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Fragmentation Energy

Jean BERTOIN ∗, Servet MARTINEZ †,

September 1, 2004

Abstract

Motivated by a problem arising in mining industry, we estimate the energy
E(η) which is needed to reduce a unit mass to fragments of size at most η in a
fragmentation process, when η → 0. We assume that the energy used by the
instantaneous dislocation of a block of size s into a set of fragments (s1, s2, ...),
is sβϕ(s1/s, s2/s, ..), where ϕ is some cost-function and β a positive parameter.
Roughly, our main result shows that if α > 0 is the Malthusian parameter of an
underlying CMJ branching process (in fact α = 1 when the fragmentation is mass-
conservative), then E(η) ∼ cηβ−α whenever β < α. We also obtain a limit theorem
for the empirical distribution of fragments with size less than η which result from the
process. In the discrete setting, the approach relies on results of Nerman for general
branching processes; the continuous setting follows by considering discrete skeletons.
We also provide a direct approach to the continuous setting which circumvents
restrictions induced by the discretization.

1 Introduction

One of the main goals in mining industry is to liberate the metal contained into mineral
blocks and then separate it from non valued content. In this direction, fragmentation is
carried out in a series of steps: the first one being blasting, after the material is transported
to crushers, grinders, and further, to mills. Now, at each step the particles are screened,
so, if they are smaller than the diameter of the mesh of a grid, they are forwarded to
the next step. The process finishes when the material attains a size sufficiently small for
the mining purposes (more precisely to enable efficient physical-chemical processing). In
crushers, grinders and mills the material is broken by a repetitive mechanism, finishing
when the particles can go across the classifying-grid. In the intermediate steps, that is
blasting and crushers, output sizes are known to be not optimal in terms of the global
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energy cost. Obviously, one of the problems that faces mining industry is to minimize the
energy used in these processes.

To get an idea of the magnitudes involved in fragmentation in the mining industry,
at Chuquicamata (the biggest open pit copper mine on earth) located at the north of
Chile, one blasts and transports nearly 600 thousands of tons of material per day. Out of
this, nearly 200 thousands tons are defined as mineral, the rest is waste or sterile. The
average grade of copper content of mineral is around 1 per cent. After blasting, there
are two circuits for mechanically decrease the mineral size, the conventional process uses
three types of crushers (primary, secondary and tertiary) and the particles are forward
to the mills once they are smaller than 1/2 inches. The mills are of two types: bars and
balls which are the steel breakage media. The fragmentation process is stopped once the
particles have a size smaller than 20µm and in the other, the SAG mills are fed with
particles of size smaller than 8 inches with a similar end product of 20µm.

In this work, we consider discrete and continuous models of fragmentation processes
in which particles break independently of each other, and in a self-similar way (see the
forthcoming Sections 2 and 3 for precise assumptions). The self-similarity hypothesis
agrees with observations made by the mining industry; see e.g. [8, 11, 12, 15]. We assume
that the energy required to break a block of size s into a set of smaller blocks of sizes
(s1, s2, ...) (in one unit of time in the discrete case, and instantaneously in the continuous
case), is of the form sβϕ(s1/s, s2/s, . . .), where ϕ is a so-called cost function and β > 0
a fixed parameter. To keep generality, we do not impose ϕ to be nonnegative, although
this would be physically relevant.

When ϕ(s1, s2, . . .) =
∑∞

n=1 sβ
n − 1, the energy 1 is called a potential, because the

total energy needed to break a series of masses (m1, m2, . . .) summing up to 1 into a finer
distribution (m′

1, m
′
2, . . .) is given by

∑
i m

′β
i −

∑
j mβ

j , and this is independent of the
fragmentation path leading from the initial configuration to the final one. In this case,
if {xi} is the set of the sizes of fragments obtained by removing from the process every
fragment at the time when it becomes smaller than certain bound η, the energy needed
to attain this state starting from the unit mass is E(η) =

∑
i x

β
i − 1. We mention that

the potential energy is one of the most used models in mining. This corresponds to the
laws of Charles, Walker and Bond: dE(r) = C dr

rγ , where dE(r) is the specific energy to
change the size of a particle from r to r − dr; cf. [6, 7, 14].

In Section 2, we will deal with the discrete setting. Our approach to the study of the
energy problem relies on a coding of the fragmentation chain by a general (i.e. Crump-
Mode-Jagers) branching process in which the time parameter corresponds to the logarithm
of the sizes of the fragments. This coding enables us to apply theorems of Nerman [10]
from which estimates for the energy follow. The same technique also yields interesting
limit theorems for the empirical distribution of the fragments with size less than η re-
sulting from the process and suitably normalized. In Section 3, the continuous setting
is treated first by considering a discrete skeleton and estimating errors, and second by a
direct approach based on moment estimates via renewal theory for conservative fragmen-
tations that circumvents some restrictions on the exponent β which are imposed by the
discretization technique. Finally, we briefly derive conclusions of our study in Section 4.

1Observe that this quantity is always nonnegative whenever β < 1 and
∑∞

n=1 sn = 1.
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In the sequel, we shall implicitly assume that the process starts from a single block
with unit size, except when mentioned explicitly else.

2 Discrete framework

In this section, we consider the following simple setting where the system has a discrete
genealogical structure. Specifically, let us denote by

I :=
⋃

n=0,1,...

Nn

the infinite regular tree, with the usual convention that N0 = {∅}. In the sequel I will
often be referred to as the genealogical tree; its elements are called individuals. For each
i = (i1, . . . , in) ∈ I, we call n the generation of i and write |i| = n, with the obvious
convention |∅| = 0.

Individuals are used to label the fragments produced by a fragmentation chain; more
precisely we mark each individual i ∈ I by a real number σi, where e−σi is the size of the
fragment with label i. In other words, the marks assigned to the individuals are given
by minus the logarithm of the size of the corresponding fragments. More precisely, recall
that we start from a single block of unit size, and denote the sequence of the sizes of
the fragments resulting from the dislocation of this block by (s1, s2, . . .). We then assign
the mark σ∅ = 0 to the ancestor and σi = − log si to each individual i ∈ N1 of the first
generation. Marks are assigned similarly for the next generations.

Let us now specify the dynamics. We assume that each fragment with size s > 0
breaks into a sequence of smaller fragments with sizes s1, s2, . . ., where the sequence of
ratios s1/s, s2/s, . . . has a fixed distribution ν (i.e. ν does not depend on the size s). So
ν is a probability measure on [0, 1]N which will be referred to as the dislocation law. We
shall always implicitly assume that the dislocation law is not geometric, in the sense that
there is no real number r ∈]0, 1[ such that sn ∈ {1, r, r2, . . .} for all n, a.s.

The fragmentation is called dissipative if
∑∞

n=1 sn ≤ 1 ν-a.s. and the inequality is strict
with positive probability (this occurs for instance when size means mass and some dust, i.e.
infinitesimal fragments, can be produced). It is called conservative if

∑∞
n=1 sn = 1 ν-a.s.

Note that the model also includes the case when
∑∞

n=1 sn ≥ 1 with positive probability,
which occurs for instance when the size of a fragment means its diameter.

Finally, we assume that different fragments evolve independently. In other words, the
measure-valued process

Zn(dx) =
∑
i∈Nn

δσi
(dx) , x ∈ [0,∞[

is a branching random walk in the sense of Biggins [5], whose reproduction intensity is
given in terms of the dislocation law by

E
(
〈Z1, f〉

)
=

∫
[0,1]N

∞∑
n=1

f(− log sn)ν(ds) ,
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where s = (sn, n ∈ N) denotes a generic sequence in [0, 1] and f : [0,∞[→ R a generic
bounded measurable function. We stress that the random point measure Zn does not
take into account the fragments with size zero (i.e. for which σi = ∞).

Throughout this section, we shall assume that the Malthusian hypothesis is fulfilled,
that is there exists α > 0, called the Malthusian parameter, such that

E
(
〈Z1, e−α·〉

)
=

∫
[0,1]N

(
∞∑

n=1

sα
n

)
ν(ds) = 1 ,

and that the L log L condition holds, namely

E
(
〈Z1, e−α·〉 log+〈Z1, e−α·〉

)
=

∫
[0,1]N

(
∞∑

n=1

sα
n

)
log+

(
∞∑

n=1

sα
n

)
ν(ds) < ∞ .

Then, it is well-known (see Biggins [5]) that the process

Wn := 〈Zn, e−α·〉 =
∑
i∈Nn

e−ασi

is a uniformly integrable martingale, which converges a.s. and in L1(P) to W∞, and that
W∞ > 0 a.s. conditionally non-extinction (i.e. on Zn 6= 0 for all n). Observe that in the
conservative case, the Malthusian parameter is α = 1, and the martingale W is constant.

Recall now from the Introduction the problem which motivates this work. Fix η > 0
and let the process evolve until every fragment in the system has size less than η, in the
sense that each fragment with size less than η is instantaneously frozen in the system.
Suppose that at each step, the energy cost of the dislocation of a block with size s
producing a sequence of fragments with sizes s1, s2, . . . is sβϕ(s1/s, s2/s, . . .), where β is a
positive parameter and ϕ : [0, 1]N → R a measurable symmetric function, called the cost
function. The total energy cost for the process stopped when all the fragments have size
less than η is thus given by

E(η) :=
∑
i∈I

1{σi≤− log η}e
−βσiϕ(∆i) ,

where ∆i = (exp(σi − σi,n), n ∈ N) is the sequence of ratios of the sizes of the fragments
resulting from the dislocation of the fragment labelled by the individual i and the size of
that fragment.

We are now able to state the main result in the discrete setting.

Theorem 1 Suppose β < α and
∫

[0,1]N
|ϕ(s)|ν(ds) < ∞, and set

m(α) =

∫
[0,1]N

(
∞∑

n=1

sα
n log 1/sn

)
ν(ds) .

Then under the preceding assumptions,

lim
η→0

ηα−βE(η) =
W∞

(α− β)m(α)

∫
[0,1]N

ϕ(s)ν(ds) in L1(P) .
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Proof: The idea of the proof consists in expressing the energy functional in terms of a
general (i.e. Crump-Mode-Jagers) branching process which arises naturally in this setting,
and applying to the latter convergence results of Nerman [10].

We think of the mark σi which has been assigned to each individual i of the genealogical
tree I as a birth-time. Every individual which is born has an infinite lifetime, and gives
birth to children according to a random point process ξi. More precisely, if s1 ≥ s2 ≥ . . .
denote the sequence ranked in the decreasing order of the sizes of the fragments that result
from the first dislocation of a block with size s (recall that we assume that s ≥ s1, i.e.
dislocations always produce fragments of smaller sizes), the nth child of that individual
is born at time − log sn.

The particle system which is obtained in this way is then a general branching process
with reproduction intensity

µ(t) = E(ξ∅([0, t])) =

∫
[0,1]N

∞∑
n=1

1{sn≥e−t}ν(ds) , t ≥ 0.

Note that if we index this particle system by generations instead of time, we plainly
recover the branching random walk Zn. In this setting, the martingale Wn coincides with
the so-called intrinsic martingale; and if we introduce

Yt :=
∑

i∈I(t)

e−ασi , t ≥ 0 ,

where I(t) denotes the stopping line composed of the individuals born after time t, whose
mothers are born before or at t, then (Yt, t ≥ 0) is a uniformly integrable martingale
which has terminal value W∞. See Jagers [9].

Next, consider a block with size s, and let (s1, . . .) be the ranked sequence of the sizes
of the fragments that result from its first dislocation. This corresponds to an individual
i born at time σi = − log s and which has offspring described by the point process

ξi([0, t]) = #
{
n ∈ N : sn ≥ e−t

}
.

For every t ≥ 0, we set
φi(t) = eβtϕ(s1/s, s2/s, . . .) ,

and φi(t) = 0 for t < 0. Note that the energy cost of the dislocation is e−βσiφi(0), and
hence

η−βE(η) =
∑
i∈I

φi(t− σi) , t = − log η.

According to Theorem 3.1 and Corollary 3.3 in Nerman [10], we have

lim
t→∞

e−αt
∑
i∈I

φi(t− σi) = mφ
∞ W∞ ,

with

mφ
∞ =

∫∞
0

e−αtE(φ∅(t))dt∫∞
0

te−αtµ(dt)
in L1(P),
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see Equation (2.7) in Proposition 2.2 of [10]. Immediate calculations yield

mφ
∞ =

∫
[0,1]N

ϕ(s)ν(ds)

(α− β)m(α)
.

Putting the pieces together, this completes the proof. �

Remarks. (a) In the case β > α, the total energy needed to reduce entirely a block to
dust is E(0+) < ∞ a.s., and thus the asymptotics of E(η) are trivial.

(b) Under a rather mild condition on the dislocation law, one can reinforce Theorem
1 and get almost-sure convergence. See Condition 5.1 and Theorem 5.4 in [10].

(c) In a general branching process, an individual i may be endowed with a so-called life
career ωi which contains in particular the information of the ages at which the individual
begets its children, but may also have a much richer structure (the crucial hypothesis
is that the life careers of different individuals are i.i.d.). Theorem 3.1 of Nerman [10]
that provides the key to the present Theorem 1, can be extended to this more general
setting; see Theorem 7.3 in Jagers [9]. This allows us to extend Theorem 1 to the more
general situation where the energy cost of fragmentation during one unit of time does
not only depend on the size of the initial block and that of the resulting fragments, but
more generally on further information given by the life career ωi of the corresponding
individual i. In other words, the energy used for a block of size m with life career ωi is
mβϕ(ωi), where the cost-function ϕ now depends on the whole life career. Then Theorem
1 still holds after replacing

∫
[0,1]N

ϕ(s)ν(ds) by E(ϕ(ω∅)). This immediate generalization

will play a crucial role in the next section where we shall tackle the continuous framework
by discretization.

Theorem 1 yields interesting asymptotics for the empirical distribution of the frag-
ments resulting from the process stopped at the time when they become smaller than η.
More precisely, consider the random finite measure ρη defined by

〈ρη, f〉 :=
∑

j

xα
η,jf(xη,j/η) ,

where f : [0, 1] → R+ denotes a generic measurable function and {xη,j}j∈N stands for the
set of fragments with size less than η that result from the stopped process.

Corollary 2 Assumptions are the same as in Theorem 1. Then for every continuous
function f : [0, 1] → R+

lim
η→0

〈ρη, f〉 = W∞〈ρ, f〉 in L1(P) ,

where ρ is the deterministic probability measure given by

〈ρ, f〉 =
1

m(α)

∫ 1

0

f(u)

(∫
[0,1]N

∞∑
n=1

1{u>sn}s
α
nν(ds)

)
du

u
.
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Proof: The argument is a variation of that in the proof of Theorem 1. We start from
the identity

〈ρη, f〉 =
∑
i∈I

∞∑
n=1

1{σi≤t<σi,n}e
−ασi,nf(et−σi,n) ,

where η = e−t and the notation σi,n refers to the birth-time of the nth child of the
individual i.

This incites us to introduce the process φi(t) = 0 for t < 0 and

φi(t) =
∞∑

n=1

1{σi,n−σi>t}e
α(t−σi,n+σi)f(et−σi,n+σi) for t ≥ 0,

so that
〈ρη, f〉 = e−αt

∑
i∈I

φi(t− σi) .

Then an easy calculation gives∫ ∞

0

e−αtE(φ∅(t))dt =

∫ 1

0

f(u)

(∫
[0,1]N

∞∑
n=1

1{u>sn}s
α
nν(ds)

)
du

u
,

and the rest of the proof mimics that of Theorem 1. �

3 Continuous framework

We now turn our attention to the continuous setting, which is probably more appropriate
to model the evolution inside mills or crushers. Indeed, it has been observed in mining
industry that a significant proportion of particles that passed through the classifying-grid
after screening, have in fact a size much smaller than the mesh of the grid. This suggest
that blocks of mineral might be subject to a very large number of very small dislocations,
i.e. which affect only a very small portion of the block.

3.1 Preliminaries

The stochastic model that we use is the so-called homogeneous fragmentations introduced
in [1, 2]. That is we consider a Markov process X(t) = (X1(t), X2(t), . . .) with values in
the infinite simplex of decreasing numerical sequences with sum bounded from above by
1,

S =

{
s = (s1, . . .) : s1 ≥ s2 ≥ · · · ≥ 0 and

∞∑
1

si ≤ 1

}
.

We endow S with the uniform distance; it is readily checked that this turns S into a
compact metric space.

A configuration s ∈ S will be called a mass-partition; it should be thought of as
the ranked family of masses arising from the split of a block with unit mass. Note that
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for a technical reason, no creation of mass is allowed, i.e. the fragmentation is always
conservative or dissipative. Specifically, a portion of the initial mass may be lost during
the split, which corresponds to the situation when

∑∞
1 sn < 1. Small splits correspond

to mass-partitions s = (s1, . . .) such that 1 − s1 is small; in other words, a small split
produces one large fragment and all the remaining ones are small. In this direction, the
mass-partition (1, 0, . . .) has to be viewed as a zero element in S, since it corresponds to
a trivial split. It will be convenient to introduce the notation S∗ = S\{(1, 0, . . .)} for the
subspace of non-trivial mass partitions.

We assume that the process fulfills the branching property, i.e. different fragments have
independent evolutions. Specifically, let Pr stand for the law of X started from (r, 0, . . .),
i.e. at the initial time, there is a single block with mass r. Then for every t, u ≥ 0,
conditionally on X(t) = (s1, . . .), X(t + u) has the same law as the variable obtained
by ranking in the decreasing order the terms of the sequences X(1)(u), X(2)(u), . . ., where
the latter are independent random mass-partitions with values in S, such that X(n)(u)
has the same distribution as X(u) under Psn for each n = 1, . . .. We further suppose
that the process is homogeneous, in the sense that for every r > 0, the distribution of
(rX(t), t ≥ 0) under P1 is Pr.

It is known that the dynamics of homogeneous fragmentations are characterized by
a coefficient of erosion c ≥ 0 and a so-called dislocation measure ν on S such that
ν({(1, 0, . . .)}) = 0 and ∫

S
(1− s1)ν(ds) < ∞ .

Erosion is a deterministic phenomenon (roughly, blocks melt continuously at rate c), and
for the sake of simplicity we shall assume in the sequel that c = 0. The dislocation measure
specifies the rate at which blocks split: informally a block with mass m dislocates into a
mass-partition ms for s ∈ S∗ at rate ν(ds).

When the mass of ν is finite, the total rate of dislocation of a block is thus ν(S) < ∞,
which means that the block remains unchanged for an exponential time with parameter
ν(S) and then splits. In this situation, a logarithmic change of variables transforms
the homogeneous fragmentation into a branching random walk in continuous time (see
Uchiyama [13]), and the analysis made in the discrete setting can be applied verbatim. The
case when ν(S) = ∞ is thus more interesting as blocks dislocate immediately: informally,
on any time-interval, each block is subject to an infinite number of dislocations, all but
finitely many are very small.

The cornerstone of the study of homogeneous fragmentation is its Poissonian structure,
cf. [1, 2]. Specifically, consider a Poisson point process ((∆(t), k(t)), t ≥ 0) with values
in S × N, with characteristic measure ν ⊗#, where # denotes the counting measure on
N = {1, 2, . . .}. This means that for every Borel set B ⊂ S∗ × N, the process which
counts (as a function of time) the number of instants t such that (∆(t), k(t)) ∈ B, is a
Poisson process with intensity ν⊗#(B), and to disjoint Borel sets correspond independent
counting processes. There exists a unique pure-jump process (X(t), t ≥ 0) with values in
S, which jumps only at times t ≥ 0 at which an atom (∆(t), k(t)) occurs in S∗×N. More
precisely, the jump (i.e. the dislocation) induced by such a point can be described as
follows. The sequence X(t) is obtained from X(t−) by replacing its k(t)-th term Xk(t)(t−)
by the sequence Xk(t)(t−)∆(t), and ranking all the terms in the decreasing order. For
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instance, if X(t−) =
(

2
3
, 1

4
, 1

12
, 0, . . .

)
, k(t) = 2 and ∆(t) =

(
3
4
, 1

4
, 0, . . .

)
, then we look at

the 2-nd largest term in the sequence X(t−), which is 1
4
, and split it according to ∆(t).

This produces two fragments of size 3
16

and 1
16

, and thus X(t) =
(

2
3
, 3

16
, 1

12
, 1

16
, 0, . . .

)
. Of

course, it may happen that Xk(t)(t−) = 0, and in that case we have X(t) = X(t−). The
process (X(t), t ≥ 0) is then a homogeneous fragmentation with no erosion and dislocation
measure ν.

It will be convenient to introduce the critical value

β := inf

{
β > 0 :

∫
S

∣∣∣∣∣1−
∞∑

n=1

sβ
n

∣∣∣∣∣ ν(ds) < ∞

}
,

and then the function κ :]β,∞[→ R given by

κ(β) :=

∫
S

(
1−

∞∑
n=1

sβ
n

)
ν(ds) .

Plainly, κ is a concave increasing function.
We shall often make use of the fact that for every β > β, the process

etκ(β)

∞∑
n=1

Xβ
n (t) , t ≥ 0 ,

is a martingale. See e.g. Section 2.3 in [4]; we point that in the notation of [4], β = p + 1
and κ(β) = Φ(β + 1). This process will be referred to as the β-martingale in the sequel.

In the continuous setting, the Malthusian hypothesis takes the following form:

there exists α > β such that κ(α) = 0.

Then the process Wt :=
∑∞

n=1 Xα
n (t) is martingale which is always uniformly integrable

(see the proof of Theorem 2 in [4] for the argument). We call (Wt, t ≥ 0) the intrinsic
martingale and write W∞ for its terminal value.

Set

m(α) := κ′(α) =

∫
S

(
∞∑

n=1

sα
n log 1/sn

)
ν(ds) .

We shall need the following lemma.

Lemma 3 For every t > 0, we have

E

(
∞∑

n=1

Xα
n (t) log 1/Xn(t)

)
= tm(α) .

Proof: Taking the derivative in the variable β of the β-martingale yields the so-called
derivative martingale

tκ′(β)etκ(β)

∞∑
n=1

Xβ
n (t)− etκ(β)

∞∑
n=1

Xβ
n (t) log 1/Xn(t)
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(the martingale property can also be checked directly from the Markov property). Com-
puting expectation gives

etκ(β)E

(
∞∑

n=1

Xβ
n (t) log 1/Xn(t)

)
= tκ′(β) .

We specify this identity when β = α is the Malthusian parameter (so κ(α) = 0 and
κ′(α) = m(α)) and get the formula of the statement. �

3.2 Discretization

Our goal in this section is to derive by discretization an extension of Theorem 1 for
homogeneous fragmentations. Specifically, fix a > 0 and consider the discrete skeleton
(X(na), n ∈ N), which is then a fragmentation chain of the type considered in Section 2.
More precisely, for each individual (i.e. fragment observed at some time na), we record
not only its size and that of its children, but the entire life career ω which governs the
evolution of this block on the time interval [na, (n + 1)a]. In this direction, recall the
Poissonian construction of the homogeneous fragmentation presented at the beginning of
this section. The life career of an individual i that corresponds to a block with size e−σi ,
say at time na, is denoted by ωi = (δ(t), `(t))0<t≤a, where δ(t) ∈ S and `(t) ∈ N. This
means that for every t ∈]0, a], at time na + t, the `(t)th largest fragment resulting from
this block splits in such a way that the ordered sequence of the resulting size-ratios is δ(t)
(of course, there is no split when δ(t) = (1, 0, . . .)).

To define the energy used by an instantaneous dislocation, we consider a measurable
cost-function ϕ : S → R with ϕ((1, 0, . . .)) = 0. In terms of the discrete skeleton, this
leads us to introduce a cost-function which depends on the life career of individuals.
Specifically, the energy cost for the fragmentation of a block at time na during a units of
time is thus

e−βσiϕa(ωi) ,

where i stands for the individual corresponding to that block, ωi for its life career,

ϕa(ωi) =
∑

0<t≤a

sβ
`(t)(t−)ϕ(δ(t)) ,

and sn(t)e−σi is the size of the nth largest fragment obtained from that block at time
na + t. In the special case of a potential energy, i.e. when ϕ(s) =

∑∞
n=1 sβ

n − 1, ϕa(ωi)
only depends on the sizes of the children of the individual i, but in general ϕa(ωi) depends
on the whole life career.

We start by computing the mean of energy for the ancestor ∅, i.e. the energy spent
for fragmenting the initial block with unit size during the time interval [0, a]:

ϕa(ω∅) =
∑

0<t≤a

Xβ
k(t)(t−)ϕ(∆(t)) .

Lemma 4 Suppose β > β. For every a > 0, we have

E(ϕa(ω∅)) =
1− e−aκ(β)

κ(β)

∫
S

ϕ(s)ν(ds) .

10



Proof: The compensation formula for the Poisson point process (∆(u), k(u))u≥0 gives

E

(∑
0<t≤a

Xβ
k(t)(t−)ϕ(∆(t))

)
= E

(∫ a

0

(
∞∑

n=1

Xβ
n (t)

)
dt

)∫
S

ϕ(s)ν(ds) .

Now the mean of the β-martingale is 1, so E(
∑∞

n=1 Xβ
n (t)) = e−tκ(β), and the claim follows.

�

Next, we fix η > 0 and write E(η) for the energy spent to reduce a block with unit
size to fragments with size less than ε, using the cost function ϕ. That is

E(η) =
∑
t≥0

1{Xk(t)(t−)≥η}X
β
k(t)(t−)ϕ(∆(t)) .

We are now able to state the following extension of Theorem 1 to the continuous setting.

Theorem 5 Suppose
∫
S |ϕ(s)|ν(ds) < ∞ and β ∈]β, α[. We have that

lim
η→0

ηα−βE(η) =
W∞

(α− β)m(α)

∫
S

ϕ(s)ν(ds) in L1(P) .

Proof: Without loss of generality, we may assume ϕ ≥ 0. We write Ea(η) for the energy
computed for the discrete skeleton and the cost-function ϕa, that is

Ea(η) =
∑
i∈I

1{σi≤− log η}e
−βσiϕa(ωi) .

Plainly, Ea(η) is an upperbound for E(η) since the former quantity corresponds to the
energy spent for the homogeneous fragmentation process when fragments with size less
than η are frozen at discrete times of the form na for n ∈ N, instead of instantaneously.

We need to estimate the overcost Ea(η) − E(η), that is the error induced by the dis-
cretization. Clearly, if {xn}n∈N denotes the terminal state of the process when we freeze
each fragment at the instant when it size becomes less than η in the fragmentation process,
the overcost can be bounded from above by

∞∑
n=1

E(η, xn, a) ,

where E(η, x, a) the energy cost for an initial block with size x and a duration a in the
fragmentation process. By self-similarity and Lemma 4, the mean overcost can thus be
bounded from above by

E

(
∞∑

n=1

E(η, xn, a)

)
=

1− e−aκ(β)

κ(β)

(∫
S

ϕ(s)ν(ds)

)
E

(
∞∑

n=1

xβ
n

)

≤ 1− e−aκ(β)

κ(β)

(∫
S

ϕ(s)ν(ds)

)
ηβ−αE

(
∞∑

n=1

xα
n

)
.

11



Now the operation of freezing fragments at the instant when they become less than η
is a so-called frost in the terminology of [3]; this notion is the continuous analog of that
of stopping lines in the theory of branching processes. The branching property extends
to frosts (see Theorem 1 in [3]), which entails in particular that the terminal value W∞
of the intrinsic martingale can be expressed in the form

W∞ =
∞∑

n=1

xα
nW (n)

∞ ,

where (W
(n)
∞ , n ∈ N) is a sequence of i.i.d. copies of W∞, which is independent of the xn’s.

Taking expectation, we deduce that E (
∑∞

n=1 xα
n) = 1.

Putting the pieces together, we have shown that

lim
a→0

ηα−βE (|E(η)− Ea(η)|) = 0 , uniformly in η .

On the other hand, the Malthusian hypothesis and the L log L condition are plainly ful-
filled for the discrete skeleton, which allows us to apply the results of the preceding section
(see Remark (c) after the proof of Theorem 1). Thanks to Lemmas 3 and 4, we get

lim
η→0

ηα−βEa(η) =
W∞(1− e−aκ(β))

(α− β)κ(β)am(α)

∫
S

ϕ(s)ν(ds) in L1(P) .

Since 1−e−aκ(β)

aκ(β)
tends to 1 as a → 0, this completes the proof of the theorem. �

3.3 The conservative case

If we compare the discrete and the continuous settings, we see that the hypotheses in
Theorem 5 are more restrictive that one might expect, as one can only deal with param-
eters β greater than the critical value β. This restriction stems from the approach by
discretization: fragments are frozen at the first discrete time of the form na at which
they become smaller than η and not instantaneously. This implies that the fragmentation
process keeps running for some time for blocks with size smaller than η, and it turns out
that the energy cost for this has a predominant contribution when β ≤ β.

Our purpose in this section is to provide a direct method for the estimation of the
energy which circumvent this problem. For the sake of simplicity, we shall assume here
that the fragmentation is conservative, i.e.

ν

({
s ∈ S :

∞∑
n=1

sn 6= 1

})
= 0 .

In particular, the Malthusian parameter is α = 1 and the intrinsic martingale is trivial.
We claim the following:

Theorem 6 Suppose that the homogeneous fragmentation is conservative, that the cost
function ϕ belongs to L1(dν) ∩ L2(dν), and that β < 1. Then it holds that

lim
η→0

η1−βE(η) =
1

(1− β)m(1)

∫
S

ϕ(s)ν(ds) in L2(P) .
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Our approach is based on moment calculations, which are performed using so-called
tagged fragments in the spirit of [4]. In this direction, we shall use an interval represen-
tation of the fragmentation, see [3]. That is we identify the initial block with the unit
interval ]0, 1[ and work with a Markovian family (θ(t), t ≥ 0) of nested random open
subsets of ]0, 1[, in the sense that θ(u) ⊆ θ(t) for u ≥ t. The state of the fragmentation at
time t is given by the ranked sequence of the lengths of the interval components of θ(t);
note that the assumption that the fragmentation is conservative entails that θ(t) has full
Lebesgue measure. Let U be a uniform random variable, independent of (θ(t), t ≥ 0). For
each t ≥ 0, we denote by χ(t) the length of the interval component of θ(t) that contains
U , and call χ = (χ(t), t ≥ 0) the process of the tagged fragment. The latter provides a
powerful tool for computing first moment of additive functionals of the fragmentation; in
particular the renewal theorem for subordinators yields the following estimate.

Lemma 7 Under the same assumptions as in Theorem 6, one has

lim
η→0

η1−βE(E(η)) =
1

(1− β)m(1)

∫
S

ϕ(s)ν(ds) .

Proof: Introduce for every η > 0 the quantity

Ẽ(η) =
∑
t≥0

χβ−1(t−)1{χ(t−)≥η,k(t)=n(t−)}ϕ(∆(t)) ,

where n(t) stands for the index at time t of the tagged fragment, i.e. Xn(t)(t) = χ(t).
So the characteristic function in the sum is one if and only if the tagged fragment splits
at time t and its size before the split is not smaller than η. Note that Ẽ(η) can be
viewed as the (β − 1)-energy required to reduce the tagged fragment alone to a size less
than η. Because at each time t ≥ 0, the tagged fragment is a size-biased picked from
the fragments at time t, i.e. P(n(t) = ` | X(t)) = X`(t), we see that the conditional
expectation of Ẽ(η) given the sigma-field generated by the sole fragmentation process (i.e.
ignoring the uniform random variable U) is precisely E(η), and in particular

E(Ẽ(η)) = E(E(η)) .

So we need to estimate

E

(∑
t≥0

χβ−1(t−)1{χ(t−)≥η,k(t)=n(t−)}ϕ(∆(t))

)
,

and in this direction, we use the compensation formula for Poisson point processes. We
get

E(E(η)) = E
(∫ ∞

0

χβ−1(t)1{χ(t)≥η}dt

)(∫
S

ϕ(s)ν(ds)

)
.

Next, recall from Theorem 3 in [2] that the process ξ(t) := − log χ(t) is a subordinator,
that is an increasing process with stationary and independent increments. More precisely,
its Laplace exponent

Φ(q) = − log E (exp(−qξ(1))) = − log E (χ(1)q)

13



is given by Φ(q) = κ(q + 1). So if U denotes the renewal measure of ξ, we have

E
(∫ ∞

0

χβ−1(t)1{χ(t)≥η}dt

)
=

∫ log 1/η

0

exp((1− β)y)U(dy) . (1)

As the subordinator ξ has mean Φ′(0) = κ′(1) = m(1), it now follows from the renewal
theorem for subordinators that the quantity above is equivalent to

ηβ−1

m(1)

∫ ∞

0

e−(1−β)ydy

as η → 0. This establishes our claim. �

Now, to complete the proof of Theorem 6, we need second moment estimates. In
this direction, the technique of the proof of Lemma 7 lead us to introduce a second
independently tagged fragment χ′ = (χ′(t), t ≥ 0). This means that χ′(t) is the length of
the interval component of θ(t) that contains U ′, where U ′ is another independent uniform
variable. In the obvious notation with primes referring to the second tagged fragment,
we see from the same argument based on size-biased sampling that

E(Ẽ(η)Ẽ ′(η)) = E(E(η)2) ,

where
Ẽ ′(η) =

∑
t≥0

χ′β−1(t−)1{χ′(t−)≥η,k(t)=n′(t−)}ϕ(∆(t)) ,

and n′(t) denotes the index at time t of the second tagged fragment. The proof of Theorem
6 will be complete if we establish the following lemma.

Lemma 8 Under the same assumptions as in Theorem 6, one has

lim
η→0

η2−2βE(E(η)2) =

(
1

(1− β)m(1)

∫
S

ϕ(s)ν(ds)

)2

.

Proof: For the sake of simplicity, we shall focus on the case when ϕ ≥ 0, which induces
no loss of generality. Let us denote by T the first instant t at which the two tagged points
U and U ′ belong to two different interval components of θ(t). Clearly, T is a stopping
time, so the branching and self-similar properties enable us to express Ẽ(η) and Ẽ ′(η) in
the form (for the sake of notational simplicity, we do not indicate the dependence in the
variable η)

Ẽ(η) = A + xβ−1B , Ẽ ′(η) = A + x′β−1B′

where
A =

∑
t≤T

χβ−1(t−)1{χ(t−)≥η,k(t)=n(t−)}ϕ(∆(t)) ,

x = χ(T ), x′ = χ′(T ), and conditionally on (A, x, x′), B and B′ are two independent
variables distributed as E(η/x) and E(η/x′), respectively. In particular, Lemma 7 yields

lim
η→0

η2−2βE
(
xβ−1x′β−1BB′) =

(
1

(1− β)m(1)

∫
S

ϕ(s)ν(ds)

)2
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and
η1−βE(xβ−1B + x′β−1B′ | A, x, x′) ≤ c (2)

for some finite constant c.
Next, by the compensation formula for Poisson point processes, we have

E (A) = E
(∫ ∞

0

χβ−1(t)1{χ(t)≥η}1{t≤T}dt

)∫
S

ϕ(s)ν(ds) .

Observe that the event {t ≤ T} holds if and only if U ′ belongs to the interval component
with length χ(t) of θ(t) that contains U . Moreover χ(t) only depends on U and θ(t), U ′

is independent of the latter and has the uniform distribution. It follows that

E
(
χβ−1(t)1{χ(t)≥η}1{t≤T}

)
= E

(
χβ(t)1{χ(t)≥η}

)
. (3)

Recall from the proof of Lemma 7 that the tagged fragment process χ is the exponential
of a subordinator ξ with Laplace exponent Φ. Hence

E
(
χβ(t)1{χ(t)≥η}

)
≤ E

(
e−βξ(t)

)
= e−tΦ(β) ,

and we conclude that

E(A) <
1

Φ(β)

∫
S

ϕ(s)ν(ds) . (4)

As a consequence of (2),

lim
η→0

η2−2βE(A(xβ−1B + x′β−1B′)) = 0 .

Then, we turn our attention to the mean of A2, a variable which we express in the
form C + 2D with

C =
∑

0<t≤T

χ2β−2(t−)1{χ(t−)≥η,k(t)=n(t−)}ϕ(∆(t))2 ,

D =
∑

t∈]0,T ]

χβ−1(t−)1{χ(t−)≥η,k(t)=n(t−)}ϕ(∆(t))

×

 ∑
u∈]t,T ]

χβ−1(u−)1{χ(u−)≥η,k(u)=n(u−)}ϕ(∆(u))

 .

We compute E(C) using the compensation formula, and we get

E(C) =

(∫
S

ϕ(s)2ν(ds)

)
E
(∫ ∞

0

χ2β−2(t)1{χ(t)≥η,t<T}dt

)
=

(∫
S

ϕ(s)2ν(ds)

)
E
(∫ ∞

0

χ2β−1(t)1{χ(t)≥η}dt

)
,

where the last equality follows from (3) with 2β − 1 in place of β. Now recall (1). When
η → 0, this quantity remains bounded for β > 1/2, is of order log 1/η for β = 1/2 (by the
elementary renewal theorem), and of order η2β−1 for β < 1/2 (by the renewal theorem).
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Finally, we compute E(D) by conditioning at times t when the tagged fragment splits.
We get by an application of the regenerative property of Poisson point processes at times
when atoms appear and Lemma 7 that

E(D) ≤ aηβ−1E (A) ,

for some finite constant a. Recall from (4) that E(A) remains bounded as η → 0. Putting
the pieces together, we have shown that limη→0 η2−2βE(A2) = 0, which completes the
proof of the statement. �

We now conclude this section with a continuous analog of Corollary 2, which specifies
the asymptotics of the empirical distribution of terminal state of the process when frag-
ments are frozen at the instant when they become smaller than η. Introduce the random
probability measure ρη defined by

〈ρη, f〉 :=
∑

j

xη,jf(xη,j/η) ,

where f : [0, 1] → R+ denotes a generic measurable function and {xη,j}j∈N stands for the
set of fragments with size less than η that result from the process.

Corollary 9 Assumptions are the same as in Theorem 6. Then for every continuous
function f : [0, 1] → R+

lim
η→0

〈ρη, f〉 = 〈ρ, f〉 in L2(P),

where ρ is the deterministic probability measure given by

〈ρ, f〉 =
1

m(1)

∫ 1

0

f(u)

(∫
S

∞∑
n=1

1{u>sn}snν(ds)

)
du

u
.

The proof follows the same type of calculations as for Theorem 6, details are left to
the reader. Alternatively, we may also establish Corollary 9 by considering first the case
when f(x) = xβ−1 is a power function,

〈ρη, f〉 := η1−β
∑

j

xβ
η,j .

As observed in the Introduction, we can express the right-hand side in terms the potential
energy, that is for the choice ϕ(s) =

∑∞
n=1 sβ

n − 1. We get

〈ρη, f〉 := η1−β (E(η) + 1) .

Then Theorem 6 easily entails Corollary 9 in the case when f is a power function, and
the general case follows by standard arguments.
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4 Conclusions

In any industry, one strives to minimize the production cost. If the model developed in
this work is applied to mining industry, the dislocation measure ν, the cost-function ϕ,
the exponent β and the Malthusian parameter α shall depend essentially on the quality
of the mineral and properties of crushers, grinders and mills. These data are given and
can hardly be modified: the quality of mineral is given by the pit section being exploited
in terms of geological and geophysical characteristics; crushers are heavy and expensive
equipment which work for long times and are seldom replaced. However there is some
flexibility in the choice of the blasting operation, the size setting of the crushers and
the mesh of the grid used for screening. Roughly, our results show that the energy cost
depends as certain power function (with a negative exponent β − α) of the mesh of the
grid. A larger mesh induces a smaller fragmentation cost, but if the process produces
fragments with larger size, the next step (physical-chemical processing) will also be less
efficient. Thus one should also estimate the cost of the physical-chemical processing as a
function of the size of the fragments, and then optimize simultaneously both procedures.

Acknowledgment. We would like to express our gratitude to Felipe Mujica (IM2,
Codelco) for very useful discussions and comments.
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