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RD-FLATNESS AND RD-INJECTIVITY

F. COUCHOT

Abstract. RD-flat modules and RD-coflat modules over arbitrary associative
rings with unity are studied. If R is a ring, then every R-module is RD-flat
(resp. RD-coflat) if and only if R is an RD-ring. It is proved that each commu-
tative ring R for which every RD-injective module is Σ-RD-injective is a finite
product of artinian valuation rings or finite rings. When R is a commutative
local ring of maximal ideal P , it is shown that R/P is RD-flat if and only if
every proper finitely generated ideal is contained in a proper principal ideal.
If R satisfies the ascending chain condition on principal ideals then R/P is
RD-flat if and only if R is a valuation ring. When R is commutative, nec-
essary and sufficient conditions are given for every artinian R-module to be
RD-injective and every noetherian R-module to be RD-flat. In this case each
artinian R-module is RD-flat and each noetherian R-module is RD-coflat.

In section 1 of this paper RD-flat modules and RD-coflat modules over associative
rings with unity are studied. A right module M over a ring R is said to be RD-flat
if it is a factor of an RD-projective module by a pure submodule and M is said to
be RD-coflat if it a pure submodule of an RD-injective module. In [16] G. Puninski,
M. Prest and P. Rothmaler studied RD-rings, i.e the rings for which every RD-exact
sequence of right modules is pure-exact. We prove that a ring R is RD if and only
if every left R-module is RD-flat (resp. RD-coflat).

In section 2, for each commutative ring R whose principal ideals are p-flat, it is
shown that the following conditions are equivalent: R is arithmetic, every divisible
module is fp-injective, each p-flat module is flat.

By [13, Observation 3(4) and Theorem 6] every artinian module over a commu-
tative ring is Σ-pure-injective. However, [7, example 4.6] is an example of simple
module over a noetherian domain that fails to be RD-injective. In section 3 we
study RD-injectivity and RD-flatness of simple modules over commutative rings.
We prove that the family of proper principal ideals of a local ring R is direct if and
only if R/P is RD-injective, where P is the maximal ideal of R. In this case every
noetherian R-module is RD-coflat and each artinian R-module is RD-flat. When
R satisfies the ascending chain condition on principal ideals, then R is a valuation
ring if and only if R/P is RD-injective. However this is not generally true and we
give examples of local rings R which are not valuation rings and such that R/P
is RD-injective. It is also proved that every artinian module, over a commutative
ring, is RD-injective if and only if for every simple module S, S and the sum of
all submodules of finite length of the injective hull of S are RD-injective. These
conditions are equivalent to RD-flatness of each noetherian module.

In section 4 we study the RD-injectivity of R, when R is a commutative local
ring. If R is artinian then R is an RD-injective module if and only if R is quasi-
Frobenius.

In section 5, rings for which each right RD-coflat module is RD-injective are
studied. For these rings every right RD-injective module is Σ-pure-injective and is
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2 F. COUCHOT

a direct sum of indecomposable modules. These rings are right artinian. It is shown
that commutative rings satisfying these properties are finite products of artinian
valuation rings or finite rings. To prove this result we determine the RD-injective
hull of R/P , where R is a commutative local perfect ring of maximal ideal P .

All rings in this paper are associative with unity, and all modules are unital. A
left R-module is said to be cyclically presented if it is of the form R/Rr, where
r ∈ R. We say that a left module is uniserial if its set of submodules is totally
ordered by inclusion. Recall that a commutative ring R is a valuation ring if it is
uniserial as R-module and that R is arithmetic if RP is a valuation ring for every
maximal ideal P .

An exact sequence of left R-modules 0 → F → E → G → 0 is pure-exact if it
remains exact when tensoring it with any right R-module. In this case we say that
F is a pure submodule of E. When rE ∩ F = rF for every r ∈ R, we say that F is
an RD-submodule of E(relatively divisible) and that the sequence is RD-exact.

An R-module F is pure-injective (respectively RD-injective) if for every pure
(respectively RD-) exact sequence 0 → N → M → L → 0 of R-modules, the
following sequence 0 → HomR(L,F ) → HomR(M,F ) → HomR(N,F ) → 0 is
exact.

An R-module F is pure-projective (respectively RD-projective) if for every pure
(respectively RD-) exact sequence 0 → N → M → L → 0 of R-modules, the
following sequence 0 → HomR(F,N) → HomR(F,M) → HomR(F,L) → 0 is exact.

1. RD-flatness and RD-coflatness.

We begin with some preliminary results. As in [9] we set M ♭ = HomZ(M,Q/Z)
the character module of M . The first assertion of the following proposition is
similar to [18, Proposition 9.1]. We prove the second assertion in the same way by
replacing respectively Z and Q/Z with R and E.

Proposition 1.1. Let R be a ring. We consider the following exact sequence (S):
0 → N →M → L→ 0, of right R-modules. Then:

(1) (S) is pure-exact if and only if the following exact sequence of left modules
splits: 0 → L♭ →M ♭ → N ♭ → 0.

(2) If R is commutative and E an injective R-cogenerator then (S) is pure-exact
if and only if the following exact sequence splits:

0 → HomR(L,E) → HomR(M,E) → HomR(N,E) → 0.

Proposition 1.2. Let R be a ring. We consider the following exact sequence (S):
0 → N →M → L→ 0, of right R-modules. Then:

(1) (S) is RD-exact if and only if the following exact sequence of left modules
is RD-exact: 0 → L♭ →M ♭ → N ♭ → 0.

(2) If R is commutative and E an injective R-cogenerator then (S) is RD-exact
if and only if the following exact sequence is RD-exact:

0 → HomR(L,E) → HomR(M,E) → HomR(N,E) → 0.

Proof. we prove this proposition by using [19, Proposition 2] and the natural
isomorphism (R/rR⊗R −)♭ ≃ HomR(R/rR,−♭). �
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As in [18] we say that a right module M is RD-flat if for every RD-exact sequence
of left modules 0 → H → F → L→ 0, the sequence

0 →M ⊗R H →M ⊗R F →M ⊗R L→ 0 isexact.

The next proposition and its proof is similary to that we know for flat modules. In
particular, to prove that 1 ⇒ 5, we do a similar proof as in [14, Theorem I.1.2].

Proposition 1.3. Let R be a ring and M a right module. Then the following
assertions are equivalent.

(1) M is RD-flat
(2) M ♭ is RD-injective
(3) M ≃ P/Q, where P is RD-projective and Q is a pure submodule of P
(4) Every RD-exact sequence 0 → Q→ P →M → 0 is pure exact
(5) M is direct limit of finite direct sums of cyclically presented modules.

When R is commutative and E an injective cogenerator, these conditions are equi-
valent to the following conditions:

(2’) HomR(M,E) is RD-injective.
(6) MP is RD-flat over RP for each maximal ideal P .

Moreover, each direct limit of right RD-flat modules is RD-flat.

We easily deduce the following proposition.

Proposition 1.4. A right R-module is RD-projective if and only if it is RD-flat
and pure-projective.

We say that a right R-module M is RD-coflat if every RD-exact sequence
0 →M → P → Q→ 0 is pure exact. Then we get the dual of proposition 1.4.

Proposition 1.5. Let R be a ring. Then:

(1) A right R-module is RD-injective if and only if it is RD-coflat and pure-
injective.

(2) Every pure submodule of a right RD-coflat module is coflat too.
(3) A right R-module M is RD-injective if and only if it is RD-coflat and sat-

isfies the following condition: for any family of submodules (Ni)i∈I , where
Ni = (Mri : si), for some elements ri and si of R, and any family (xi)i∈I

of elements of M , if the sets xi +Ni have the finite intersection property,
then their total intersection is non-empty.

Proof. The first assertion is obvious.
Let E be a right RD-coflat module, F a right module and M a pure submodule

of E which is an RD-submodule of F . Let H be the module defined by the following
pushout diagram:

M → E
↓ ↓
F → H

It is easy to prove that E is an RD-submodule of H . It successively follows that E
is a pure submodule of H , M a pure submodule of H and M a pure submodule of
F . This prove the second assertion.

For the last assertion, we apply [19, Theorem 2] and we do the same proof as in
[19, Theorem 4]. �
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Pure-essential extension, RD-essential extension, pure-injective hull and RD-
injective hull are defined as in [19] or [9, chapter XIII]. We deduce the following
corollary. Observe that one gets a partial answer to [9, Problem 47].

Corollary 1.6. Let R be a ring. Then:

• for any right module M the following conditions are equivalent:
(1) M is RD-coflat.
(2) M is a pure submodule of an RD-injective module.
(3) The RD-injective hull of M is its pure-injective hull.

(4) For each RD-exact sequence 0 → K
u
→ L

p
→ F → 0 of right modules,

where F is finitely presented, the following sequence is exact:

0 → HomR(F,M) → HomR(L,M) → HomR(K,M) → 0.

• every direct product and every direct sum of RD-coflat right R-modules are
RD-coflat.

Proof. It is obvious that the three first conditions are equivalent.

1 ⇒ 4. Let M
v
→ M̂ be the RD-injective hull of M and f : K → M be a

homormorphism. There exists a morphism g : L → M̂ such that v ◦ f = g ◦ u.

Then, if q : M̂ → M̂/M is the natural map, there exists a morphism h : F → M̂/M
such that h ◦ p = q ◦ g. Since v is a pure monomorphism, there exists a morphism

j : F → M̂ such that h = q ◦ j. It is easy to verify that q ◦ (g− j ◦ p) = 0. It follows
that there exists a morphism l : F → M such that v ◦ l = g − j ◦ p. We easily get
that v ◦ f = v ◦ l ◦ u. Since v is a monomorphism, thus f = l ◦ u.

4 ⇒ 1. Let x1, . . . , xn ∈ M̂ , and {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} be a family of
elements of R such that Σi=n

i=1xiai,j = yj ∈ M , for each j, 1 ≤ j ≤ m. Let F be a
finitely presented module generated by e1, . . . , en with the relations Σi=n

i=1 eiai,j = 0

for each j, 1 ≤ j ≤ m and h : F → M̂/M be the morphism defined by h(ei) =
q(xi), ∀i, 1 ≤ i ≤ n. We consider the following pushout diagram:

L
p
→ F

↓ ↓

M̂
q
→ M̂/M

Let g be the left vertical map. Then M is isomorphic to ker p. It follows that M
is an RD-submodule of L. Therefore there exists a morphism l : L→M such that
l(x) = x, for each x ∈ M . Let z1, . . . , zn be elements of L such that g(zi) = xi

and p(zi) = ei for each i, 1 ≤ i ≤ n. Then we get that Σi=n
i=1 l(zi)ai,j = yj for each

j, 1 ≤ j ≤ m. Hence M is a pure submodule of M̂ .
Let (Mi)i∈I be a family of RD-coflat modules and for each i ∈ I let Ei be the

RD-injective hull of Mi. Then E = Πi∈IEi is RD-injective and M = Πi∈IMi is
a pure submodule of E. It follows that M is RD-coflat. Whence ⊕i∈IMi is also
RD-coflat since it is a pure submodule of M . �

From these previous propositions and [16, Theorem 2.5] we deduce the following:

Theorem 1.7. Let R be a ring. The following assertions are equivalent:

(1) Every right R-module is RD-flat
(2) Every left R-module is RD-coflat.
(3) Every left pure-injective module is RD-injective
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(4) Every right pure-projective module is RD-projective
(5) Every right finitely presented module is a summand of a direct sum of cycli-

cally presented modules.
(6) Every RD-exact sequence of right modules is pure-exact.
(7) The left-right symmetry of 1 − 6.

As in [16] we will say that R is an RD-ring if it satisfies the equivalent conditions
of theorem 1.7. By [16, Proposition 4.5] a commutative ring R is RD if and only if
it is an arithmetic ring.

2. Divisibility and p-flatness.

If a ∈ R, ℓ(a) (respectively r(a)) is the left (respectively right) annihilator of
a. As in [12] we say that a right R-module F is divisible (or p-injective) if for
each x ∈ F and each a ∈ R such that r(a) ⊆ (0 : x) there exists y ∈ F such
that x = ya. Recall that a right module M is fp-injective (or absolutely pure) if
it is a pure submodule of each overmodule. Then it is easy to check that every
fp-injective right R-module is divisible and RD-coflat. The first assertion of the
following proposition is proved in [8, Corollary 2.3] in the commutative case.

Proposition 2.1. The following assertions hold.

(1) A right R-module is injective if and only if it is divisible and RD-injective.
(2) A right R-module is fp-injective if and only if it is divisible and RD-coflat.

Proof. Only “if” requires a proof. Let F be a right module and E its injective
hull. If F is divisible then F is an RD-submodule of E by [12, Proposition 3].
Moreover, the inclusion map F → E splits (resp. is pure) if F is RD-injective
(resp. RD-coflat). Hence F is injective (resp. fp-injective). �

We say that a right R-module F is p-flat if for each x ∈ F and each a ∈ R, the
equality xa = 0 implies x ∈ Fℓ(a). In [12] F is called torsion-free. The following
proposition is the dual of proposition 2.1

Proposition 2.2. The following assertions hold.

(1) A right R-module is projective if and only if it is p-flat and RD-projective.
(2) A right R-module is flat if and only if it is p-flat and RD-flat.
(3) Each p-flat cyclic right module is flat.

Proof. It is obvious that every flat right R-module is RD-flat. It is p-flat by
[12, Proposition 3]. Conversely let 0 → K → G → F → 0 be an exact sequence
of right modules. If F is p-flat then this sequence is RD-exact by [12, Proposition
3]. Moreover, this sequence splits (resp. is pure-exact) if F is RD-projective (resp.
RD-flat). Hence F is projective (resp. flat).

If F is a cyclic right module generated by x and A a left ideal then each element
of F ⊗R A is of the form x⊗ a for some a ∈ A. If xa = 0 then there exists c ∈ ℓ(a)
such that x = xc. It follows that x⊗ a = x⊗ ca = 0. �

The following proposition is a generalization of [9, Theorem IV.9.10 and Propo-
sition IX.3.4].

Proposition 2.3. Let R be a ring. Consider the following conditions:

(d) Every divisible right R-module is fp-injective.
(t) Every p-flat left R-module is flat.
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Then:

(1) (d) implies (t) and the converse holds if r(a) is finitely generated for each
a ∈ R.

(2) If R is RD, then R satisfies condition (d) and the converse holds if R is a
commutative ring whose principal ideals are p-flat.

(3) If R is RD, then R satisfies condition (t) and the converse holds if R is a
commutative ring whose principal ideals are p-flat.

The following lemmas are needed to prove this proposition. The first is well
known: see [9, Lemma XIII.2.3]. Here we give a different proof.

Lemma 2.4. The following assertions hold for a ring R.

• Every right R-module M is isomorphic to a pure submodule of (M ♭)♭.
• If R is commutative and E an injective R-cogenerator then M is isomorphic

to a pure submodule of HomR(HomR(M,E), E).

Proof. Let ΦM : M → (M ♭)♭ be the natural map . It is easy to verify that
HomZ(ΦM ,Q/Z) ◦ΦM♭ = 1M♭ . Since the epimorphism HomZ(ΦM ,Q/Z) splits, we
deduce that ΦM is a pure monomorphism by proposition 1.1 . �

Lemma 2.5. Let R be a ring and F a left module. Then:

(1) F is p-flat if and only if F ♭ is divisible
(2) If F ♭ is p-flat then F is divisible and the converse holds if ℓ(a) is finitely

generated for each a ∈ R.

Proof. Let (S): 0 → K → L → F → 0 be an exact sequence where L is a free
module. Then L♭ is injective. By [12, Proposition 3], (S) is RD-exact if and only
if F is p-flat, and (S)♭ is RD-exact if and only if F ♭ is divisible. We conclude by
proposition 1.2.

If F ♭ is p-flat then (F ♭)♭ is divisible. Thus F is divisible by lemma 2.4. Conversely
we have the following commutative diagram:

F ♭ ⊗R Ra → F ♭ ⊗R R
↓ ↓

0 → (HomR(Ra, F ))♭ → (HomR(R,F ))♭

where the vertical maps are natural homomorphisms. These homomorphisms are
bijective because Ra and R are finitely presented. Since F is divisible then the
lower sequence is exact. It follows that F ♭ is p-flat. �

Proof of proposition 2.3. (1) Let F be a p-flat left R-module. Then F ♭ is
fp-injective. By [19, Proposition 7] this module is pure-injective. It follows that it
is injective, whence F is flat. Conversely if F is a divisible right R-module, then
we get that F ♭ is flat. It follows that (F ♭)♭ is injective. Then F is fp-injective by
lemma 2.4.

(2) The first assertion holds by proposition 2.1 or [16, Lemma 2.16]. Conversely
every ideal A is p-flat. It follows that A♭ is injective, whence A is flat.

(3) The first assertion holds by proposition 2.2 or [16, Lemma 2.16]. The second
is obvious. �

Remark 2.6. Let R be a ring whose principal left ideals are p-flat. If R satisfies
(t) or (d) then we deduce that every left (and right) ideal is flat. When R is not
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commutative then R is not necessarily RD: [16, example 2.19(a)] is an example of
hereditary ring which is not RD.

If R is commutative then every principal ideal is p-flat if and only if RP is an
integer domain for each maximal ideal P .

3. RD-injective artinian modules.

The aim of this section is to characterize commutative rings for which every
artinian module is RD-injective. Throughout this section all rings are commutative.
Recall that a family F of submodules of an R-module M is direct if, ∀(U, V ) ∈ F2

there exists W ∈ F such that U + V ⊆ W . We will prove the two following
theorems.

Theorem 3.1. Let R be a ring. Then the following conditions are equivalent:

(1) Every simple R-module is RD-flat.
(2) Every simple R-module is RD-injective.
(3) Every R-module of finite length is RD-flat.
(4) Every R-module of finite length is RD-injective.
(5) Every artinian R-module is RD-flat.
(6) Every noetherian R-module is RD-coflat.
(7) For each maximal ideal P the family of proper principal ideals of RP is

direct.

Moreover, if R satisfies these conditions, then every artinian module is a (finite)
direct sum of uniserial modules and every noetherian module is a direct sum of
2-generated submodules. However the converse is not true.

Proof. It is obvious that 5 ⇒ 3 ⇒ 1 and 6 ⇒ 4 ⇒ 2.
1 ⇔ 2. We set E =

∏
P∈Max(R) ER(R/P ) where Max(R) is the set of maximal

ideals of R. Then E is an injective cogenerator and for each simple module S,
S ≃ HomR(S,E). We conclude by proposition 1.3.

3 ⇒ 5 since each artinian module is direct limit of modules of finite length. �

Let R be a ring. For every maximal ideal P we denote by L(P ) the sum of all
submodules of finite length of E(R/P ) and we set J(P ) = ∩n∈N(PRP )n.

Theorem 3.2. Let R be a ring. Then the following conditions are equivalent:

(1) Every artinian R-module is RD-injective.
(2) Every noetherian R-module is RD-flat.
(3) R/P and L(P ) are RD-injective for every maximal ideal P .
(4) For each maximal ideal P , the family of proper principal ideals of RP and

the family of principal ideals of RP contained in J(P ) are direct.

Moreover, if P = P 2 for each maximal ideal P , then these conditions are equivalent
to conditions of theorem 3.1. In this case, every noetherian module and every
artinian module is semi-simple.

To prove this theorem and complete the proof of theorem 3.1 we study our
problem in the local case.

In the sequel we assume that R be a local ring. We denote P its maximal
ideal, E the injective hull of R/P and J = ∩n∈NP

n. Let A be a proper ideal of
R and A∗ the set of nonzero principal ideals contained in A. For every r∗ ∈ A∗

let φr∗ : R/r∗ → R/A be the homomorphism defined by φr∗(1 + r∗) = 1 + A and
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φ : ⊕r∗∈A∗R/r∗ → R/A be the homomorphism defined by the family (φr∗)r∗∈A∗ .
We put E[A] = {e ∈ E | A ⊆ (0 : e)}. Recall that HomR(R/A,E) ≃ E[A].The two
following lemmas hold.

Lemma 3.3. Then kerφ is an RD-submodule of ⊕r∗∈A∗R/r∗.

Proof. Let s∗ be a proper principal ideal of R and f : R/s∗ → R/A be a nonzero
homomorphism. We have f(1 + s∗) = a + A where a ∈ R \ A. Then as∗ ⊆ A.
Let g : R/s∗ → ⊕r∗∈A∗R/r∗ be the composition of α : R/s∗ → R/as∗, defined by
α(1+s∗) = a+as∗, with the inclusion map R/as∗ → ⊕r∗∈A∗R/r∗. Then f = φ◦g.
We conclude by [19, Proposition 2]. �

Lemma 3.4. Let R be a local ring, and A a proper ideal. Then:

(1) E[A] is RD-injective if and only if R/A is RD-flat
(2) R/A is RD-flat if and only if A∗ is direct.
(3) If A is finitely generated then E[A] is RD-injective if and only if A is

principal.

Proof. 1 is an immediate consequence of proposition 1.3.
Assume that R/A is RD-flat. By proposition 1.3 kerφ is a pure submodule of

⊕r∗∈A∗R/r∗. Let I ⊆ A be a finitely generated ideal and f : R/I → R/A be the
homomorphism defined by f(1 + I) = 1 + A. By [19, Proposition 3] there exists
an homomorphism g : R/I → ⊕r∗∈A∗R/r∗ such that f = φ ◦ g. There exists
a finite family F of A∗ such that g(1 + I) =

∑
r∗∈F ar∗ + r∗. We deduce that

1 + A =
∑

r∗∈F ar∗(1 + A). Since R is local there exists r∗ ∈ F such that ar∗ is a
unit of R. Consequently I = (0 : 1 + I) ⊆ (0 : ar∗ + r∗) = r∗.

Conversely if R/A = lim
−→r∗∈A∗

R/r∗ then R/A is RD-flat by proposition 1.3. �

The next theorem characterizes local rings for which every simple module is
RD-injective (and RD-flat). It is an immediate consequence of lemma 3.4.

Theorem 3.5. Let R be a local ring. Then R/P is RD-flat if and only if P ∗ is
direct.

The following corollaries will be useful to provide examples of rings for which
every simple module is RD-flat.

Corollary 3.6. Let R be a local ring. Consider the two following conditions:

(1) R/P is RD-flat.
(2) There exists an ideal I ⊂ P such that R/I is a valuation ring and for each

r ∈ R \ I, I ⊂ Rr.

Then 2 ⇒ 1. When P is finitely generated the two conditions are equivalent.

Proof. First we assume that R/P is RD-flat and P is finitely generated. By
theorem 3.5 P is principal. We put P = Rp and I = J . Let a ∈ P \J . There exists
n ∈ N such that a /∈ Rpn. We may assume that n is minimal. Then a = bpn−1 and
since a /∈ Rpn, b is a unit of R. Hence I ⊂ Rpn−1 = Ra and R/I is a valuation
ring. Conversely, if a and b are elements of P \ I it is easy to prove that Ra ⊆ Rb
or Rb ⊆ Ra. By theorem 3.5 R/P is RD-flat. �

Corollary 3.7. Let R be a local ring. Assume that R satisfies the ascending chain
condition on principal ideals. Then R is a valuation ring if and only if R/P is
RD-injective.
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Proof. Assume that R/P is RD-injective. We claim that there exists only one
maximal principal ideal pR and that pR = P . If there exist at least two maximal
principal ideals p∗ and q∗ then p∗ + q∗ is strictly contained in a proper principal
ideal. Consequently we obtain a contradiction. If J ∋ a 6= 0 then, by induction,
we get a strictly ascending chain of ideals (Rcn)n∈N∗ such that a = pc1 and cn =
pcn+1, ∀n ∈ N∗. Hence J = 0. We complete the proof by using corollary 3.6. �

We give two examples of local rings R which are not valuation rings and such
that R/P is RD-injective.

Example 3.8. Let D a valuation domain, Q its field of fractions, H = Q2.

We put R =
{(

d h

0 d

)
| d ∈ D,h ∈ H

}
the trivial extension of D by H.

If I =
{(

0 h

0 0

)
| h ∈ H

}
then R/I ≃ D. By using that H is a divisible

D-module, it is easy to prove that I ⊂ Ra for every a ∈ R \ I.

Example 3.9. Let K be a field and T the factor ring of the polynomial ring
K[Xp,n | p, n ∈ N] modulo the ideal generated by {Xp,n−Xp,n+1Xp+1,n | p, n ∈ N}.
We denote xp,n the image of Xp,n in T and P the maximal ideal of T generated by
{xp,n | p, n ∈ N}. We put R = TP . Let p, q,m, n ∈ N . Clearly xp,n ∈ Rxp+q,n ⊂
Rxp+q,n+m and xq,m ∈ Rxp+q,m ⊂ Rxp+q,n+m. If a ∈ R then there exists b ∈ T

and s ∈ T \ P such that a =
b

s
. Then b is a linear combination with coefficients in

K of finite products of elements of {xp,n | p, n ∈ N}. From above we deduce that
a ∈ Rxp,n for some (p, n) ∈ N2. It follows from this property that every proper
finitely generated ideal is contained in a proper principal ideal.

If we prove that Rxp+1,n and Rxp,n+1 are not comparable for every (p, n) ∈ N2

then R doesn’t satisfy the condition 2 of corollary 3.6. Else there exists p, n ∈ N
such that xp,n /∈ I. It follows that xp+1,n and xp,n+1 are not elements of I, whence
Rxp+1,n and Rxp,n+1 are comparable. We get a contradiction.

For every ℓ ∈ N, let Tℓ = K[Xp,ℓ−p | 0 ≤ p ≤ ℓ], ϕℓ : Tℓ → Tℓ+1 be the
homomorphism defined by ϕℓ(Xp,ℓ−p) = Xp+1,ℓ−pXp,ℓ−p+1, ∀p, 0 ≤ p ≤ ℓ and Pℓ

be the ideal of Tℓ generated by {Xp,ℓ−p | 0 ≤ p ≤ ℓ}. Clearly T is the direct limit of
(Tℓ, ϕℓ)ℓ∈N. Now assume that xp,n+1 ∈ Rxp+1,n. Then there exist s ∈ T \P and c ∈
T such that sxp,n+1 = cxp+1,n. There exists an integer ℓ ≥ p+n+1 such that c and s

are elements of Tℓ. The following formulæ hold: xp,n+1 =
∏j=ℓ−n−p−1

j=0 X
(ℓ−n−p−1

j )
p+j,ℓ−p−j

and xp+1,n =
∏j=ℓ−n−p−1

j=0 X
(ℓ−n−p−1

j )
p+j+1,ℓ−p−j−1. Clearly xp,n+1 and xp+1,n are two

different monomials of Tℓ. We have s = k+ t and c = a+b where k, a ∈ K, t, b ∈ Pℓ

and k 6= 0. We get the following equality: axp+1,n−kxp,n+1+bxp+1,n−txp,n+1 = 0.
It is obvious that the degree (in Tℓ) of xp+1,n and xp,n+1 is less than the degree of
each monomial of bxp+1,n and txp,n+1. It follows that k = a = 0. Hence we get a
contradiction. In the same way we prove that xp+1,n /∈ Rxp,n+1.

Now we study the RD-injectivity of artinian modules over local rings.

Theorem 3.10. The following conditions are equivalent for a local ring R:

(1) Every artinian R-module is RD-injective.
(2) R/P and R/J are RD-flat.
(3) R/P and L(P ) are RD-injective.
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(4) P ∗ and J∗ are direct.

Proof. Assume that P is not finitely generated and R/P is RD-injective. Let
a ∈ P . Then there exists b ∈ P \ Ra. We deduce that Ra ⊂ Ra + Rb ⊆ Rc for
some c ∈ P . It follows that a = cd for some d ∈ P , whence P = P 2. In this case
every artinian module is semi-simple of finite length and L(P ) is simple.

Assume that P is finitely generated and R/P is RD-injective. By corollary 3.6
and its proof, P = pR for some p ∈ P , and R′ = R/J is a noetherian valuation
ring. Let M be an indecomposable artinian R-module. For every x ∈ M , Rx is a
module of finite length. It follows that there exists n ∈ N such that pn ∈ (0 : x). We
deduce that M is an R′-module. If U = ER′(M) then U ≃ ER′(R/P )m = E[J ]m

for some integer m. We put U = U1 ⊕ · · · ⊕ Um where Uj ≃ E[J ] for each j,
1 ≤ j ≤ m. Thus M ∩ Uj 6= 0 for every j, 1 ≤ j ≤ m. By [9, Proposition XII.2.1]
there exists i, 1 ≤ i ≤ m, such that M ∩Ui is a pure R′-submodule of M . It follows
that M ∩ Ui is a summand of M . Hence M is isomorphic to a submodule of E[J ]
which is uniserial by [10, Theorem]. If M 6= E[J ] there exists a positive integer n
such that Rpn = ann(M). In this case we easily deduce that M is RD-injective. If
M = E[J ], by proposition 1.3 M is RD-injective if and only if R/J is RD-flat. Let
us observe that E[J ] = L(P ). The proof is now complete. �

The following corollary will be useful to provide examples of rings for which
every artinian module is RD-injective.

Corollary 3.11. Let R be a local ring. Assume that each artinian R-module is
RD-injective and P is finitely generated. Suppose that J 6= J2. Let I be the inverse
image of I ′ = ∩n∈N(JRJ )n by the natural map h : R → RJ . Then R/I is a discrete
valuation ring and for every r ∈ R \ I, I ⊂ rR. Moreover, if J is nilpotent, then R
is a discrete valuation ring.

Proof. Let us observe that J 6= 0 and it is a prime ideal. By corollary 3.6
R/J is a discrete rank one valuation domain and J ⊂ rR for each r ∈ R \ J . Let
q ∈ J \J2 and r ∈ J . Then Rq+Rr ⊆ Rc for some c ∈ J \J2. There exist s ∈ R\J

and t ∈ R such that q = sc and r = tc. It follows that
r

1
=
tq

s
. Consequently

JRJ is principal over RJ and RJ/I
′ is a valuation ring by corollary 3.6. We may

assume that I = 0, I ′ = 0 and h is a monomorphism. For every 0 6= a ∈ J there

exist a unit u and two integers m ≥ 1 and α ≥ 0 such that
a

1
=
uqm

pα
. There exists

c ∈ J \ J2 such that q = cpα. It follows that a = ucqm−1. If 0 6= b ∈ J , in the
same way there exist two integers n ≥ 1 and β ≥ 0, a unit v and d ∈ J \ J2 such
that b = vdqn−1 and q = dpβ . Let γ = max(α, β). There exist c′ and d′ in J \ J2

such that c = c′pγ−α and d = d′pγ−β. It follows that q = c′pγ = d′pγ . Since h
is a monomorphism, we deduce that c′ = d′. Assume that m = n. It follows that
b ∈ Ra if α ≥ β. Now assume that n > m. If β ≤ α then b ∈ Ra. If β > α, let
q′ ∈ J such that q = q′pβ−α. Then b = vpγ−αc′q′qn−2 and b = vu−1q′qn−m−1a.

Now suppose that J is nilpotent. Let n be the least integer such that (JRJ )n = 0.
We easily deduce that Jn+1 = 0. We claim that Jn = kerh. This is obvious if
n = 1. Assume that n > 1. The inclusion Jn ⊆ kerh is easy. Conversely let
0 6= r ∈ kerh. There exists c ∈ J \ J2 such that Rr + Rq ⊆ Rc. The following
equality r = cd holds for some d ∈ R. Since n > 1, d ∈ J . If d ∈ kerh then there
exists s ∈ R \ J such that sd = 0. But there exists c′ ∈ J such that c = sc′. It
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follows that r = dsc′ = 0. Hence a contradiction. Consequently d /∈ Jn. Let m

be the greatest integer such that d ∈ Jm. Then m < n,
d

1
=
qm

s′
and

c

1
=
q

t
for

some s′, t ∈ R \ J . It follows that
r

1
=
qm+1

s′t
. We deduce that m = n − 1 and

r ∈ Jn. Let a and b be two nonzero elements of J . Then there exists c ∈ J such
that Ra+Rb+ Rq = Rc. It follows that a = ca′ and b = cb′ for some a′ and c′ in
R. Since a 6= 0 and b 6= 0, a′ and b′ are not in Jn. From the first part of the proof
we deduce that R/Jn is a valuation ring, so there exist r ∈ R and s ∈ Jn such that
b′ = ra′ + s. It follows that b = ra. �

Example 3.12 (Examples). If, in our example 3.8,D is a discrete valuation domain
of Krull dimension≥ 2, then every artinian R-module is RD-injective. But this
property is not satisfied if D is a discrete rank one valuation domain. However,
if R is the ring defined in our example 3.9, then every artinian R-module is RD-
injective.

Let R be the ring defined by the following pullback diagram of ring maps:

R → T
↓ ↓
V → K

where V is a discrete rank one valuation domain, K its field of fractions and T a
local ring of residual class field K. Then R is local and its maximal ideal P is the
inverse image of the maximal ideal of V . Clearly R/P is RD-injective. If J = R∩Q,
where Q is the maximal ideal of T , then T = RJ and V = R/J . It is easy to prove
that R/J is RD-flat if and only if T/Q is RD-flat over T .

We complete the proofs of theorem 3.1 and theorem 3.2.
Proof of theorem 3.1.

1 ⇔ 7 by theorem 3.5.
Assume that PRP is not finitely generated over RP for every maximal ideal P .

If the equivalent conditions 1 and 2 are satisfied, then P 2RP = PRP and P = P 2

for every maximal ideal P . It follows that each artinian R-module is semi-simple
of finite length. Hence each artinian module is RD-flat and RD-injective. Let M
be a noetherian R-module and R′ = R/ann(M). Then the equality P 2RP = PRP

implies that R′
P = R/P . It follows that R′ and M are semi-simple.

Now we assume that there exists a maximal ideal P such that P 6= P 2.
1 ⇒ 3 and 2 ⇒ 4. Let M be a module of finite length. By [2, théorème

p.368] there exists a finite family F of maximal ideals such that M ≃
∏

P∈F MP .
Consequently we may assume that M is indecomposable, R is local and its maximal
ideal P = pR. There exists an integer n such that pn annihilates M . Then it is
easy to show that M is RD-flat and RD-injective.

5 ⇒ 6. Let M be a noetherian module. By [6, lemme 1.3] the diagonal map
M → ΠP∈Max(R)MP is a pure monomorphism. For every maximal ideal P we
put FP (M) = HomRP

(HomRP
(MP , E(R/P )), E(R/P )). On the other hand, by

lemma 2.4, MP is a pure submodule of FP (M). It follows that M is a pure submo-
dule of ΠP∈Max(R)FP (M). It is enough to prove that FP (M) is RD-injective. Con-
sequently we may assume that R is local, P is its maximal ideal and E = E(R/P ).
Let J = ∩n∈NRp

n, E′ = E[J ] and R′ = R/J . Thus E′ and HomR(M,E) ≃
HomR′(M,E′) are artinian. It follows that HomR(HomR(M,E), E) is RD-injective.
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Let M be an indecomposable artinian module. By [2, Théorème p.368], there
exists a maximal ideal P such that M is an RP -module and every R-submodule of
M is also an RP -submodule. As in the proof of theorem 3.10 we prove that M is
uniserial.

If M is a noetherian module then R′ = R/ann(M) is a noetherian RD-ring.
Consequently R′ is a finite product of Dedeking domains and artinian valuation
rings. It follows that M is a direct sum of 2-generated submodules. �

The following example shows that the converse of the last assertion of theorem 3.1
is not true.

Example 3.13. Let K be a field and for every n ∈ N, let Rn be the localization
of the polynomial ring K[Xn, Yn] at the maximal ideal generated by {Xn, Yn} and
Pn the maximal ideal of Rn. For each n ∈ N, let δn : Rn → Rn+1 be the ring
homomorphism defined by δn(Xn) = X2

n+1 and δn(Yn) = Y 2
n+1. Let R be the

direct limit of the system (Rn, δn)n∈N. Then R is local and its maximal ideal P
is the direct limit of (Pn)n∈N. It is obvious that P 2 = P . Hence every artinian
R-module is semi-simple of finite length. Let r ∈ R such that X0 and Y0 are in Rr.
We may assume that there exist n ∈ N, s, t ∈ Rn such that X2n

n = rs and Y 2n

n = rt.
It follows that tX2n

n = sY 2n

n . Since Rn is a unique factorization domain there exists
u ∈ Rn such that s = uX2n

n and t = uY 2n

n . We deduce that (1−ru)X2n

n = 0. Hence
r /∈ P since R is local. Consequently R doesn’t satisfy the equivalent conditions of
theorem 3.1.

Proof of theorem 3.2.

3 ⇔ 1. Let M be an artinian module. By [2, Théorème p.368] we may assume
that R is local. Hence it is an immediate consequence of theorem 3.10.

1 ⇒ 2. By proposition 1.3 RD-flatness is a local property , so we may assume
that R is local. Since R/P is RD-flat, R/J is noetherian and E[J ] = ER/J (R/P )
is artinian. Hence, if M is a noetherian module then

HomR(M,ER(R/P )) = HomR/J (M,E[J ]) is artinian.

We conclude by proposition 1.3.
2 ⇒ 3. We may assume that R is local. Since R/P is RD-flat, we may suppose

that P is principal. By corollary 3.6, R/J is noetherian. By proposition 1.3 it
follows that L(P ) = E[J ] is RD-injective.

3 ⇔ 4 by theorem 3.10. �

4. On the RD-injectivity of R.

In this section, we study the RD-injectivity of the module R when R is a commu-
tative ring. Some examples of artinian rings R, such that R is not an RD-injective
module, are known: [5, Example 1] and [15, Example 1]. When R is local we use
the same notations as in section 3. We get the following:

Proposition 4.1. Let R be a local ring. Consider the following conditions:

(1) R ≃ E.
(2) R is a quasi-Frobenius ring.
(3) R is a divisible module.
(4) E is RD-flat.
(5) E is RD-projective.
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(6) E is p-flat.
(7) R is an RD-injective module.

Then:

• The conditions 1 and 5 are equivalent.
• If R is linearly compact, condition 3 is equivalent to condition 6 and con-

dition 4 is equivalent to condition 7.
• If R is linearly compact and if R is an essential extension of a semi-simple

module, the conditions 1 and 3 are equivalent.
• All conditions are equivalent if R is artinian.

Proof. 1 ⇒ 5 is obvious.
5 ⇒ 1. Since R is local, E is cyclically presented by [19, Corollary 2]. It follows

that E ≃ R because E is faithful.
If R is linearly compact then R ≃ HomR(E,E) by [1, Corollary 10]. It follows

that 7 ⇔ 4 by proposition 1.3 and 3 ⇔ 6 by lemma 2.5.
3 ⇔ 1. Only 3 ⇒ 1 requires a proof. For each a ∈ R, Ra = (0 : (0 : a)). Hence

the socle of R is simple. By [1, Theorem 7] R is self-injective.
It is known that 2 ⇔ 1 if R is artinian. The implication 1 ⇒ 7 always holds.
4 ⇒ 5 because E is finitely presented if R is artinian. This completes the

proof. �

From [7, Example 4.3], it is easy to prove that a local complete noetherian ring R
is a rank one discrete valuation domain if and only if R is an RD-injective module.
We can extend this result to the following:

Proposition 4.2. Let R be a coherent ring of finite global weak dimension. Then
R is semihereditary if and only if R is an RD-coflat module.

Proof. Only “if” requires a proof. Let n be the global weak homological di-
mension of R. By [4, Proposition 3.3] RP is an integral domain for every maximal
ideal P . It follows that each submodule of a free module is p-flat. If n > 1 then
there exists an exact sequence:

0 −→ Fn
un−→ Fn−1

un−1

−→ Fn−2 . . . . . . F1
u1−→ F0,

where Fi is a free module of finite rank, for every i, 0 ≤ i ≤ n, and such that
Im un−1 is not projective. Since Im un−1 is p-flat, Fn is an RD-submodule of Fn−1.
The RD-coflatness of Fn implies that Im un−1 is projective. From this contradiction
we deduce that n ≤ 1, whence R is semihereditary. �

5. Rings whose RD-injective right modules are Σ-RD-injective.

In this section we will prove the following theorem 5.1. In the sequel, for every

right R-module M , we denote its RD-injective hull by M̂ .
As in [13, Observation 3(2)], if N is a subgroup of a right module M over a

ring R, we say that N is a finite matrix subgroup if it is the kernel of the following
map M → M ⊗R X , defined by m → m ⊗ x, where X is a finitely presented left
module, x ∈ X and m ∈ M . For instance, for any r, s ∈ R, (Mr : s) is a finite
matrix subgroup: it is the kernel of the following map: M → M ⊗R R/Rr defined
by m→ m⊗ s. If s is a unit then (Mr : s) = Mr.
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Recall that a right R-module M is Σ-pure-injective if M (I) is pure-injective for
each index set I. A ring R is said to be right perfect if every flat right R-module is
projective.

Theorem 5.1. Let R be a ring. Consider the following conditions:

(1) Every RD-coflat right R-module is RD-injective.
(2) Each direct sum of right RD-injective modules is RD-injective.
(3) Every RD-injective right R-module is Σ-pure-injective.
(4) Every RD-injective right R-module is a direct sum of indecomposable submo-

dules.
(5) R is right artinian and RD-injective hulls of finitely generated right modules

are finite direct sums of indecomposable submodules.
(6) R is a finite product of artinian valuation rings or finite rings.

Then:

• Conditions 1, 2,3 and 4 are equivalent and implie condition 5.
• When R is commutative, the six conditions are equivalent.

Proof. 1 ⇒ 2 follows from corollary 1.6.
2 ⇒ 3 is obvious.
3 ⇒ 1. Let M be a right RD-coflat module. Then M̂ is Σ-pure-injective. We

conclude by [13, Corollary 8].
4 ⇔ 3 follows from [13, Proposition 9 and Theorem 10].
2 ⇒ 5. From proposition 2.1 we deduce that each direct sum of right injective

modules is injective. Hence R is right noetherian. Since R̂ is Σ-pure-injective then
it satisfies the descending chain condition on its finite matrix subgroups by [13,

Observation 3(4) and Theorem 6]. Consequently the family (R̂r)r∈R satisfies the

descending chain condition. Since Rr = R̂r ∩ R for each r ∈ R, it follows that R
verifies this descending chain condition on principal right ideals. Hence R is left
perfect by [3, Theorem P]. By [17, Theorème 5 p.130] R also satisfies the descending
chain condition on finitely generated right ideals. Hence R is right artinian.

Let M be a finitely generated right R-module. Since 2 ⇒ 4, M̂ = ⊕i∈IMi where
Mi is indecomposable for each i ∈ I. Then there is a finite subset J of I such that
M ⊆ ⊕i∈JMi. Since M is relatively divisible in ⊕i∈JMi, M ∩ ⊕i∈I\JMi = 0 and

⊕i∈JMi ≃ M̂/⊕i∈I\J Mi we conclude that ⊕i∈I\JMi = 0 and I = J . �

To prove the second assertion of this theorem some preliminary results are
needed.

Proposition 5.2. Let R be a finite ring. Then every RD-coflat right (or left)
module is RD-injective.

Proof. For every right R-module M the family of subgroups which are finite
intersections of subgroups of the form (Mr : s), where r, s ∈ R, is finite. We
conclude by proposition 1.5. �

Now we consider a commutative local ring R satisfying the ascending chain
condition on principal ideals . If A is a proper ideal we denote A∗ the subset
of maximal elements of A∗ and S = R/P . Let ψ : ⊕r∗∈A∗R/r∗ → R/A be the
homomorphism defined by the family (φr∗)r∗∈A∗ . We put Ψ = HomR(ψ,E). It is
easy to check that Ψ is the diagonal homomorphism induced by the inclusion maps
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E[A] → E[r∗]. Then the following lemma holds and we prove the first assertion as
in lemma 3.3. The second is an immediate consequence of proposition 1.3.

Lemma 5.3. Then:

(1) kerψ is an RD-submodule of ⊕r∗∈A∗R/r∗.
(2) Ψ(E[A]) is an RD-submodule of

∏
r∗∈A∗ E[r∗].

Since its maximal ideal is T-nilpotent, it is easy to prove that every commutative
local perfect ring satisfies the ascending chain condition on principal ideals.

Lemma 5.4. Let R be a commutative local perfect ring and A a proper ideal. Then

Ê[A] ≃
∏

r∗∈A∗ E[r∗].

Proof. We put G(A) =
∏

r∗∈A∗ E[r∗]. If N is a submodule of G(A) such that
N ∩Ψ(E[A]) = 0 and the image of Ψ(E[A]) relatively divisible in G(A)/N , then for
every 0 6= y ∈ N , Ry∩Ψ(E[A]) = 0 and the image of Ψ(E[A]) is relatively divisible
in G(A)/Ry. Consequently it is sufficient to prove that for every y ∈ G(A) such
that Ry∩Ψ(E[A]) = 0, the image of Ψ(E[A]) is not relatively divisible in G(A)/Ry.
Let 0 6= y = (yr∗)r∗∈A∗ such that Ry ∩ Ψ(E[A]) = 0. Let F be the submodule of
E generated by {yr∗ | r∗ ∈ A∗}, B = ann(F ) and t ∈ R such that t+B generates
a minimal nonzero submodule of R/B. It follows that tF = S. Hence there exists
s∗ ∈ A∗ such that tys∗ 6= 0. We set e = tys∗ and zs∗ = 0. If s∗ 6= r∗ ∈ A∗

and s∗ = Rs then s /∈ r∗. It follows that (r∗ : s) ⊆ P ⊆ (0 : e − tyr∗). Since
E[r∗] is injective over R/r∗ there exists zr∗ ∈ E[r∗] such that szr∗ = e− tyr∗ . We
put z = (zr∗)r∗∈A∗ . Then we get the following equality: sz + ty = Ψ(e). Since
Ry ∩ Ψ(E[A]) = 0 we have sz 6= 0. If e = sx for some x ∈ E[A] then e = 0
since s ∈ A. It follows that the image of Ψ(E[A]) is not relatively divisible in
G(A)/Ry. �

Remark 5.5. We know that E[A] is indecomposable and it is a module of finite

length if R is a commutative local artinian ring. If A is not principal then Ê[A] is

decomposable, and if A∗ is not finite then Ê[A] is neither artinian nor noetherian.

Remark 5.6. Let α : F → M be an epimorphism of right R-modules where F
is RD-projective. Let K = kerα. We say that α : F → M is an RD-projective
cover of M if K is an RD-pure submodule of F and F is the only submodule N of
F which verifies K + N = F and K ∩ N is relatively divisible in N . In a similar
way we define the pure-projective cover of M . If R is a commutative local perfect
ring, then lemma 5.4 implies that, for each ideal A, ψ : ⊕r∗∈A∗R/r∗ → R/A is an
RD-projective cover of R/A.

Now we prove the last assertion of theorem 5.1.
Proof of theorem 5.1.

5 ⇒ 6. R is a finite product of local rings. We may assume that R is local. There
exists a finite family of indecomposable RD-injective modules (Si)1≤i≤n such that

Ŝ = ⊕i=n
i=1Si. By [13, Propositin 9(3)] the endomorphism ring of each indecompo-

sable pure-injective module is local. For every r∗ ∈ P∗, E[r∗] is a summand of Ŝ by
lemma 5.4. Then there exists i, 1 ≤ i ≤ n such that E[r∗] ≃ Si by Krull-Schmidt
theorem. Whence P∗ is a finite set. This implies that the set P ′∗ of maximal
principal proper ideals of R/P 2 is finite. Clearly P ′∗ is the set of vector lines of the
vector space P/P 2 over R/P . This last set is finite if and only if P is principal or
R/P is a finite field.
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6 ⇒ 1. We may assume that R is local. If R is an artinian valuation ring then
eachR-module is RD-injective by [11, Theorem 4.3]. We conclude by proposition 5.2
if R is finite. �

For rings whose right RD-flat modules are RD-projective one easily gets the
following partial result:

Proposition 5.7. Let R be a ring. Then R is right perfect if every RD-flat right
R-module is RD-projective.

Proof. We prove that each flat right R-module is projective. �
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