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Abstract

This note is a short conceptual elaboration of the conjecture of Saniga et al (J. Opt. B: Quantum Semiclass.
6 (2004) L19-L20) by regarding a set of mutually unbiased bases (MUBs) in a d-dimensional Hilbert space
as an analogue of an arc in a (finite) projective plane of order d. Complete sets of MUBs thus correspond
to (d+1)-arcs, i.e., ovals. In the Desarguesian case, the existence of two principally distinct kinds of ovals
for d = 2" and n > 3, viz. conics and non-conics, implies the existence of two qualitatively different groups
of the complete sets of MUBs for the Hilbert spaces of corresponding dimensions. A principally new class
of complete sets of MUBs are those having their analogues in ovals in non-Desarguesian projective planes;
the lowest dimension when this happens is d = 9.

Keywords: Mutually Unbiased Bases, Ovals in (non-)Desarguesian Planes, Quantum Information Theory

It has for a long time been suspected but only recently fully recognized [1-4] that finite (projec-
tive and related) geometries may provide us with important clues for solving the problem of the
maximum cardinality of MUBs for Hilbert spaces of finite dimensions d. It is well-known [5,6] that
this number cannot be greater than d+1 and that this limit is reached if d is a power of a prime.
Yet, a still unanswered question is if there are non-prime-power values of d for which this bound is
attained. On the other hand, the minimum number of MUBs was found to be three for all dimen-
sions d > 2 [7]. Motivated by these facts, Saniga et al [1] have conjectured that the question of the
existence of the maximum, or complete, sets of MUBs in a d-dimensional Hilbert space if d differs
from a prime power is intricately connected with the problem of whether there exist projective
planes whose order d is not a power of a prime. This note aims at getting a deeper insight into
this conjecture by introducing particular objects in a finite projective plane, the so-called ovals,
which can be viewed as geometrical analogues of complete sets of MUBs.

We shall start with a more general geometrical object of a projective plane, viz. a k-arc — a
set of k points, no three of which are collinear [see, e.g., 8,9]. From the definition it immediately
follows that k = 3 is the minimum cardinality of such an object. If one requires, in addition, that
there is at least one tangent (a line meeting it in a single point only) at each of its points, then the
maximum cardinality of a k-arc is found to be d+1, where d is the order of the projective plane
[8,9]; these (d+1)-arcs are called ovals. Tt is striking to observe that such k-arcs in a projective
plane of order d and MUBs of a d-dimensional Hilbert space have the same cardinality bounds.
Can, then, individual MUBs (of a d-dimensional Hilbert space) be simply viewed as points of some
abstract projective plane (of order d) so that their basic combinatorial properties are qualitatively
encoded in the geometry of k-arcs? A closer inspection of the algebraic geometrical properties of
ovals suggests that this may indeed be the case.

To this end in view, we shall first show that every proper (non-composite) conic in PG(2,d),
a (Desarguesian) projective plane over the Galois field GF(d), is an oval. A conic is the curve of
second order

Q: Y ciyjziz =0, i,j=1,23, (1)

i<j

where c;; are regarded as fixed quantities and z; as variables, the so-called homogeneous coordi-
nates of the projective plane. The conic is degenerate (composite) if there exists a change of the
coordinate system reducing Eq. (1) into a form of fewer variables; otherwise, the conic is proper
(non-degenerate). It is well-known [see, e.g., 8] that the equation of any proper conic in PG(2,d)
can be brought into the canonical form

Q: 2129 — 25 =0. (2)



From the last equation it follows that the points of é can be parametrized as 0z; = (62,1,0),0 # 0,
and this implies that a proper conic in PG(2,d) contains d+1 points; the point (1,0,0) and d other
points specified by the sequences (02,1,0) as the parameter o runs through the d elements of
GF(d = p"), p being a prime and n a positive integer. Moreover, it can easily be verified that any
triple of distinct points of Q are linearly independent (i.e., not on the same line), as [10]

1 0 O
det| o2 1 o1 | =00—01#0 (3)
U% 1 o9
and
0‘% 1 oy
det 0'% 1 g9 :(0'170'2)(0'270'3)(0'370'1)7&0. (4)
of 1 o3

Hence, a proper conic of PG(2,d) is indeed an oval. The converse statement is, however, true for
d odd only; for d even and greater than four there also exist ovals which are not conics [8-11].
In order to see this explicitly, it suffices to recall that all the tangents to a proper conic Q of
PG(2,d = 2™) are concurrent, i.e., pass via one and the same point, called the nucleus [8-11].
So, the conic Q together with its nucleus form a (d+2)-arc. Deleting from this (d+2)-arc a point
belonging to Q leaves us with an oval which shares d = 2" points with Q. Taking into account that
a proper conic is uniquely specified by five of its points, it then follows that such an oval cannot be
a conic if n > 3; for, indeed, if it were then it would have with Q more than five points in common
and would thus coincide with it, a contradiction.

Let us rephrase these findings in terms of the above-introduced MUBs — k-arcs analogy. We
see that whilst for any d = p™ there exist complete sets (c-sets for short) of MUBs having their
counterparts in proper conics, d = 2" with n > 3 also feature c-sets whose analogues are ovals
which are not conics. In order words, our analogy implies that MUBs do not behave the same
way in odd and even (power-of-prime) dimensions. And this is, indeed, the property that at the
number theoretical level has been known since the seminal work of Wootters and Fields [5, see also
7], being there intimately linked with the fact that so-called Weil sums

Z e2;ri’[‘r(mk;2+’nk) , (5)
keGF(p™)

with m,n € GF(p™) and the absolute trace operator “Tr” defined as

T =n+n"+07 +... 4107, n€GF@P"), (6)

are non-zero (and equal to /p™) for all p > 2, playing thus a key role for proving the mutual
unbiasedness in these cases, but vanish for p = 2 [see, e.g., 12]. In the light of our analogy, this
difference acquires a qualitatively new, and more refined, algebraic-geometrical contents/footing.
Remarkably, this refinement concerns especially even (2") dimensions, as we shall demonstrate
next.

In the example above, we constructed a particular kind of an oval by adjoining to a proper
conic its nucleus and then removing a point of the conic; such an oval, called a pointed-conic, was
shown to be inequivalent to a conic for n > 3. However, for n > 4 there exists still another type
of non-conic ovals, termed irregular ones, that cannot be constructed this way [see, e.g., 8,11,13].
This intriguing hierarchy of oval’s types is succinctly summarized in the following table:

n 1 2 3 >4
ordinary conic | yes yes yes yes
pointed-conic | no no yes yes
irregular oval | no no no yes

Pursuing our analogy to the extreme, one observes that whereas d = 2 and d = 4 can accommodate
only one kind of c-sets of MUBs, viz. those present also in odd dimensions and having their



counterparts in ordinary conics, d = 8 should already feature two different types and Hilbert
spaces of d > 16 should be endowed with as many as three qualitatively different kinds of such
sets. So, if this analogy holds, a new MUBs’ physics is to be expected to emerge at the three-qubit
level and become fully manifested for four- and higher-order-qubit states/configurations.

Finally, we shall briefly address the non-Desarguesian case. We start with an observation that
the definition of an oval is expressed in purely combinatorial terms and so it equally well applies to
finite non-Desarguesian planes. These planes, however, do not admit coordinatization in terms of
any Galois field [14-16]; hence, the c-sets of MUBs corresponding to ovals in such planes must fun-
damentally differ from “Desarguesian” sets. The lowest order for which non-Desarguesian planes
were found to exist is d = 9, and there are even three distinct kinds of them; this means that it
is also two-qutrit states whose properties merit a careful inspection.! The most tantalizing aspect
of this analogy is, however, the case where d is composite (i.e., not a prime power) because such
projective planes, if they exist, must necessarily be non-Desarguesian [14,15]. So, if there exist
c-sets of MUBs for d composite, their properties cannot be described in terms of fields; instead,
one has to employ a more abstract concept, that of (planar) ternary rings, as these are proper sys-
tems for charting non-Desarguesian projective planes [15,16]. And this is perhaps the most serious
implication of our approach and a serious challenge for further geometrically-oriented explorations
of MUBS, especially given an important role that MUBs start playing in current quantum crypto-
graphic schemes/protocols and quantum information theory in general.
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1t is a really intriguing fact to realize here that the two smallest non-trivial dimensions our approach singles out,
viz. d =8 = 2% and d = 9 = 32, are precisely those (product dimensions) where the so-called unextendible product
bases (UPBs) first appear [see, e.g., 17,18]. This indicates that our oval geometries may underlie a wider spectrum
of finite-dimensional quantum structures than sole MUBs.



