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Abstract

We construct a Legendrian version of Envelope theory. A tangential family is a

1-parameter family of rays emanating tangentially from a smooth plane curve. The

Legendrian graph of the family is the union of the Legendrian lifts of the family curves

in the projectivized cotangent bundle PT
∗
R

2. We study the singularities of Legendrian

graphs and their stability under small tangential deformations. We also find normal

forms of their projections into the plane. This allows to interprete the beaks perestroika

as the apparent contour of a deformation of the Double Whitney Umbrella singularity

A
±

1 .
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1 Introduction

A tangential family is a 1-parameter family of “rays” emanating tangentially from a smooth
plane curve. Tangential families and their envelopes (or caustics) are natural objects in
Differential Geometry: for instance, every curve in a Riemannian surface defines the tan-
gential family of its tangent geodesics. The theory of tangential families is related to the
study developed by Thom and Arnold for plane envelopes (see [1], [2] and [14]). In [7] and
[8] we studied stable and simple singularities of tangential family germs (with respect to
deformations among tangential families).

In this paper we construct a Legendrian version of tangential family theory. The envelope
of a tangential family is viewed as the apparent contour of the surface, called Legendrian
graph, formed by the union of the Legendrian lifts of the family curves in the projectivized
cotangent bundle of the plane.

We classify the Legendrian graph singularities that are stable under small tangential de-
formations of the generating tangential families. We prove that, in addition to a regular
Legendrian graph, there exists just one more local stable singularity, the Double Whitney
Umbrella A±

1 . Furthermore, we find normal forms of typical projections of Legendrian graphs
into the plane. This allows to interprete the beaks perestroika as the apparent contour of a
non-tangential deformation of the Double Whitney Umbrella singularity in the projectiviza-
tion of the cotangent bundle T ∗

R
2.

1



Our results are related to several theories, concerning Maps from the Space to the Plane
(Mond [13]), Projections of Manifolds with Boundaries (Goryunov [11], Bruce and Giblin
[5]), Singular Lagrangian Varieties and their Lagrangian mappings (Givental [12]).
Acknowledgments. This paper contains a part of the results of my PhD Thesis ([6]). I
wish to express my deep gratitude to my advisor V.I. Arnold.

2 Legendrian graphs and their singularities

Unless otherwise specified, all the objects considered below are supposed to be of class C ∞;
by plane curve we mean an embedded 1-submanifold of the plane.

In this section we recall basic facts about tangential families and we define their Legen-
drian graphs in the projectivized cotangent bundle PT ∗

R
2. We study the typical singularities

of these graphs up to Left-Right equivalence. This classification considers neither the fiber
nor the contact structure of PT ∗

R
2. A classification of Legendrian graphs taking into account

the fiber bundle structure is the object of Section 3.
Let f : R

2 → R
2 be a mapping of the source plane, equipped with the coordinates ξ and

t, to another plane. If ∂tf vanishes nowhere, then fξ := f(ξ, ·) parameterizes an immersed
curve Γξ. Hence, f parameterizes the 1-parameter family of curves {Γξ : ξ ∈ R}.

Definition. The family parameterized by f is a tangential family if f(·, 0) parameterizes an
embedded smooth curve, called the support, and Γξ is tangent to γ at f(ξ, 0) for every ξ ∈ R.

The graph of the family is the surface Φ := ∪ξ∈R{(ξ,Γξ)} ⊂ R
3. The envelope is the

apparent contour of Φ under the projection π : R
3 → R

2, π(ξ, P ) := P (i.e. the critical value
set of π|Φ); the criminant set is the critical set of π|Φ. By the very definition, the support of
a tangential family belongs to its envelope.

A p-parameter deformation F : R
2 × R

p → R
2 of a tangential family f is tangential if

Fλ := F (·;λ) is a tangential family for every λ. Remark that the supports of the deformed
families form a smooth deformation of the support of the initial family.

Below we will consider tangential family germs. Note that graphs of tangential family
germs are smooth. In [7] we proved that there are exactly two tangential family singularities
which are stable under small tangential deformations (for the Left-Right equivalence relation).
These singularities, denoted by I and II, are represented by (ξ + t, t2) and (ξ + t, t2ξ). Their
envelopes are respectively smooth and have an order 2 self-tangency.

Consider the projectivized cotangent bundle PT ∗
R

2, endowed with the standard contact
structure and the standard Legendre fibration πL : PT ∗

R
2 → R

2.

Definition. The Legendrian graph of a tangential family is the surface in PT ∗
R

2 formed by
the Legendrian lifts of the family curves.

We remark that the envelope of a tangential family is the πL-apparent contour of its
Legendrian graph.

We say that a Legendrian graph germ is of first type (resp., second type) if it is generated
by a tangential family germ of the same type, i.e., having a singularity I (resp., II).

Let us recall that a surface germ has a singularity of type A±
n (resp., Hn) if it is diffeo-

morphic to the surface locally parameterized by the map germ (ξ, t2, t3 ± tξn+1) (resp., by
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(ξ, ξt + t3n−1, t3)); these singularities are simple. The singularities A+
n and A−

n coincide if
and only if n is even. The singularities A±

1 , shown in Figure 1, are called Double Whitney
Umbrellas.

Theorem 1. The Legendrian graph germs of first type are smooth, while those of second
type have generically a Double Whitney Umbrella singularity A±

1 . The other second type
Legendrian graph germs have A±

n or Hn singularities for n ≥ 2 or n = ∞.

A+
1A−

1

Figure 1: Double Whitney Umbrellas.

In the statement, “generically” means that the second type Legendrian graph germs for
which the claim does not hold form a (non-connected) codimension 1 submanifold in the
manifold formed by the second type Legendrian graph germs.

Remark. The singularities of map germs from R
2 to R

3 usually denoted by B±
n , C±

n , F4

(see [3], [13]) appear as singularities of Legendrian graph generated by non typical tangential
families (i.e., which are neither of first nor second type). For example, the Legendrian graphs
of S-type tangential family germs have B±

n singularities. Simple tangential family germs are
classified in [8].

A Legendrian graph is stable (under small tangential deformations) if for every small
enough tangential deformation of the tangential family generating it, the initial and the
deformed graphs are diffeomorphic. A similar definition holds for germs.

Theorem 2. The Double Whitney Umbrellas A±

1 are, in addition to smooth graphs, the only
stable Legendrian graph singularities.

We point out that in Mond’s general theory of maps from the space to the plane [13], the
Double Whitney Umbrellas are not stable.

A Legendrian graph singularity L is said to be adjacent to a Legendrian graph singularity
K (L→ K), if every Legendrian graph in L can be deformed into a Legendrian graph in K
by an arbitrary small tangential deformation. If L → K → K ′, the class L is also adjacent
to K ′. In this case we omit the arrow L → K ′. The adjacencies of the typical Legendrian
graph singularities are as follows (E means embedding).

E A±

1
oo A2

oo A±

3
oo . . .oo A±

∞
oo

H2

``A
A

A

A

A

A

A

A

H3
oo . . .oo H±

∞
oo
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3 Normal forms of Legendrian graph projections

In this section we study how Legendrian graphs project into the envelopes of their generating
tangential families. In other terms, we find normal forms of typical Legendrian graphs with
respect to an equivalence relation preserving the fiber structure of PT ∗

R
2.

Definition. The projections of two Legendrian graphs Λ1 and Λ2 by πL are said to be
equivalent if there exists a commutative diagram

Λ1

i1−−−→ PT ∗
R

2 πL−−−→ R
2





y





y





y

Λ2

i2−−−→ PT ∗
R

2 πL−−−→ R
2

in which the vertical arrows are diffeomorphisms and i1, i2 are inclusions.

Such an equivalence is a pair of a diffeomorphism between the two Legendrian graphs and
a diffeomorphism of PT ∗

R
2 fibered over the base R

2 (the diffeomorphism is not presumed to
be a contactomorphism). A similar definition holds for germs.

Let A ∗ be the subgroup of A := Diff(R2, 0)×Diff(R3, 0), formed by the pairs (ϕ, ψ) such
that ψ is fibered with respect to π. This subgroup inherits the standard action of A on the
maximal ideal (mξ,t)

3: (ϕ, ψ) · f := ψ ◦ f ◦ ϕ−1. Projections of Legendrian graphs are locally
equivalent if and only if their local parameterizations are A ∗-equivalent.

Theorem 3. The projection germs of the typical Legendrian graphs are equivalent to the
projection germs of the surfaces parameterized by the map germs f in the 3-space {x, y, z}
by a pencil of lines parallel to the z-axis, where f is the normal form in the following table,
according to the graph type.

Type Singularity Normal form Restrictions
I Fold (ξ, t2, t) ∅

II A±

1 (ξ, t3 + t2ξ + atξ2, t2 + bt3) a 6= −1, 0, a < 1/3

Moreover, a Legendrian graph germ of second type, parameterized by the above normal form,
has a singularity A+

1 (resp., A−

1 ) if and only if 0 < a < 1/3 (resp., −1 6= a < 0).

Typical Legendrian graphs are those having only stable singularities. In Theorem 3,
“generically” means that the second type Legendrian graph germs for which the claim does
not hold form a non-connected codimension 1 submanifold in the manifold of all the second
type Legendrian graph germs.

Typical Legendrian graph projections are depicted in figure 2.

Corollary. The Fold is the only stable and the only simple singularity of Legendrian graphs
(with respect to tangential deformations and Left-Right equivalence relation).

Let us denote by Fa,b the A±

1 normal form in Theorem 3 and by z its third coordinate.

Theorem 4. The map germ Fa,b + (µ1z, λt + µ2z, 0) is an A ∗-miniversal tangential defor-
mation of the normal form Fa,b, provided that b 6= 0.

4



A−
1 A+

1

Figure 2: Typical Legendrian graph projections.

Remark. The above deformation is not the simpler possible, but it has the property that the
parameters µ1, µ2 deform the direction of the projection, but leave fixed the Legendrian graph,
while the parameter λ deforms the graph without changing the projection. In particular, the
deformation restricted to µ1 = µ2 = 0 provides an A -miniversal deformation of Fa,b.

The second order self-tangency of the envelope of a second type tangential family germ
is not stable under non-tangential deformations (see [7]). Under such a deformation, the
envelope experiences a beaks perestroika, that may be interpreted as the apparent contour
in the plane of the perestroika occurring to its Legendrian graph, as shown in figure 3. We
call it Legendrian beaks perestroika. Actually, there are two such perestroikas, according to
the sign of A±

1 . Figure 3 has been obtained investigating the critical sets of the A -miniversal
deformation Fa,b + (0, λt, 0) of the projection normal form Fa,b, which leaves unchanged the
direction of the projection.

A−
1

A0 A0

A0A+
1

A0

Figure 3: Legendrian beaks perestroikas.
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4 Proof of Theorems 1 and 2

We start constructing explicit parameterizations of Legendrian graph germs.

Lemma 1. Every local parameterization of a Legendrian graph is A ∗-equivalent to a map
germ of the form

(

ξ, k0t
2 + (α− k1)t

3 + k1t
2ξ + δ(3), 2k0t+ (3α− 2k1)t

2 + 2k1tξ + δ(2)
)

, (1)

where δ(n) denotes any function of ξ, t with zero n-jet at the origin. Moreover, the Legendrian
graph germ is of first type (resp., of second type) if and only if if k0 6= 0 (resp., k0 = 0 and
k1 6= 0, α).

Proof. Consider a tangential family germ at the origin. Up to a coordinate change, preserving
the A ∗-singularity of the graph, we may assume that the family support is locally the x-axis.
For every x small enough, denote by K(x) the curvature at (x, 0) of the corresponding family
curve. Now, for x → 0, let k0 + k1x + o(x) and k0x

2 + αx3 + o(x3) be the expansions of
K(x)/2 and of the function whose graph (near the origin) is the curve associated to (0, 0).

Then, one easily verifies that the Legendrian graph of such a tangential family is param-
eterized by (ξ + t, u(ξ, t) + δ(3), ∂tu(ξ, t) + δ(2)), where u(ξ, t) := k0t

2 + αt3 + k1t
2ξ. This

germ can be brought to the required form by (ξ, t) 7→ (ξ − t, t).
Finally, we proved in [7] that a tangential family germ is of first type (resp., of second

type) if and only if k0 6= 0 (resp., k0 = 0 and k1 6= 0, α).

We can prove now Theorems 1 and 2.

Proof of Theorem 1. If k0 6= 0, then the 1-jet of (1) is A -equivalent to (ξ, 0, t), which is
A -sufficient. Therefore, Legendrian graph germs of first type are smooth.

We consider now second type Legendrian graph germs (so from now on k0 = 0). First,
assume k1 different from the four values 0, α, 3α/2 and 3α. Then (1) is A -equivalent to
(ξ, t3 ± tξ2, t2), where ± is the sign of (k1 − 3α)(α − k1)/k

2
1. Indeed, The 3-jet of (1) is

A -equivalent to (ξ, t3 ± tξ2, t2), which is A -sufficient (see [13], Theorem 1:2).
Hence, the Legendrian graph germs of second type have an A±

1 singularity whenever
k1 6= 3α/2, 3α. Let us denote by ÎI the manifold, formed by all the second type Legendrian
graph local parameterizations. The remaining second type graphs belong to the union of
the two submanifolds of ÎI, defined by 2k1 = 3α and 3α = k1 (dropping the intersection
α = k1 = 0, whose elements are not of second type). It remains to consider the germs
belonging to these two submanifolds.

If 3α = 2k1 6= 0, the 3-jet of (1) is A -equivalent to (ξ, t3, tξ). Then, Mond’s classification
(see [13], § 4.2.1) implies that the map germs (1), except those belonging to an infinite codi-
mension submanifold of ÎI, are A -equivalent to (ξ, t3, tξ+t3n−1) for some n ≥ 2. On the other
hand, when k1 = 3α 6= 0, the 2-jet of (1) is A -equivalent to (ξ, 0, t2); Mond’s classification
(see [13], §4.1) implies that the map germs of the form (1), except those belonging to an
infinite codimension submanifold of ÎI, are A -equivalent to (ξ, t3 ± tξn+1, t2) for n ≥ 2.
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Proof of Theorem 2. We first show that A±

1 singularities are stable. It is well known that
(ξ, λt+ t3 ± t2ξ, t2) is a miniversal deformation of A±

1 (the singularity being of codimension
1, see [13]). This deformation is not tangential, since it induces a beaks perestroika on the
corresponding envelope. Therefore, every tangential deformation of the singularity is trivial,
due to the envelope stability.

On the other hand, the non typical Legendrian graphs of second type are not stable, due
to the adjacencies A±

n+1 → A±
n , A∞ → A±

n , H±

n+1 → H±
n and H∞ → H±

n (these adjacencies
are obtained by small tangential deformations).

Finally, as proven in [7], a tangential family germ nether of first nor second type can
be deformed into a second type tangential family germ via an arbitrary small tangential
deformation. Hence, its Legendrian graph singularity is adjacent to A±

1 .

5 Proof of Theorems 3 and 4

In this section we prove Theorems 3 and 4 (for computation details we refer to [6]). In order
to follow the usual scheme for this reduction, we recall that a Finite Determinacy Theorem
for the A ∗

3 -equivalence relation has been proven by V. V. Goryunov in [10]; this result follows
also from Damon’s theory about nice geometric subgroups of A (see e.g. [9]) .

A map germ f ∈ (mξ,t)
3 defines, by f ∗g := g ◦ f , a homomorphism from the ring Ex,y,z of

the function germs in the target to the ring Eξ,t of the function germs in the source. Hence,
every Eξ,t-module has a structure of Ex,y,z-module via this homomorphism. We define the
extended tangent space of f as usual by

TeA
∗(f) := 〈∂ξf, ∂tf〉Eξ,t

+ f ∗(Ex,y) × f ∗(Ex,y) × f ∗(Ex,y,z) .

Note that TeA
∗(f) is an Ex,y-module, being in general neither an Eξ,t-module nor an Ex,y,z-

module. The reduced tangent space TrA
∗(f) of f is by definition the Ex,y-submodule of

TeA
∗(f) defined by g+ + M∗, where g+ is the space of all the vector field germs having

positive order (see [4] for definitions) and M∗ is the following Ex,y-module:

f ∗
(

m
2

x,y ⊕ 〈y〉R

)

× f ∗
(

m
2

x,y ⊕ 〈x〉R

)

× f ∗
(

m
2

x,y,z ⊕ 〈x, y〉R

)

.

The main tool in the proof of Theorems 3 and 4 is the following easy fact.

Lemma 2. Consider f ∈ (mξ,t)
3 and R a triple of homogeneous polynomials of degree p, q

and r, such that R ∈ TrA
∗(f)/(mp+1

ξ,t ×m
q+1

ξ,t ×m
r+1

ξ,t ). Then the (p, q, r)-jets of f and f +R
are A ∗-equivalent.

We can start now the proof of Theorem 3.

Proof of Theorem 3. We consider first Legendrian graphs of first type tangential family germs
(k0 6= 0). Then the 2-jet of (1) is A ∗-equivalent to (ξ, t2, t), which is A ∗-sufficient, since its
reduced tangent space contains m

2
ξ,t × m

3
ξ,t × m

2
ξ,t (Lemma 2).

We consider now Legendrian graphs of second type tangential family germs (k0 = 0). In
this case, every map germ (1) is A ∗-equivalent to (ξ, t3 + t2ξ + atξ2 + δ(3), t2 + δ(2)), where
a := (α−k1)(k1−3α)/k2

1. We remark that a < 1/3; indeed, we have 1−3a = (3α−2k1)
2/k2

1 >

7



0, since 3α 6= 2k1. Actually, a further computation shows that its (2, 4, 3)-jet is A ∗-equivalent
to Fa,b, for a suitable b ∈ R (Fa,b is the normal for defined in Section 3). Hence, the statement
follows from Lemma 2 and the next inclusion, which holds for a 6= −1, 0, 1/3:

m
3

ξ,t × m
5

ξ,t × m
4

ξ,t ⊂ TrA
∗(Fa,b) . (2)

When the Legendrian graph has anA±

1 singularity, the conditions a 6= 0, 1/3 are automatically
fulfilled. On the other hand, a 6= −1 is a new condition, equivalent to α = 0, giving rise to
the submanifold for which Theorem 3 does not hold.

Proof of Theorem 4. Since 〈ξ, t3 + t2ξ + atξ2〉Eξ,t
= 〈ξ, t3〉Eξ,t

and

〈ξ, t3 + t2ξ + atξ2, t2 + bt3〉Eξ,t
= 〈ξ, t2〉Eξ,t

,

the well known Preparation Theorem of Mather–Malgrange (see e.g. [4]) implies that Eξ,t is
generated by {t, t2} as Ex,y-module and by t as Ex,y,z-module. Hence, we have:

E
3

ξ,t = F ∗

a,b(Ex,y) ·
{(

t
0
0

)

,
(

0
t
0

)

,
(

t2

0
0

)

,
(

0

t2

0

)}

+ F ∗

a,b(Ex,y,z) ·
{(

0
0
t

)}

.

For b 6= 0, we obtain

E
3

ξ,t = TeA
∗(Fa,b) ⊕ R ·

{(

0
t
0

)

,
(

z
0
0

)

,
(

0
z
0

)}

.

This proves the Theorem.
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