{\infty}$.

Lemma 6.2 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ such that (R1) to (R3) and $N A^{r}(K, R)$ hold. Fix $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}, g \in L^{0}\left(\mathbb{R}^{d+N} ; \mathcal{F}_{T}\right)$ and $\tilde{\mathbb{P}} \sim \mathbb{P}$ such that $g \in L^{1}\left(\mathbb{R}^{d+N} ; \tilde{\mathbb{P}}\right)$. Then,

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g-Z_{0}^{F} \cdot x^{F}\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0 \quad \text { for all } Z=\left(Z^{F}, Z^{I}\right) \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})
$$

implies $g \in A_{T}^{s}(x ; K, R)$.
Proof. Fix some $\tilde{\mathbb{P}}$ such that $g \in L^{1}\left(\mathbb{R}^{d+N} ; \tilde{\mathbb{P}}\right)$. Assume that $g \notin A_{T}^{s}(x ; K, R) \cap L^{1}(\tilde{\mathbb{P}})$. Since, by Lemma 2.1 and Remark $5.2, A_{T}^{s}(x ; K, R) \cap L^{1}(\tilde{\mathbb{P}})$ is closed in $L^{1}(\tilde{\mathbb{P}})$ and convex, we can find some $\eta \in L^{\infty}\left(\mathbb{R}^{d+N}\right)$ such that

$$
\sup _{g \in A_{T}^{s}(x ; K, R) \cap L^{1}(\tilde{\mathbb{P}})} \mathbb{E}^{\tilde{\mathbb{P}}}\left[\eta \cdot\left(g-\left(x^{F}, 0_{N}\right)\right)\right]<\mathbb{E}^{\tilde{\mathbb{P}}}\left[\eta \cdot\left(g-\left(x^{F}, 0_{N}\right)\right)\right] .
$$

Set $Z_{t}:=\mathbb{E}^{\tilde{\mathbb{P}}}\left[\eta \mid \mathcal{F}_{t}\right]$. The same argument as in Lemma 6.1 shows that Z^{F} is a $\tilde{\mathbb{P}}$-martingale with $Z_{T} \in L^{0}\left(K_{T}^{*}\right)$ and $\left(Z^{F}, 0_{N}\right)_{t} \in L^{0}\left(\left(\underline{K}_{t}\right)^{*} ; \mathcal{F}_{t}\right)$ for each $t \in \mathbb{T}$. Fix $\hat{Z} \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}}) \cap L^{\infty}$ such that $a\left(x^{I} ; \hat{Z}, \tilde{\mathbb{P}}\right)<\infty$ (which is possible by Corollary 6.1). For $\varepsilon>0$ sufficiently small, we have $Z^{\varepsilon}:=\varepsilon \hat{Z}+(1-\varepsilon) Z \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$ and $a\left(x^{I} ; Z^{\varepsilon}, \tilde{\mathbb{P}}\right)=\sup _{g \in A_{T}^{s}(x ; K, R) \cap L^{1}(\tilde{\mathbb{P}})} \mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T}^{\varepsilon} \cdot\left(g-\left(x^{F}, 0_{N}\right)\right)\right]<\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T}^{\varepsilon} \cdot\left(g-\left(x^{F}, 0_{N}\right)\right)\right]$,
where we used the fact $A_{T}^{s}(x ; K, R)-\left(x^{F}, 0_{N}\right)=A_{T}^{s}\left(\left(0_{d}, x^{I}\right) ; K, R\right)$. This leads to a contradiction since $\left(Z^{\varepsilon}\right)^{F}$ is a martingale.

We can now state a first version of the so-called super-hedging theorem.
Theorem 6.1 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ such that (R1) to (R3) and $N A^{r}(K, R)$ hold. Fix $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$. Then, we have the equivalence between
(i) $g \in A_{T}^{s}(x ; K, R)$
(ii) for some $\tilde{\mathbb{P}} \sim \mathbb{P}$ such that $g \in L^{1}\left(\mathbb{R}^{d+N} ; \tilde{\mathbb{P}}\right)$, we have for each $Z=\left(Z^{F}, Z^{I}\right)$ $\in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g-Z_{0}^{F} \cdot x^{F}\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0 .
$$

(iii) for all $\tilde{\mathbb{P}} \sim \mathbb{P}$ such that $g \in L^{1}\left(\mathbb{R}^{d+N} ; \tilde{\mathbb{P}}\right)$, we have for each $Z=\left(Z^{F}, Z^{I}\right)$ $\in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g-Z_{0}^{F} \cdot x^{F}\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0 .
$$

Proof. Since Z^{F} is a martingale, (i) implies (iii) by definition of $a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right)$ and the fact that $\left.g-\left(x^{F}, 0_{N}\right)\right) \in A_{T}^{s}\left(\left(0_{d}, x^{I}\right) ; K, R\right)$. Obviously (iii) implies (ii). The implication (ii) \Rightarrow (i) follows from Lemma 6.2.

In the case where the claim is uniformly bounded from below for the natural partial order induced by K_{T}, we can obtain a version of the super-hedging theorem which does not depend on the integrability properties of g.

Theorem 6.2 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ such that (R1) to (R3) and $N A^{r}(K, R)$ hold. Fix $x=\left(x^{F}, x^{I}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$ and let g be an element of $L^{0}\left(\mathbb{R}^{d+N}\right)$ such that $g+c \in K_{T}$ for some constant $c \in \mathbb{R}^{d+N}$. Then, we have the equivalence between
(i) $g \in A_{T}^{s}(x ; K, R)$
(ii) for each $\tilde{\mathbb{P}} \sim \mathbb{P}$ and $Z=\left(Z^{F}, Z^{I}\right) \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g-Z_{0}^{F} \cdot x^{F}\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0 .
$$

(iii) for some $\tilde{\mathbb{P}} \sim \mathbb{P}$, we have for each $Z=\left(Z^{F}, Z^{I}\right) \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g-Z_{0}^{F} \cdot x^{F}\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0 .
$$

Proof. 1. Let $g \in A_{T}^{s}(x ; K, R)$ be such that $g+c \in K_{T}$ for some constant $c=$ $\left(c^{F}, 0_{N}\right) \in \mathbb{R}^{d+N}$. For $k \geq 1$, set $B_{k}=\{\|g+c\| \leq k\}$. Then, $\mathbb{I}_{B_{k}}$ goes to $1 \mathbb{P}-$ a.s. as $k \rightarrow \infty$. For each $k \geq 1$, define $g_{k}:=(g+c) \mathbb{I}_{B_{k}}$. Since $g+c \in L^{0}\left(K_{T}\right), g_{k} \in$ $A_{T}^{s}(x+c ; K, R)=c^{F}+A_{T}^{s}(x ; K, R)$ for all $k \geq 1$. Since g_{k} is bounded, we deduce from Theorem 6.1 that, for each $\tilde{\mathbb{P}} \sim \mathbb{P}$ and $Z=\left(Z^{F}, Z^{I}\right) \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$, we must have

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot g_{k}-Z_{0}^{F} \cdot\left(x^{F}+c^{F}\right)\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0
$$

Since $g_{k} \in L^{0}\left(K_{T}\right)$ and $Z_{T} \in L^{0}\left(\left(K_{T}\right)^{*}\right)$, we have $Z_{T} \cdot g_{k} \geq 0 \mathbb{P}-$ a.s. Using Fatou's Lemma, we then deduce that

$$
\mathbb{E}^{\tilde{\mathbb{P}}}\left[Z_{T} \cdot(g+c)-Z_{0}^{F} \cdot\left(x^{F}+c^{F}\right)\right]-a\left(x^{I} ; Z, \tilde{\mathbb{P}}\right) \leq 0 \quad \text { for all } k \geq 1
$$

and (ii) follows from the martingale property of Z^{F}.
2. To see that (ii) implies (i), we define $\tilde{\mathbb{P}} \sim \mathbb{P}$ by $\tilde{\mathbb{P}}=\left(e^{-\|g\|} / \mathbb{E}\left[e^{-\|g\|}\right]\right) \cdot \mathbb{P}$. Then, $g \in L^{1}\left(\mathbb{R}^{d+N} ; \tilde{\mathbb{P}}\right)$ and the result follows from Theorem 6.1.
3. Obviously (ii) implies (iii). It remains to check the converse implication. Fix $\tilde{\mathbb{P}}$ such that (iii) holds, $\hat{\mathbb{P}} \sim \mathbb{P}$ and let $H_{t}:=\mathbb{E}^{\tilde{\mathbb{P}}}\left[d \hat{\mathbb{P}} / d \tilde{\mathbb{P}} \mid \mathcal{F}_{t}\right]$. Then, for $\hat{Z} \in \mathcal{Z}_{T}(K, \hat{\mathbb{P}})$, we have $\tilde{Z}:=\left(H_{t} \hat{Z}_{t}\right)_{t \in \mathbb{T}} \in \mathcal{Z}_{T}(K, \tilde{\mathbb{P}})$ and $a\left(x^{I} ; \hat{Z}, \hat{\mathbb{P}}\right)=a\left(x^{I} ; \tilde{Z}, \tilde{\mathbb{P}}\right)$. This shows that (iii) implies (ii).

Remark 6.3 Observe from (5.1) that Theorems 6.1 and 6.2 actually provide a dual formulation for $A_{T}(x ; K, R)$. It suffices to add the condition $g \in L^{0}\left(\mathbb{R}^{d} \times \mathbb{R}_{+}^{N}\right)$.

Remark 6.4 It is clear from the proofs that the results of this Section still hold if we replace (R1)-(R2)-(R3) by the assumption that $A_{T}(x ; K, R)$ is closed.

Remark 6.5 Although the dual formulation we obtained is already much more general than what we need for the proof of Theorem 4.1, we think that a more precise description of the natural set of dual variables could be obtained by means of Lemma 5.4, which is actually much stronger than the version we used in the proofs. We leave this point for future research.

7 Proof of the existence result for the optimal consumption problem

As already explained in the introduction, the one dimensional argument of [10] does not work directly in our multivariate setting. We therefore surround this difficulty by introducing the auxiliary primal problem :

$$
\begin{equation*}
u_{1}\left(x^{1}\right):=u\left(x^{1}, 0_{d-1+N}\right), \quad x^{1} \in \mathbb{R}_{+}, \tag{7.1}
\end{equation*}
$$

and dualize the value function u_{1} as follows. Our set of dual variables is defined as

$$
\begin{gather*}
\mathcal{D}\left(y^{1}\right)=\left\{(Y, \alpha) \in L^{1}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d}\right) \times \mathbb{R}_{+}: \forall x^{1} \in \mathbb{R}_{+}, \forall c \in \mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)\right. \\
\left.\mathbb{E}\left[\sum_{t \in \mathbb{T}} Y_{t} \cdot c_{t}-y^{1} x^{1}\right] \leq \alpha,\right\}, \quad y^{1} \in \mathbb{R}_{+} \tag{7.2}
\end{gather*}
$$

and we consider the dual problem

$$
\begin{equation*}
\tilde{u}_{1}\left(y^{1}\right)=\inf _{(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(Y_{t}\right)+\alpha\right], \quad y^{1} \in \mathbb{R}_{+} \tag{7.3}
\end{equation*}
$$

Recall that by convention $L^{1}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d}\right)=L^{1}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d} ; \mathbb{P}\right)$.
Remark 7.1 By Remark 6.2, we can find some $x=\left(x^{1}, 0_{d-1+N}\right) \in \mathbb{R}^{d+N}$ such that the constant consumption process c defined by $c_{t}^{i}=1$ for all $t \in \mathbb{T}$ and $i \leq d$ belongs to $\mathcal{C}_{T}^{U}(x ; K, R)$. It then follows from the definition of $\mathcal{D}\left(y^{1}\right)$ that, for each $\alpha \in \mathbb{R}_{+}$, the set $\left\{Y:(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)\right\}$ is bounded in $L^{1}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d}\right)$.

The abstract duality relation can be stated as follows.

Lemma 7.1 Under the assumptions of Theorem 4.1, we have the duality relations:

$$
\begin{array}{ll}
\tilde{u}_{1}\left(y^{1}\right)=\sup _{x^{1} \in \mathbb{R}_{+}}\left[u_{1}\left(x^{1}\right)-x^{1} y^{1}\right], & y^{1} \in \mathbb{R}_{+} \\
u_{1}\left(x^{1}\right)=\inf _{y^{1} \in \mathbb{R}_{+}}\left[\tilde{u}_{1}\left(x^{1}\right)-x^{1} y^{1}\right], & x^{1} \in \mathbb{R}_{+} . \tag{7.5}
\end{array}
$$

Proof. We only establish (7.4). The other relation (7.5) follows from (7.4) and general bidual properties of Legendre-transform, see e.g. [11].
By definitions of \tilde{U}_{t} and $\mathcal{D}\left(y^{1}\right)$, we have for all $x^{1}, y^{1} \in \mathbb{R}_{+}, c \in \mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)$, and $(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)$:

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}\right)\right] \leq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(Y_{t}\right)+Y_{t} \cdot c_{t}\right] \leq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(Y_{t}\right)+\alpha\right]+x^{1} y^{1}, \tag{7.6}
\end{equation*}
$$

and so

$$
\begin{equation*}
w\left(y^{1}\right):=\sup _{x^{1} \in \mathbb{R}_{+}}\left[u_{1}\left(x^{1}\right)-x^{1} y^{1}\right] \leq \tilde{u}_{1}\left(y^{1}\right), \quad \forall y^{1} \in \mathbb{R}_{+} . \tag{7.7}
\end{equation*}
$$

We now fix some $y^{1} \in \mathbb{R}_{+}$. In order to prove (7.4), we can assume w.l.o.g. that $w\left(y^{1}\right)$ $<\infty$.

1. For $n>0$, we define \mathcal{C}_{n} as :

$$
\mathcal{C}_{n}=\left\{c=\left(c_{t}\right)_{t} \in L^{0}\left(\mathbb{R}_{+}^{d} ; \mathbb{F}\right):\left|c_{t}\right| \leq n, \quad t \in \mathbb{T}\right\} .
$$

The sets \mathcal{C}_{n} are compact for the weak topology $\sigma\left(L^{\infty}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d}\right), L^{1}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d}\right)\right)$. Moreover, it is clear from its definition that $\mathcal{D}\left(y^{1}\right)$ is a closed convex subset of $L^{1}\left(\Omega \times \mathbb{T}, \mathbb{R}_{+}^{d}\right)$. We may then apply the Min-max theorem to get :

$$
\begin{aligned}
& \sup _{c \in \mathcal{C}_{n}} \inf _{(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \mathbb{E}\left[\sum_{t \in \mathbb{T}}\left(U_{t}\left(c_{t}\right)-Y_{t} \cdot c_{t}\right)+\alpha\right] \\
= & \inf _{(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \sup _{c \in \mathcal{C}_{n}} \mathbb{E}\left[\sum_{t \in \mathbb{T}}\left(U_{t}\left(c_{t}\right)-Y_{t} \cdot c_{t}\right)+\alpha\right] .
\end{aligned}
$$

By setting

$$
\tilde{U}_{t}^{n}(y)=\sup _{c \in \mathbb{R}_{+}^{d}, c \mid \leq n}\left[U_{t}(c)-c \cdot y\right], \quad y \in \mathbb{R}_{+}^{d},
$$

we then deduce that

$$
\begin{align*}
& \sup _{c \in \mathcal{C}_{n}} \inf _{(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \mathbb{E}\left[\sum_{t \in \mathbb{T}}\left(U_{t}\left(c_{t}\right)-Y_{t} \cdot c_{t}\right)+\alpha\right] \\
= & \inf _{(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}^{n}\left(Y_{t}\right)+\alpha\right]:=\tilde{u}_{1}^{n}\left(y^{1}\right) . \tag{7.8}
\end{align*}
$$

For later use, observe that

$$
\begin{equation*}
\tilde{U}_{t}^{n}(y) \geq \tilde{U}_{t}^{n}(z) \quad \text { if } \quad z-y \in \mathbb{R}_{+}^{d} \quad \text { and } \quad \tilde{U}_{t}^{n} \leq \tilde{U}_{t}^{k} \quad \text { if } \quad k \geq n \tag{7.9}
\end{equation*}
$$

2. For any $Z=\left(Z^{F}, Z^{I}\right) \in \mathcal{Z}_{T}(K, \mathbb{P})$, we have from the \mathbb{P}-martingale property of Z^{F} and Theorem $6.2: \forall x^{1} \in \mathbb{R}_{+}, \forall c \in \mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)$,

$$
\begin{aligned}
\mathbb{E}\left[Z_{T}^{F} \cdot \sum_{t \in \mathbb{T}} c_{t}-Z_{0}^{1} x^{1}\right] & =\mathbb{E}\left[\sum_{t \in \mathbb{T}} Z_{t}^{F} \cdot c_{t}-Z_{0}^{1} x^{1}\right] \\
& \leq a\left(0_{N} ; Z, \mathbb{P}\right)
\end{aligned}
$$

It follows that the pairs (Y, α) defined by

$$
\begin{equation*}
Y=\frac{y^{1}}{Z_{0}^{1}} Z^{F}, \quad \alpha=\frac{y^{1}}{Z_{0}^{1}} a\left(0_{N} ; Z, \mathbb{P}\right) \tag{7.10}
\end{equation*}
$$

belong to $\mathcal{D}\left(y^{1}\right)$. Here, we use the convention $0 / 0=0$ and we observe from Remark 4.1 and the martingale property of Z^{F} that $Z_{0}^{1}=0$ implies $Z^{F}=0$.

Now, for $x^{1} \in \mathbb{R}_{+}$, let $c=\left(c_{t}\right) \in L^{0}\left(\mathbb{R}_{+}^{d} ; \mathbb{F}\right)$ be such that

$$
\mathbb{E}\left[\sum_{t \in \mathbb{T}} Y_{t} \cdot c_{t}-y^{1} x^{1}\right] \leq \alpha, \quad \forall(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)
$$

By taking (Y, α) in the form (7.10), we deduce that

$$
\mathbb{E}\left[Z_{T}^{F} \cdot \sum_{t \in \mathbb{T}} c_{t}-Z_{0}^{1} x^{1}\right] \leq a\left(0_{N} ; Z, P\right), \quad \forall Z \in \mathcal{Z}_{T}(K, \mathbb{P})
$$

By Theorem 6.2, this means $\left(c_{t}\right) \in \mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)$. Therefore, we have the duality relation between the sets $\mathcal{C}\left(x^{1}\right)$ and $\mathcal{D}\left(y^{1}\right)$ in the sense that, for any $x^{1} \in \mathbb{R}_{+}$, an element $c=\left(c_{t}\right)$ in $L^{0}\left(\mathbb{R}_{+}^{d} ; \mathbb{F}\right)$ belongs to $\mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)$ if and only if

$$
\mathbb{E}\left[\sum_{t \in \mathbb{T}} Y_{t} \cdot c_{t}-y^{1} x^{1}\right] \leq \alpha, \quad \forall(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)
$$

It follows that
$\sup _{(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \mathbb{E}\left[\sum_{t \in \mathbb{T}} Y_{t} \cdot c_{t}-\alpha\right]=\inf \left\{y^{1} x^{1}: x^{1} \geq 0\right.$ s.t. $\left.c \in \mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)\right\}$, and therefore

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sup _{c \in \mathcal{C}_{n}(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)} \inf \mathbb{E}\left[\sum_{t \in \mathbb{T}}\left(U_{t}\left(c_{t}\right)-Y_{t} \cdot c_{t}\right)+\alpha\right] \\
= & \sup _{x_{1} \in \mathbb{R}_{+}} \sup _{c \in \mathcal{C}_{T}\left(\left(x^{1}, 0_{d-1+N}\right) ; K, R\right)} \mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}\right)-x^{1} y^{1}\right]=w\left(y^{1}\right) . \tag{7.11}
\end{align*}
$$

3. Identifying relations (7.8) and (7.11), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{u}_{1}^{n}\left(y^{1}\right)=w\left(y^{1}\right) \tag{7.12}
\end{equation*}
$$

and so we have to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{u}_{1}^{n}\left(y^{1}\right)=\tilde{u}_{1}\left(y^{1}\right) \tag{7.13}
\end{equation*}
$$

Let $\left(Y^{n}, \alpha^{n}\right)$ be a sequence in $\mathcal{D}\left(y^{1}\right)$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}^{n}\left(Y_{t}^{n}\right)+\alpha^{n}\right]=\lim _{n \rightarrow \infty} \tilde{u}_{1}^{n}\left(y^{1}\right)=w\left(y^{1}\right) .
$$

By Komlos lemma on $L^{0}(\Omega \times \mathbb{T})$, see e.g. [3], there exists a sequence $\left(\hat{Y}^{n}\right) \in$ $\operatorname{conv}\left(Y^{n}, \ldots, Y^{n+1}, \ldots\right)$ which converges a.e. to a process \hat{Y}, taking possibly infinite values. Moreover, by convexity of \tilde{U}_{t}^{n} and (7.9), we have, by (7.12),

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)+\hat{\alpha}^{n}\right] \leq \lim _{n \rightarrow \infty} \tilde{u}_{1}^{n}\left(y^{1}\right)=w\left(y^{1}\right), \tag{7.14}
\end{equation*}
$$

where $\hat{\alpha}^{n}$ is constructed from $\left(\alpha^{k}\right)_{k \geq n}$ with the same convex combinations than \hat{Y}^{n}. For sake of simplicity, we consider separately the case where either ($\tilde{U} 1$) holds for each $t \in \mathbb{T}$ or $(\tilde{U} 2)$ holds for each $t \in \mathbb{T}$. The case where ($\tilde{U} 1$) holds for some $t \in \mathbb{T}$ and ($\tilde{U} 2$) holds for the other is obtained by combining a. and b . below in an obvious way.
a. If condition $(\tilde{U} 1)$ holds for each $t \in \mathbb{T}$, it follows from (7.14) that the nonnegative sequence $\left(\hat{\alpha}_{n}\right)$ is bounded since $w\left(y^{1}\right)<\infty$. In particular, it converges (after possibly
passing to a subsequence) to some $\hat{\alpha} \geq 0$, which by Remark 7.1 shows that \hat{Y} is finite a.s. Since $\mathcal{D}\left(y^{1}\right)$ is closed for the convergence in probability, we conclude that $(\hat{Y}, \hat{\alpha}) \in \mathcal{D}\left(y^{1}\right)$. Under $(\tilde{U} 1)$, the sequence $\left(\tilde{U}_{t}^{n}\left(\hat{Y}^{n}\right)^{-}\right)$is uniformly integrable. Since \tilde{U}_{t}^{n} converges to \tilde{U}_{t} uniformly on compact sets, it then follows from Fatou's lemma that

$$
\liminf _{n \rightarrow \infty} \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)+\hat{\alpha}^{n}\right] \geq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(\hat{Y}_{t}\right)+\hat{\alpha}\right] \geq \tilde{u}_{1}\left(y^{1}\right)
$$

Since we obviously have $\tilde{u}_{1}^{n}\left(y^{1}\right) \leq \tilde{u}_{1}\left(y^{1}\right)$, the inequality (7.14) implies (7.13), i.e. (7.4), see (7.7).
b. We now assume that condition $(\tilde{U} 2)$ holds for all $t \in \mathbb{T}$. Let us consider the sequence of nonincreasing convex functions $\varphi_{t}:=\left(-V_{t}\right)^{-1}$ on \mathbb{R}_{+}. Obviously, we can assume that $\left\|e_{t}\right\|=1$ for each $t \in \mathbb{T}$. We then define

$$
\ell_{t}: y \in \mathbb{R}^{d} \mapsto \min \left\{x \cdot y: x \in \mathbb{R}^{d} \text { with }\|x\|_{t}:=\sum_{i=1}^{d}\left|x^{i}\right| e_{t}^{i}=1\right\}
$$

With this notation, we have $y-\ell_{t}(y) e_{t} \in \mathbb{R}_{+}^{d}$ for all $y \in \mathbb{R}^{d}$. Since φ_{t} in non-increasing and $\tilde{U}_{t}^{n} \leq \tilde{U}_{t}$, it follows from (7.9) that

$$
\begin{aligned}
\mathbb{E}\left[\varphi_{t}\left(\tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)^{-}\right)\right] & \leq \mathbb{E}\left[\varphi_{t}\left(\tilde{U}_{t}^{n}\left(\ell_{t}\left(\hat{Y}_{t}^{n}\right) e_{t}\right)^{-}\right)\right] \\
& \leq \varphi_{t}(0)+\mathbb{E}\left[\ell_{t}\left(\hat{Y}_{t}^{n}\right)\right] \\
& \leq \varphi_{t}(0)+\mathbb{E}\left[X\left(e_{t}\right) \cdot \hat{Y}_{t}^{n}\right], \quad \text { with } X\left(e_{t}\right)=\left(1 / e_{t}^{1}, \ldots, 1 / e_{t}^{d}\right)
\end{aligned}
$$

By 2. of Remark 4.1, we can find some $x\left(e_{t}\right)>0$ such that $\left(x\left(e_{t}\right), 0_{d-1+N}\right)-X\left(e_{t}\right)$ $\in K_{0}$ for all $t \in \mathbb{T}$. Then, $\left(X\left(e_{t}\right)\right)_{t \in \mathbb{T}} \in \mathcal{C}_{T}(x(e) ; K, R)$ where $x(e)^{i}=\sum_{t \in \mathbb{T}} x\left(e_{t}\right) \mathbb{I}_{i=1}$. It then follows from the above inequality and the definition of $\mathcal{D}\left(y^{1}\right)$ that

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t \in \mathbb{T}} \varphi_{t}\left(\tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)^{-}\right)\right] \leq \sum_{t \in \mathbb{T}} \varphi_{t}(0)+x(e)^{1} y^{1}+\hat{\alpha}^{n} \tag{7.15}
\end{equation*}
$$

Now, by l'Hopital rule, $\varphi_{t}(r) / r$ goes to infinity when r goes to infinity, and so there exists some positive $\bar{r}_{t}>0$ such that $\varphi_{t}(r) \geq 2 r$ for all $r \geq \bar{r}_{t}$. Hence, for all n,

$$
\tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)^{-} \leq \bar{r}_{t}+\frac{1}{2} \varphi_{t}\left(\tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)^{-}\right)
$$

and by (7.15)

$$
\mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)^{-}\right] \leq \bar{C}\left(y^{1}\right)+\frac{1}{2} \hat{\alpha}^{n}
$$

where $\bar{C}\left(y^{1}\right)=\sum_{t \in \mathbb{T}} \bar{r}_{t}+\frac{1}{2}\left(\varphi_{t}(0)+x(e)^{1} y^{1}\right)$. We then deduce that

$$
\frac{1}{2} \hat{\alpha}^{n}-\bar{C}\left(y^{1}\right) \leq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}^{n}\left(\hat{Y}_{t}^{n}\right)\right]+\hat{\alpha}^{n}
$$

so that by (7.14), after possibly passing to a subsequence, for n large enough

$$
\frac{1}{2} \hat{\alpha}^{n} \leq w\left(y^{1}\right)+1+\bar{C}\left(y^{1}\right)<\infty
$$

which proves that the sequence $\left(\hat{\alpha}_{n}\right)$ is bounded. After possibly passing to a subsequence, we can then assume that it converges to some $\hat{\alpha} \in \mathbb{R}_{+}$. It then follows from (7.15) and La-Vallee-Poussin theorem that the sequence $\left(\tilde{U}_{t}^{n}\left(\hat{Y}^{n}\right)^{-}\right)$is uniformly integrable. The proof is then concluded as in a.

Remark 7.2 1. Assume that for some $\hat{x}^{1}>0, u_{1}\left(\hat{x}_{1}\right)<\infty$. Then, by the duality relation (7.5) in Lemma 7.1, there exists some $y^{1} \in \mathbb{R}_{+}$such that $\tilde{u}_{1}\left(y^{1}\right)<\infty$. Hence, for this y^{1}, there exists some $(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)$ such that $\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(Y_{t}\right) \in L^{1}(\mathbb{P})$. In view of (7.6), this implies that $u_{1}\left(\tilde{x}^{1}\right)<\infty$ for all $\tilde{x}_{1} \geq 0$.
2. Fix $x \in \operatorname{int}\left(K_{0}\right)$. Then, by 2. and 3. of Remark 4.1, there exists some $\hat{x}=$ $\left(\hat{x}^{1}, 0_{d-1+N}\right)$ with $\hat{x}^{1}>0$ such that $x-\left(\hat{x}^{1}, 0_{d-1+N}\right) \in K_{0}$ and $\mathcal{C}_{T}^{U}(\hat{x} ; K, R) \neq \emptyset$. Since $\mathcal{C}_{T}(\hat{x} ; K, R) \subset \mathcal{C}_{T}(x ; K, R)$, the finiteness of $u(x)$ implies the finiteness of $u_{1}\left(\hat{x}^{1}\right)=$ $u(\hat{x})$.
3. Finally, let $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$ be such that $\mathcal{C}_{T}^{U}(x ; K, R) \neq \emptyset$, then, by Remark 6.2 , there is some $\tilde{x}^{1}>0$ such that $u\left(\tilde{x}^{1}, 0_{d-1+N}\right) \geq u(x)$.
4. Combining 2. with 1 . and then 3. proves (i) of Theorem 4.1.

We go on preparing the proof of Theorem 4.1 with three more Lemmas.
Lemma 7.2 Assume that (4.2)-(4.3)-(4.5) hold, then there is some $\beta_{t}>0$ such that for all $\lambda \in(0,1]$

$$
\tilde{U}_{t}(\lambda y) \leq C_{t}^{\lambda}+\lambda^{-\beta_{t}} \tilde{U}_{t}(y)^{+} \quad \text { for all } y \in \operatorname{dom}\left(\tilde{U}_{t}\right)
$$

for some $C_{t}^{\lambda} \geq 0$.

Proof. Arguing as in the proof of Lemma 4.1 in [2], we first obtain that there is some $b_{t}>$ and $\beta_{t}>0$ such that

$$
\tilde{U}_{t}(\lambda y) \leq \lambda^{-\beta_{t}} \tilde{U}_{t}(y)^{+} \text {for all } y \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right) \text { with } \ell(y) \leq b_{t} .
$$

Since, for $y \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right), \ell(y)>b_{t}$ implies that $y^{i}>b_{t}$ for all $i \leq d$, we deduce from (4.4) that

$$
\tilde{U}_{t}(\lambda y) \leq \tilde{U}_{t}\left(\lambda b_{t} \mathbf{1}\right) \text { for all } y \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right) \text { with } \ell(y)>b_{t}
$$

where $\mathbf{1}$ is the vector of \mathbb{R}^{d} with all components equal to 1 . The result is then obtained by setting $C_{t}^{\lambda}:=\tilde{U}_{t}\left(\lambda b_{t} \mathbf{1}\right)^{+}$which is finite by (4.3).

Lemma 7.3 Let the condition (4.1)-(4.3)-(4.5) hold. Let $y^{1} \in \mathbb{R}_{+}$and $(Y, \alpha) \in$ $\mathcal{D}\left(y^{1}\right)$ be such that

$$
\left(\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(Y_{t}\right)\right) \in L^{1}(\mathbb{P})
$$

Then,

$$
\left(\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(\lambda Y_{t}\right)\right) \in L^{1}(\mathbb{P}), \text { for all } \lambda \in(0,1]
$$

Proof. 1. First observe that $\tilde{U}_{t}\left(\lambda Y_{t}\right)^{-} \in L^{1}(\mathbb{P})$ for each $t \in \mathbb{T}$ and $\lambda \in(0,1]$. Indeed, given $x^{F} \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right)$, we have by definition of \tilde{U}_{t}

$$
U_{t}\left(x^{F}\right) \leq \tilde{U}_{t}\left(\lambda Y_{t}\right)+\lambda Y_{t} \cdot x^{F}
$$

Since $Y_{t} \in L^{1}(\mathbb{P})$ and $U_{t}\left(x^{F}\right)$ is finite, this implies that $\tilde{U}_{t}\left(\lambda Y_{t}\right)^{-} \in L^{1}(\mathbb{P})$.
2. From 1., it suffices to show that $\tilde{U}_{t}\left(Y_{t}\right)^{+} \in L^{1}(\mathbb{P})$ implies that $\tilde{U}_{t}\left(\lambda Y_{t}\right)^{+} \in L^{1}(\mathbb{P})$ for all $\lambda \in(0,1]$. Fix $\lambda \in(0,1]$, by Lemma 7.2, we have

$$
\tilde{U}_{t}\left(\lambda Y_{t}\right)^{+} \leq C_{t}^{\lambda}+\lambda^{-\beta_{t}} \tilde{U}_{t}\left(Y_{t}\right)^{+}
$$

which, by 1 ., shows that $\tilde{U}_{t}\left(\lambda Y_{t}\right)^{+} \in L^{1}(\mathbb{P})$ and concludes the proof.

Lemma 7.4 Fix $(K, R) \in \mathcal{K} \times \mathcal{R}$ such that (R1) to (R3) and $N A^{r}(K, R)$ hold. Fix $x \in \mathbb{R}^{d} \times \mathbb{R}_{+}^{N}$, and let $\left(c_{n}\right)_{n \geq 1}$ be a sequence in $\mathcal{C}_{T}(x ; K, R)$. Then, there is a sequence $\left(\tilde{c}_{n}\right)_{n \geq 1}$ such that $\tilde{c}_{n} \in \operatorname{conv}\left(c_{k}, k \geq n\right)$, for each $n \geq 1$, which converges $\mathbb{P}-$ a.s. to some $\tilde{c} \in \mathcal{C}_{T}(x ; K, R)$.

Proof. We set $x=\left(x^{F}, x^{I}\right)$. Since $c_{n}^{i} \geq 0$ for each $1 \leq i \leq d+N$, we deduce from Komlos Lemma (see e.g. Lemma A1.1 in [3]) that there is a sequence $\left(\tilde{c}_{n}\right)_{n \geq 1}$ such that $\tilde{c}_{n} \in \operatorname{conv}\left(c_{k}, k \geq n\right)$, for each $n \geq 1$, which converges $\mathbb{P}-$ a.s. to some $\tilde{c} \in$ $L^{0}([0, \infty] ; \mathbb{F})$. By Lemma 2.1, $\tilde{c}_{n} \in \mathcal{C}_{T}(x ; K, R)$ for each $n \geq 1$. Since, by Remark $5.2, \mathcal{C}_{T}(x ; K, R)$ is closed, it suffices to show that $\left\|\sum_{t \in \mathbb{T}} \tilde{c}_{t}\right\|<\infty$. To see this, recall from Theorem 6.2 and Lemma 6.1 that there is some $Z=\left(Z^{F}, Z^{I}\right) \in \mathcal{Z}_{T}(K, \mathbb{P})$ such that

$$
\mathbb{E}\left[Z_{T}^{F} \cdot\left(\sum_{t \in \mathbb{T}}\left(c_{n}\right)_{t}\right)\right] \leq Z_{0}^{F} \cdot x^{F}+a\left(x^{I} ; Z, \mathbb{P}\right)<\infty \quad, n \geq 1
$$

By Remark 6.1, we have $Z_{T}^{i}>0 \mathbb{P}-$ a.s. for all $1 \leq i \leq d$, sending n to ∞ and using Fatou's Lemma then leads to the required result.

We can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1 Item (i) has already been proved in Remark 7.2. We prove (ii).

1. Let $\left(c^{n}\right)_{n \geq 1}$ be a sequence in $\mathcal{C}_{T}(x ; K, R)$ such that

$$
u(x)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{n}\right)\right]
$$

Since U_{t} is convex, it follows from Lemma 7.4 that, after possibly passing to convex combinations, we can assume that c^{n} converges $\mathbb{P}-$ a.s. to some $c^{*} \in \mathcal{C}_{T}(x ; K, R)$. We shall prove in 2 . that

$$
\begin{equation*}
\left\{\left(\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{n}\right)\right)^{+}\right\}_{n \geq 1} \quad \text { is uniformly integrable } \tag{7.16}
\end{equation*}
$$

Then, using Fatou's Lemma and the continuity of U_{t}, we obtain

$$
u(x)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{n}\right)\right] \leq \mathbb{E}\left[\limsup _{n \rightarrow \infty} \sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{n}\right)\right]=\mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{*}\right)\right]
$$

2. To prove (7.16), we assume to the contrary that the sequence is not uniformly integrable and work towards a contradiction. If (7.16) does not hold then, after
possibly passing to a subsequence, we can find some $\delta>0$ and a sequence $\left(A_{k}^{n}\right)_{k, n}$ such that, for each $n \geq 1,\left(A_{k}^{n}\right)_{k=1}^{n}$ forms a disjoint partition of Ω such that

$$
\begin{equation*}
\mathbb{E}\left[\left(\sum_{t \in \mathbb{T}} U_{t}\left(c_{t}^{k}\right)\right)^{+} \mathbb{1}_{A_{k}^{n}}\right] \geq \delta, 1 \leq k \leq n, n \geq 1 \tag{7.17}
\end{equation*}
$$

By possibly adding a constant to the U_{t} 's, we can assume that there is some $r \in \mathbb{R}_{+}^{d}$ such that $\min _{t \in \mathbb{T}} U_{t}(r) \geq 0$.

Now, by Remark 7.2, there exists some $y^{1} \in \mathbb{R}_{+}$such that $\tilde{u}_{1}\left(y^{1}\right)<\infty$. Hence, for this y^{1}, there exists some $(Y, \alpha) \in \mathcal{D}\left(y^{1}\right)$ such that

$$
\left(\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(Y_{t}\right)\right) \in L^{1}(\mathbb{P})
$$

Then, by Lemma 7.3,

$$
\left(\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(\lambda Y_{t}\right)\right) \in L^{1}(\mathbb{P}), \text { for all } \lambda \in(0,1]
$$

Observe from Remark 6.2, that we can find some $\hat{x}^{1}>0$ such that the process $r+c^{k}$ belongs to $\mathcal{C}_{T}\left(\left(\hat{x}^{1}, 0_{d-1+N}\right) ; R, K\right)$ for all $k \geq 1$. It then follows, by definitions of \tilde{U}_{t} and $\mathcal{D}\left(y^{1}\right)$, that for each $\lambda>0$ and $n \geq 1$

$$
\begin{aligned}
\sum_{k=1}^{n} \mathbb{E}\left[\sum_{t \in \mathbb{T}} U_{t}\left(r+c_{t}^{k}\right) \mathbb{I}_{A_{k}^{n}}\right] & \leq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(\lambda Y_{t}\right)\right]+\lambda \sum_{k=1}^{n} \mathbb{E}\left[Y_{T} \cdot\left(\sum_{t \in \mathbb{T}} r+c_{t}^{k}\right) \mathbb{1}_{A_{k}^{n}}\right] \\
& \leq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(\lambda Y_{t}\right)\right]+n \lambda\left(y^{1} \hat{x}^{1}+\alpha\right) .
\end{aligned}
$$

Since U_{t} is \mathbb{R}^{d}-non-decreasing, see (4.2), we have $U_{t}\left(r+c_{t}^{k}\right) \geq U_{t}\left(c_{t}^{k}\right)^{+}$. It then follows from (7.17) that

$$
n \delta \leq \mathbb{E}\left[\sum_{t \in \mathbb{T}} \tilde{U}_{t}\left(\lambda Y_{t}\right)\right]+n \lambda\left(y^{1} \hat{x}^{1}+\alpha\right) \quad \text { for all } n \geq 1 \text { and } \lambda>0
$$

Dividing by $n \geq 1$ and sending n to ∞ in the above inequality, we obtain

$$
\begin{equation*}
\delta \leq \lambda\left(y^{1} \hat{x}^{1}+\alpha\right) \quad \text { for all } \lambda>0 \tag{7.18}
\end{equation*}
$$

Sending λ to 0 then leads to the required contradiction since $\delta>0$.

Remark 7.3 1. Since $\mathcal{D}\left(\lambda y^{1}\right)=\lambda \mathcal{D}\left(y^{1}\right)$ for all $\lambda \geq 1$, the above proof goes through if we replace the assumption (4.5) by

$$
\begin{equation*}
\tilde{u}^{1}\left(y^{1}\right)<\infty \quad \text { for all } \quad y^{1}>0 . \tag{7.19}
\end{equation*}
$$

Moreover, as explained above, it follows from Remark 6.2 that $u(x)<\infty$ whenever $\tilde{u}^{1}\left(y^{1}\right)<\infty$ for some $y^{1} \geq 0$. Hence, if (7.19) holds, then the assumption $u(x)<\infty$ for some $x \in \operatorname{int}\left(K_{0}\right)$ can be dropped too.
2. Since \tilde{u}^{1} is non-increasing, it follows from Lemma 7.3 that (7.19) is implied by (4.5) and the condition $u(x)<\infty$ for some $x \in \operatorname{int}\left(K_{0}\right)$.

References

[1] Bouchard B., N. Touzi and A. Zeghal, Dual Formulation of the Utility Maximization Problem : the case of Nonsmooth Utility, Annals of Applied Probability, 14 2, 678-717, 2004.
[2] Deelstra G., H. Pham and N. Touzi, Dual formulation of the utility maximization problem under transaction costs, Annals of Applied Probability, 11 4, 1353-1383, 2002.
[3] Delbaen F. and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 300, 463-520, 1994.
[4] Dixit A. and R. Pindick, Investment under uncertainty, Princeton university press, 1994.
[5] Kabanov Y. and C. Stricker, A teachers' note on no-arbitrage criteria, Séminaire de Probabilités XXXV, Lect. Notes Math. 1755, Springer, 149-152, 2001.
[6] Kabanov Y., C. Stricker and M. Rásonyi, No arbitrage criteria for financial markets with efficient friction. To appear in Finance and Stochastics, 2001.
[7] Kabanov Y., C. Stricker and M. Rásonyi, On the closedness of sums of convex cones in L^{0} and the robust no-arbitrage property. Preprint 2002.
[8] Kabanov Y. and M. Kijima, A consumption investment problem with production possibilities. Preprint 2003.
[9] Kramkov D. and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Annals of Applied Probability 9, 904-950, 1999.
[10] Kramkov D. and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets, Annals of Applied Probability, 13 4, 1504-1516, 2003.
[11] Rockafellar T., Convex analysis, Princeton University Press.
[12] Schachermayer W., The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time, Mathematical Finance, 14 1, 19-48, 2004.

