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INJECTIVE MODULES AND FP-INJECTIVE MODULES OVER

VALUATION RINGS

F. COUCHOT

Abstract. It is shown that each almost maximal valuation ring R, such that
every indecomposable injective R-module is countably generated, satisfies the
following condition (C): each fp-injective R-module is locally injective. The
converse holds if R is a domain. Moreover, it is proved that a valuation ring
R that satisfies this condition (C) is almost maximal. The converse holds if
Spec(R) is countable. When this last condition is satisfied it is also proved
that every ideal of R is countably generated. New criteria for a valuation ring
to be almost maximal are given. They generalize the criterion given by E.
Matlis in the domain case. Necessary and sufficient conditions for a valuation
ring to be an IF-ring are also given.

In the first part of this paper we study the valuation rings that satisfy the
following condition (C): every fp-injective module is locally injective. In his paper
[5], Alberto Facchini constructs an example of an almost maximal valuation domain
satisfying (C) which is not noetherian and gives a negative answer to the following
question asked in [1] by Goro Azumaya: if R is a ring that satisfies (C), is R
a left noetherian ring? From [5, Theorem 5] we easily deduce that a valuation
domain R satisfies (C) if and only if R is almost maximal and its classical field
of fractions is countably generated. In this case every indecomposable injective
R-module is countably generated. So, when an almost maximal valuation ring R,
with eventually non-zero zerodivisors, verifies this last condition, we prove that R
satisfies (C). Conversely, every valuation ring that satisfies (C) is almost maximal.

In the second part of this paper, we prove that every locally injective module
is a factor module of a direct sum of indecomposable injective modules modulo a
pure submodule. This result allows us to give equivalent conditions for a valuation
ring R to be an IF-ring, i.e. a ring for which every injective R-module is flat. It is
proved that each proper localization of Q, the classical ring of fractions of R, is an
IF-ring.

It is well known that a valuation domain R is almost maximal if and only if
the injective dimension of the R-module R is less or equal to one. This result is
due to E. Matlis. See [12, Theorem 4]. In the third part, some generalizations of
this result are given. Moreover, when the subset Z of zerodivisors of an almost
maximal valuation ring R is nilpotent, we show that every uniserial R-module is
“standard”(see [7, p.141]).

In the last part of this paper we determine some sufficient and necessary con-
ditions for every indecomposable injective module over a valuation ring R to be
countably generated. In particular the following condition is sufficient: Spec(R)
is a countable set. Moreover, when this condition is satisfied, we prove that every
ideal of R is countably generated and that every finitely generated R-module is
countably cogenerated.
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2 F. COUCHOT

In this paper all rings are associative and commutative with unity and all mo-
dules are unital. An R-module E is said to be locally injective (or finitely injective,
or strongly absolutely pure, [14]) if every homomorphism A → E extends to a ho-
momorphism B → E whenever A is a finitely generated submodule of an arbitrary
R-module B. As in [6] we say that E is divisible if, for every r ∈ R and x ∈ E,
(0 : r) ⊆ (0 : x) implies that x ∈ rE, and that E is fp-injective(or absolutely pure) if
Ext1R(F,E) = 0, for every finitely presented R-module F. A ring R is called self fp-
injective if it is fp-injective as R-module. An exact sequence 0 → F → E → G→ 0
is pure if it remains exact when tensoring it with any R-module. In this case we
say that F is a pure submodule of E. Recall that a module E is fp-injective if and
only if it is a pure submodule of every overmodule ([17, Proposition 2.6]). A mod-
ule is said to be uniserial if its submodules are linearly ordered by inclusion and a
ring R is a valuation ring if it is uniserial as R-module. Recall that every finitely
presented module over a valuation ring is a finite direct sum of cyclic modules [18,
Theorem 1]. Consequently a module E over a valuation ring R is fp-injective if and
only if it is divisible. A valuation ring R is maximal if every totally ordered family
of cosets (ai + Li)i∈I has a nonempty intersection and R is almost maximal if the
above condition holds whenever ∩i∈ILi 6= 0.

We denote p.d.RM (resp. i.d.RM) the projective (resp. injective) dimension of
M, where M is a module over a ring R, ER(M) the injective hull of M, Spec(R)
the space of prime ideals of R, and for every ideal A of R, V (A) = {I ∈ Spec(R) |
A ⊆ I} and D(A) = Spec(R) \ V (A).

When R is a valuation ring, we denote by P its maximal ideal, Z its subset
of zerodivisors and Q its classical ring of fractions. Then Z is a prime ideal and
Q = RZ .

1. Valuation rings whose fp-injective modules are locally injective

From [5, Theorem 5] we easily deduce the following theorem:

Theorem 1.1. Let R be a valuation domain. The following assertions are equiva-
lent:

(1) Every fp-injective module is locally injective.
(2) R is almost maximal and p.d.RQ ≤ 1.
(3) R is almost maximal and Q is countably generated over R.
(4) R is almost maximal and every indecomposable injective module is countably

generated.

Proof. (1) ⇒ (2). Since Q/R is fp-injective, it is a locally injective module. By
[14, Corollary 3.4], Q/R is injective and consequently R is almost maximal by [12,
Theorem 4]. From [5, Theorem 5], it follows that p.d.R Q ≤ 1.

(2) ⇒ (1) is proved in [5, Theorem 5].
(2) ⇔ (3). See [7, Theorem 2.4, p.76].
(3) ⇔ (4). By [12, Theorem 4] ER(R/A) ≃ Q/A for every proper ideal A.

Consequently, if Q is countably generated, every indecomposable injective module
is also countably generated. �

If R is not a domain then the implication (4) ⇒ (1) holds. The following lemma
is needed to prove this implication and will be useful in the sequel too.



INJECTIVE MODULES AND FP-INJECTIVE MODULES OVER VALUATION RINGS 3

Lemma 1.2. Let R be a valuation ring, M an R-module, r ∈ R and y ∈ M such
that ry 6= 0. Then:

(1) (0 : y) = r(0 : ry).
(2) If (0 : y) 6= 0 then (0 : y) is finitely generated if and only if (0 : ry) is

finitely generated.

Proof. Clearly r(0 : ry) ⊆ (0 : y). Let a ∈ (0 : y). Since ry 6= 0, (0 : y) ⊂ rR.
There exists t ∈ R such that a = rt and we easily check that t ∈ (0 : ry). The
second assertion is an immediate consequence of the first. �

Theorem 1.3. Let R be an almost maximal valuation ring. Assume that every
indecomposable injective R-module is countably generated. Then every fp-injective
R-module is locally injective.

Proof. Let F be a non-zero fp-injective module. We must prove that F contains
an injective hull of each of its finitely generated submodules by [14, Proposition
3.3]. Let M be a finitely generated submodule of F. By [9, Theorem] M is a finite
direct sum of cyclic submodules. Consequently, we may assume that M is cyclic,
generated by x. Let E be an injective hull of M and {xn | n ∈ N} a spanning
set of E. By [9, Theorem] E is a uniserial module. Hence, for every integer n,
there exists cn ∈ R such that xn = cnxn+1. We may suppose that x = x0. By
induction on n we prove that there exists a sequence (yn)n∈N of elements of F
such that y0 = x, (0 : xn) = (0 : yn) and yn = cnyn+1. Since xn = cnxn+1,
(0 : cn) ⊆ (0 : xn) = (0 : yn). Since F is fp-injective, there exists yn+1 ∈ F, such
that yn = cnyn+1. We easily deduce from Lemma 1.2 that (0 : xn+1) = (0 : yn+1).
Now, the submodule of F generated by {yn | n ∈ N} is isomorphic to E. �

We don’t know if the converse of this theorem holds when R is not a domain.
However, for every valuation ring R, condition (C) implies that R is almost maxi-
mal.

Theorem 1.4. Let R be a valuation ring. If every fp-injective R-module is locally
injective then R is almost maximal.

Some preliminary results are needed to prove this theorem. The following Lemma
will often be used in the sequel. This lemma is similar to [7, Lemma II.2.1].

Lemma 1.5. Let R be a local commutative ring, P its maximal ideal, U a uniserial
R-module, r ∈ R, and x, y ∈ U such that rx = ry 6= 0. Then Rx = Ry.

Proof. We may assume that x = ty for some t ∈ R. It follows that (1− t)ry = 0.
Since ry 6= 0 we deduce that t is a unit. �

Proposition 1.6. Let U be a uniform fp-injective module over a valuation ring R.
Suppose there exists a nonzero element x of U such that Z = (0 : x). Then:

(1) U is a Q-module.
(2) For every proper R-submodule A of Q, U/Ax is faithful and fp-injective.

Proof. (1) For every 0 6= y ∈ U , (0 : y) = sZ or (0 : y) = (Z : s) = Z (see [13]).
Hence (0 : y) ⊆ Z. If s ∈ R \Z then the multiplication by s in U is injective. Since
U is fp-injective this multiplication is bijective.

(2) If R ⊆ A there exists s ∈ R \ Z such that sA ⊂ R and there exists y ∈ U
such that x = sy. Then Ax = Asy and (0 : y) = Z. Consequently we may assume
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that A ⊂ R, after eventually replacing A with As and x with y. Let t ∈ R. Since
(0 : t) ⊆ Z there exists z ∈ U such that x = tz. Therefore 0 6= x+Ax = t(z +Ax)
whence U/Ax is faithful. Let t ∈ R and y ∈ U such that (0 : t) ⊆ (0 : y + Ax).
Therefore (0 : t)y ⊆ Ax ⊂ Qx. It is easy to check that (0 : t) is an ideal of Q. Since
Qx is the nonzero minimal Q-submodule of U we get that (0 : t) ⊆ (0 : y). Since U
is fp-injective we conclude that U/Ax is fp-injective too. �

Now, we prove Theorem 1.4.
Proof of Theorem 1.4. If Z = P then R is self fp-injective by [9, Lemma 3].

It follows that R is self injective by [14, Corollary 3.4] and that R is maximal by
[11, Theorem 2.3].

Now we assume that Z 6= P. In the same way we prove that Q is maximal. From
[9, Theorem] it follows that EQ(Q/Z) ≃ ER(R/Z) is uniserial over Q and R. Let
H = ER(R/Z) and x ∈ H such that Z = (0 : x). By Proposition 1.6 H/Px is fp-
injective. This module is injective by [14, Corollary 3.4]. Hence E(R/P ) ≃ H/Px
is uniserial. By [9, Theorem] R is almost maximal. �

From Proposition 1.6 we easily deduce the following corollary which generalizes
the second part of [12, Theorem 4].

Corollary 1.7. Let R be an almost maximal valuation ring, H = E(R/Z) and
x ∈ H such that Z = (0 : x). For every proper and faithful ideal A of R, H/Ax ≃
E(R/A).

Proof. By [9, Theorem] E(R/A) is uniserial. It follows that its proper submod-
ules are not faithful. We conclude by Proposition 1.6. �

2. Valuation rings that are IF-rings

We begin this section with some results on indecomposable injective modules
over a valuation ring. In the sequel, if R is a valuation ring, let E = E(R),
H = E(R/Z) and F = E(R/Rr) for every r ∈ P, r 6= 0. Recall that, if r and s are
nonzero elements of P, then E(R/Rr) ≃ E(R/Rs), (see [13]).

Proposition 2.1. The following statements hold for a valuation ring R.

(1) The modules E and H are flat.
(2) The modules E and H are isomorphic if and only if Z is not faithful.

Proof. First we assume that Z = P, whence R is fp-injective. Let x ∈ E, x 6= 0,
and r ∈ R such that rx = 0. There exists a ∈ R such that ax ∈ R and ax 6= 0.
Then (0 : a) ⊆ (0 : ax), so that there exists d ∈ R such that ax = ad. By Lemma
1.2 (0 : d) = (0 : x), whence there exists y ∈ E such that x = dy. We deduce that
r⊗ x = rd⊗ y = 0. Hence E is flat. Now if Z 6= P, then E ≃ EQ(Q). Consequently
E is flat over Q and R.

Since Q is self-fp-injective, EQ(Q/Z) ≃ H is flat by [4, Theorem 2.8].
If Z is not faithful there exists a ∈ Z such that Z = (0 : a). It follows that

H ≃ E(Ra) = E. �

We state that E and F are generators of the category of locally injective R-
modules. More precisely:
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Proposition 2.2. Let R be a valuation ring and G a locally injective module. Then
there exists a pure exact sequence: 0 → K → I → G → 0, such that I is a direct
sum of submodules isomorphic to E or F.

Proof. There exist a set Λ and an epimorphism ϕ : L = ⊕λ∈ΛRλ → G, where
Rλ = R, ∀λ ∈ Λ. Let uµ : Rµ → L the canonical monomorphism. For every
µ ∈ Λ, ϕ ◦ uµ can be extended to ψµ : Eµ → G, where Eµ = E, ∀µ ∈ Λ. We
denote ψ : ⊕µ∈ΛEµ → G, the epimorphism defined by the family (ψµ)µ∈Λ. We put

∆ = homR(F,G) and ρ : F (∆) → G the morphism defined by the elements of ∆.
Thus ψ and ρ induce an epimorphism φ : I = E(Λ) ⊕ F (∆) → G. Since, for every
r ∈ P, r 6= 0, each morphism g : R/Rr → G can be extended to F → G, we deduce
that K = kerφ is a pure submodule of I. �

Recall that a ring R is coherent if every finitely generated ideal of R is finitely
presented. As in [3] we say that R is an IF-ring if every injective R-module is flat.
From Propositions 2.1 and 2.2 we deduce necessary and sufficient conditions for a
valuation ring to be an IF-ring.

Theorem 2.3. Let R be a valuation ring which is not a field. Then the following
assertions are equivalent:

(1) R is coherent and self-fp-injective
(2) R is an IF-ring
(3) F is flat
(4) F ≃ E
(5) P is not a flat R-module
(6) There exists r ∈ R, r 6= 0, such that (0 : r) is a nonzero principal ideal.

Proof.(1)⇒(4). By [3, Corollary 3], for every r ∈ P, r 6= 0, there exists t ∈
P, t 6= 0, such that (0 : t) = Rr. Hence R/Rr ≃ Rt ⊆ R ⊆ E. We deduce that
F ≃ E.

(4)⇒(3) follows from Proposition 2.1.
(3)⇒(2) If G is an injective module then by Proposition 2.2 there exists a pure

exact sequence 0 → K → I → G → 0 where I is a direct sum of submodules
isomorphic to E or F . By Propositions 2.1 I is flat whence G is flat too.

(2)⇒(1). See [3, Theorem 2].
(1)⇒(6) is an immediate consequence of [3, Corollary 3].
(6)⇒(5) We denote (0 : r) = Rt. If r⊗t = 0 in Rr⊗P then, by [2, Proposition 13,

p. 42], there exist s and d in P such that t = ds and rd = 0. Thus d ∈ (0 : r) and
d /∈ Rt. Whence a contradiction. Consequently P is not flat.

(5)⇒(1). If Z 6= P, then P = ∪r/∈ZRr, whence P is flat. Hence Z = P. If R is not
coherent, there exists r ∈ P such that (0 : r) is not finitely generated. By Lemma
1.2 (0 : s) is not finitely generated for each s ∈ P, s 6= 0. Consequently, if st = 0,
there exist p ∈ P and a ∈ (0 : s) such that t = ap. It follows that s⊗ t = sa⊗ p = 0
in Rs⊗ P. Whence P is a flat module. We get a contradiction. �

The following theorem allows us to give examples of valuation rings that are
IF-rings.

Theorem 2.4. The following statements hold for a valuation ring R:

(1) For every 0 6= r ∈ P , R/Rr is an IF-ring.
(2) For every prime ideal J ⊂ Z, RJ is an IF-ring.



6 F. COUCHOT

Proof. (1) For every a ∈ P \ Rr there exists b ∈ P \ Rr such that r = ab. We
easily deduce that (Rr : a) = Rb whence R/Rr is an IF-ring by Theorem 2.3.

(2) The inclusion J ⊂ Z implies that there exist s ∈ Z \ J and 0 6= r ∈ J such
that sr = 0. If we set R′ = R/Rr then RJ ≃ R′

J . From the first part and [4,
Proposition 1.2] it follows that RJ is an IF-ring. �

The two following lemmas are needed to prove the important Proposition 2.7.

Lemma 2.5. The following statements hold for a valuation ring R:

(1) If Z 6= P then E = PE.
(2) If Z = P then E = R+ PE and E/PE ≃ R/P .

Proof. (1) If p ∈ P \ Z then E = pE.
(2) For every x ∈ PE, (0 : x) 6= 0 whence 1 /∈ PE. Let x ∈ E \R. There exists

r ∈ R such that 0 6= rx ∈ R. Since R is self-fp-injective there exists d ∈ R such
that rd = rx. By Lemma 1.2 (0 : d) = (0 : x). We deduce that x = dy for some
y ∈ E. Then x ∈ PE if d ∈ P . If d is a unit, in the same way we find t, c ∈ R and
z ∈ E such that tc = t(x − d) 6= 0 and x − d = cz. Since r ∈ (0 : x − d) = (0 : c)
then c ∈ P and x ∈ R+ PE. �

Lemma 2.6. Let R be a valuation ring and U a uniform R-module. If x, y ∈ U ,
x /∈ Ry and y /∈ Rx, then Rx ∩Ry is not finitely generated.

Proof. Suppose that Rx∩Ry = Rz. We may assume that there exist t ∈ P and
d ∈ R such that z = ty = tdx. It is easy to check that (Rx : y − dx) = (Rx : y) =
(Rz : y) = Rt ⊆ (0 : y − dx). It follows that Rx ∩R(y − dx) = 0. This contradicts
that U is uniform. �

Proposition 2.7. Let R be a valuation ring which is not a field. Apply the functor
HomR(−, E(R/P )) to the canonical exact sequence

(S) : 0 → P → R→ R/P → 0. Then :

(1) If R is not an IF-ring one gets an exact sequence

(S1) : 0 → R/P → E(R/P ) → F → 0, with F ≃ HomR(P,E(R/P )),

(2) If R is an IF-ring one gets an exact sequence

(S2) : 0 → R/P → E(R/P ) → F → R/P → 0, with PF ≃ HomR(P,E(R/P )).

Proof. (1) (S) induces the following exact sequence:
0 → R/P → E(R/P ) → HomR(P,E(R/P )) → 0. By Theorem 2.3 P is flat

whence HomR(P,E(R/P )) is injective. Let f and g be two nonzero elements of
HomR(P,E(R/P )). There exist x and y in E(R/P ) such that f(p) = px and
g(p) = py for each p ∈ P . Let Rv be the minimal nonzero submodule of E(R/P ).
By Lemma 2.6 there exists z ∈ (Rx∩Ry)\Rv. Then the map h defined by h(p) = pz
for each p ∈ P is nonzero and belongs to Rf ∩ Rg. Thus HomR(P,E(R/P )) is
uniform. Now let a ∈ R such that af = 0. It follows that Pa ⊆ (0 : x) = Pb for
some b ∈ R. We deduce that (0 : f) = Rb. Hence F ≃ HomR(P,E(R/P )).

(2) First we suppose that P is not finitely generated. From the first part of
the proof it follows that HomR(P,E(R/P )) ⊆ F . We use the same notations
as in (1). We have (0 : f) = Rb and there exists c ∈ P such that (0 : c) =
Rb. Consequently f ∈ cF ⊆ PF . Conversely let y ∈ PF and b ∈ P such that
(0 : y) = Rb. Since R′ = R/Pb is not an IF-ring it follows from the first part
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that HomR(P/bP,E(R/P )) ≃ {x ∈ F | bP ⊆ (0 : x)} ≃ ER′(R′/rR′) where
0 6= r ∈ P/bP . Hence HomR(P,E(R/P )) = PF . We deduce the result from
Theorem 2.3 and Lemma 2.5.

If P = pR then E(R/P ) ≃ E ≃ F . Then multiplication by p induces the exact
sequence (S2). �

Remark 2.8. In [6, Theorem 5.7] A. Facchini considered indecomposable pure-
injective modules over a valuation ring R. He proved that HomR(W,G) is inde-
composable for every indecomposable injective R-module G, where W is a faithful
uniserial module such that (0 : x) is a nonzero principal ideal for each x ∈ W . This
result implies that HomR(P,E(R/P )) is indecomposable when R is an IF-ring and
P is faithful.

From Proposition 2.7 we deduce a sufficient and necessary condition for a valua-
tion ring to be an IF-ring. As in [17], the fp-injective dimension of an R-module M
(fp − i.d.RM) is the smallest integer n ≥ 0 such that Extn+1

R (N,M) = 0 for every
finitely presented R-module N .

Corollary 2.9. Let R be a valuation ring. Then the following assertions are equiv-
alent:

(1) R is not an IF-ring.
(2) i.d.RR/P = 1.
(3) fp − i.d.RR/Z = 1.

Proof. (1) ⇔ (2). It is an immediate consequence of Proposition 2.7.
(1) ⇔ (3). If R is an IF-ring then Z = P and fp − i.d.R R/Z > 1 by Propo-

sition 2.7. Assume that R is not an IF-ring and Z 6= P . Let x ∈ H such
that Z = (0 : x). By Proposition 1.6 H/Rx is fp-injective. It follows that
fp − i.d.RR/Z = 1. �

3. Injective modules and uniserial modules

Proposition 2.7 allows us to give generalizations of well known results in the
domain case. This is a first generalization of the first part of [12, Theorem 4].

Theorem 3.1. Let R be a valuation ring. Then R is almost maximal if and only
if F is uniserial.

Proof. By [9, Theorem] F is uniserial if R is almost maximal. Conversely if F
is uniserial, by using the exact sequence (S1) or (S2) of Proposition 2.7, it is easy
to prove that E(R/P ) is uniserial. We conclude by using [9, Theorem]. �

Now we shall prove the existence of uniserial fp-injective modules. This is an
immediate consequence of [9, Theorem] when R is an almost maximal valuation
ring. The following proposition will be useful for this.

Proposition 3.2. Let R be a commutative local ring, P its maximal ideal, U
a uniserial module with a nonzero minimal submodule S. Then U is a divisible
module if and only if it is faithful.

Proof. First we suppose that U is faithful. Let 0 6= s ∈ P and 0 6= y ∈ U
such that (0 : s) ⊆ (0 : y). There exists t ∈ R such that x = ty where x generates
S. Thus t /∈ (0 : s) and consequently stU is a nonzero submodule of U . It follows
that there exists z ∈ U such that x = stz. By Lemma 1.5 y ∈ sU . Conversely
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let 0 6= s ∈ P . Then (0 : s) ⊆ P implies that x ∈ sU . We conclude that U is
faithful. �

Proposition 3.3. Let R be a valuation ring such that Z = P . Assume that R is
coherent, or (0 : P ) 6= 0, or 0 is a countable intersection of nonzero ideals. Then
there exist two uniserial fp-injective modules U and V such that E(U) ≃ E(R/P )
and E(V ) ≃ F . When P is principal then U ≃ V ≃ R.

Proof. If P is principal then R is an IF-ring and it is obvious that U ≃ V ≃ R.
Now suppose that R is an IF-ring and P is not finitely generated. Consequently

P is faithful. Let φ : E(R/P ) → F be the homomorphism defined in Proposition
2.7. Thus F ≃ E and Imφ = PF . It is obvious that PF ∩R = P . We put V = R
and U = φ−1(P ). Since P is faithful, U is faithful too. It is easy to prove that U
is uniserial. Then U is fp-injective by Proposition 3.2.

Now we assume that P is not faithful and not finitely generated. Then R is
not an IF-ring. By Corollary 2.9 i.d.R (R/P ) = 1. It follows that R/(0 : P ) is
fp-injective. In this case we put U = R and V = R/(0 : P ).

Now we suppose that 0 is a countable intersection of nonzero ideals. We may
assume that R is not coherent and P is faithful. By [16, Theorem 5.5] there exists
a faithful uniserial R-module U such that E(U) ≃ E(R/P ). By Proposition 3.2
U is fp-injective. Let u ∈ U such that (0 : u) = P . Since R is not an IF-ring,
then by using Corollary 2.9 it is easy to prove that U/Ru is fp-injective. We put
V = U/Ru. �

Remark 3.4. By [6, Theorem 5.4] it is obvious that every faithful indecomposable
pure-injective R-module is injective if R is a valuation ring such that (0 : P ) 6= 0.
In this case the module W in remark 2.8 doesn’t exist. By [6, Theorem 5.7] and
Proposition 2.7, PF is the only faithful indecomposable pure-injective R-module
which is not injective, when R is an IF-ring and (0 : P ) = 0.

As in [7, p.15], for every proper ideal A of a valuation ring R we put
A# = {s ∈ R | (A : s) 6= A}. Then A#/A is the set of zerodivisors of R/A whence
A# is a prime ideal. In particular 0# = Z.

Lemma 3.5. Let R be a valuation ring, A a proper ideal of R and t ∈ R\A. Then
A# = (A : t)#.

Proof. Let a ∈ (A : t)#. If a ∈ (A : t) then a ∈ A#. If a /∈ (A : t) there
exists c /∈ (A : t) such that ac ∈ (A : t). If follows that act ∈ A and ct /∈ A whence
a ∈ A#. Conversely let a ∈ A#. There exists c /∈ A such that ac ∈ A. If a ∈ (A : t)
then a ∈ (A : t)#. If a /∈ (A : t) then at /∈ A. Since ac ∈ A it follows that c = bt for
some b ∈ P . Since c /∈ A it follows that b /∈ (A : t). From abt ∈ A we successively
deduce that ab ∈ (A : t) and a ∈ (A : t)#. �

If J is a prime ideal contained in Z, we put ke(J) the kernel of the natural map:
R→ RJ .

Corollary 3.6. Let R be a valuation ring. Then:

(1) For every prime ideal J ⊂ Z there exist two uniserial fp-injective modules
U(J) and V(J) such that E(U(J)) ≃ E(R/J)) and E(V(J)) ≃ E(RJ/rRJ ),
where r ∈ J \ ke(J).
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(2) If Q is coherent, or Z is not faithful, or 0 is a countable intersection of
nonzero ideals, there exist two uniserial fp-injective modules U(Z) and V(Z)

such that E(U(Z)) ≃ H and E(V(Z)) ≃ E(Q/rQ), where 0 6= r ∈ Z.
(3) If Q is coherent, or Z is not faithful, or 0 is a countable intersection of

nonzero ideals, then for every proper ideal A such that Z ⊂ A# there exists
a faithful uniserial fp-injective module U(A) such that E(U(A)) ≃ E(R/A).

Proof. (1) is a consequence of Theorem 2.4 and Proposition 3.3.
(2) follows from the above proposition.
(3) is a consequence of (2) and Proposition 1.6. More precisely, since Z ⊂ A# we

may assume that A is faithful, eventually after replacing A with (A : a) for some
a ∈ A#. Then we put U(A) = U(Z)/Au where u ∈ U(Z) and (0 : u) = Z. �

From Theorem 3.1, Corollary 1.7, Corollary 3.6 and Corollary 2.9 we deduce
another generalization of [12, Theorem 4].

Theorem 3.7. Let R be a valuation ring. Suppose that Q is coherent or maximal,
or Z is not faithful, or 0 is a countable intersection of nonzero ideals. Let U(Z) be
the fp-injective uniserial module defined in Corollary 3.6 and u ∈ U(Z) such that
Z = (0 : u). Then:

(1) If R is not an IF-ring then R is almost maximal if and only if U(Z)/Ru is
injective.

(2) If R is almost maximal then for every proper and faithful ideal A of R,
U(Z)/Au ≃ E(R/A).

Proof. (1) If U(Z)/Ru is injective then F ≃ U(Z)/Ru is uniserial. By Theo-
rem 3.1 R is almost maximal. Conversely, U(Z)/Ru is a fp-injective submodule of
F by Corollary 2.9 and F is uniserial by [9, Theorem]. Let 0 6= x ∈ F . There
exists a ∈ R such that 0 6= ax ∈ U(Z)/Ru. It follows that ∃y ∈ U(Z)/Ru such that
ax = ay. By using Lemma 1.5 we deduce that x ∈ U(Z)/Ru. Hence U(Z)/Ru is
injective.

(2) is an immediate consequence of Corollary 1.7 �

Let us observe that U(Z) = Q when Z is not faithful and consequently we have
a generalization of [12, Theorem 4].

Now this is a generalization of [7, Theorem VII.1.4].

Theorem 3.8. Let R be an almost maximal valuation ring and suppose that Z is
nilpotent. Then:

(1) Every indecomposable injective R-module is a faithful factor of Q.
(2) An R-module U is uniserial if and only if it is of the form U ≃ J/I where

I ⊂ J are R-submodules of Q.
(3) If I ⊂ J and I ′ ⊂ J ′ are R-submodules of Q then J/I ≃ J ′/I ′ if and only

if I = (I ′ : q) and J = (J ′ : q) for some 0 6= q ∈ Q.

Proof. (1) Q is an artinian ring and Z is its unique prime ideal. If A is an ideal
such that A# = Z, then A is a principal ideal of Q and Q ≃ ER(R/A).

(2) We have E(U) ≃ Q/I for some ideal I of R.
(3) We adapt the proof of [7, Theorem VII.1.4]. Suppose that φ : J/I → J ′/I ′

is an isomorphism. Since J/I ≃ sJ/sI for every s ∈ R \ Z we may assume that I
and I ′ are proper ideals of R. Then E(J/I) ≃ E(J ′/I ′) implies that I = (I ′ : t) for



10 F. COUCHOT

some 0 6= t ∈ R. Since (J ′ : t)/(I ′ : t) ≃ J ′/I ′ we may assume that I ′ = I. By [7,
Theorem VII.1.4] we may assume that Z 6= 0 and consequently that R is maximal
by [9, Proposition 1]. The isomorphism φ extends to an automorphism ϕ of E(J/I).
Let a ∈ Z such that Z = (0 : a). If I# = Z then Q = E(J/I), and if I# 6= Z then,
by eventually replacing I, J and J ′ with respectively (I : b), (J : b) and (J ′ : b) for
some b ∈ R, we may assume that I is faithful and Q/Ia = E(J/I). By [7, Corollary
VII.2.5] ϕ is induced by multiplication by some 0 6= q ∈ Q \ Z. Hence J = (J ′ : q).
In the two cases there exists x ∈ E(J/I) such that I = (0 : x) = (0 : ϕ(x)). By
using Lemma 1.2 it follows that I = (I : q). �

From Proposition 2.7 we deduce the following result on the injective dimension
of the R-module R.

Proposition 3.9. Let R be an almost maximal valuation ring such that R 6= Q.
Then:

(1) If Q is not coherent then i.d.RR = 2.
(2) If Q is coherent and not a field then i.d.RR = ∞. More precisely, for

every R-module M and for every integer n ≥ 1, then Ext2n+2
R (M,R) ≃

Ext1R(M,Q/Z) and Ext2n+1
R (M,R) ≃ Ext2R(M,Q/Z).

Proof. (1) If we apply Proposition 2.7 to Q we deduce that i.d.RQ/Z = 1.
Since R is almost maximal, by Corollary 2.9 i.d.R R/Z = 1. By using the exact
sequence: 0 → R/Z → Q/Z → Q/R → 0, we get i.d.RQ/R = 1. We deduce the
result from this following exact sequence: 0 → R→ Q→ Q/R→ 0.

(2) By using the same exact sequences as in (1) we easily deduce that

Extp+1
R (M,R) ≃ Extp

R(M,Q/Z), for each p ≥ 3. On other hand if we apply Propo-
sition 2.7 to Q we can build an infinite injective resolution of Q/Z with injective
terms (En)n∈N such that Ep ≃ H if p is even and Ep ≃ E(Q/Qa), for some
0 6= a ∈ R, if p is odd. Now it is easy to complete the proof. �

Recall that i.d.R R = 1 if and only if R is almost maximal when R is a domain
which is not a field ([12, Theorem 4]) and that i.d.RR = 0 if and only if R is almost
maximal and R = Q ([11, Theorem 2.3]).

Let U be a uniform module over a valuation ring R. Recall that if x and y are
nonzero elements of U such that (0 : x) ⊆ (0 : y) there exists t ∈ R such that
(0 : y) = ((0 : x) : t): see [13]. As in [7, p.144] , we set U# = {s ∈ R | ∃u ∈ U, u 6=
0 and su = 0}. Then U# is a prime ideal and the following lemma holds.

Lemma 3.10. Let R be a valuation ring and U a uniform R-module. Then for
every nonzero element u of U , U# = (0 : u)#.

Proof. We set A = (0 : u). Let s ∈ A#. There exists t ∈ (A : s) such that
tu 6= 0. We have stu = 0 whence s ∈ U#. Conversely let s ∈ U#. There exists
0 6= x ∈ U such that s ∈ (0 : x) ⊆ (0 : x)# = A#. The last equality holds by
Lemma 3.5. �

Proposition 3.11. Let R be a valuation ring and U a uniform fp-injective module.
Assume that U# = Z = P . Then:

(1) U is faithful when P is finitely generated or faithful.
(2) If P is not faithful and not finitely generated then ann(U) = (0 : P ) if

E(U) 6≃ E(R/P ) and U is faithful if E(U) ≃ E(R/P ).
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Proof. If E(U) ≃ E(R/P ) let u ∈ U such that (0 : u) = P . Then for each
0 6= t ∈ P , (0 : t) ⊆ P . Hence there exists z ∈ U such that tz = u 6= 0. Hence U is
faithful. We assume in the sequel that E(U) 6≃ E(R/P ).

(1) First we suppose that P = Rp. Then for every non-finitely generated ideal
A it is easy to check that A = (A : p). Consequently, for each u ∈ U , (0 : u) is
principal, whence E(U) ≃ E. Now we assume that P is faithful. Then P is not
principal. For some 0 6= u ∈ U we put A = (0 : u). Let 0 6= t ∈ P . Then (0 : t) ⊂ P .
The equality A# = P implies that there exists s ∈ P \A such that (0 : t) ⊂ (A : s).
We have su 6= 0 and (0 : su) = (A : s). It follows that there exists z ∈ U such that
tz = su 6= 0.

(2) We use the same notations as in (1). If t /∈ (0 : P ) we prove as in the first
part of the proof that there exists z ∈ U such that tz 6= 0. On the other hand for
every s /∈ (0 : A), (0 : P ) ⊆ sA. Hence ann(U) = (0 : P ). �

From the previous proposition we deduce the following corollary.

Corollary 3.12. Let R be a valuation ring and U an indecomposable injective
R-module. Then the following assertions are true:

(1) If Z ⊂ U# then U is faithful. Moreover, if R is almost maximal then U is
a factor module of H.

(2) If U# ⊂ Z then ann(U) = ke(U#).
(3) If U# = Z then U is faithful if Z is faithful or finitely generated over Q. If

Z is not faithful and not finitely generated over Q then ann(U) = (0 : Z)
if U 6≃ H and H is faithful.

4. Countably generated indecomposable injective modules

When R is not a domain we don’t know if condition (C) implies that every
indecomposable injective module is countably generated. However it is possible
to give sufficient and necessary conditions for every indecomposable injective R-
module to be countably generated, when R is an almost maximal valuation ring.

The following lemmas will be useful in the sequel:

Lemma 4.1. Let R be a valuation ring and A a proper ideal of R. Then A 6=⋂
r/∈ARr if and only if there exists t ∈ R such that A = Pt and

⋂
r/∈ARr = Rt.

Proof. Let t ∈ (
⋂

r/∈ARr) \A. Clearly Rt =
⋂

r/∈ARr, whence A = Pt. �

Recall that an R-module M is finitely (respectively countably) cogenerated if M
is a submodule of a product of finitely (respectively countably) many injective hulls
of simple modules.

Lemma 4.2. Let R be a valuation ring and A a proper ideal of R. Suppose that
R/A is not finitely cogenerated. Consider the following conditions:

(1) There exists a countable family (In)n∈N of ideals of R such that A ⊂ In+1 ⊂
In, ∀n ∈ N and A =

⋂
n∈N

In.
(2) There exists a countable family (an)n∈N of elements of R such that A ⊂

Ran+1 ⊂ Ran, ∀n ∈ N and A =
⋂

n∈N
Ran.

(3) R/A is countably cogenerated.

Then (1) implies (2) and (3) is equivalent to (2).
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Proof. If we take an ∈ In \ In+1, ∀n ∈ N, then A =
⋂

n∈N
Ran. Consequently

(1) ⇒ (2). It is obvious that A =
⋂

n∈N
Ran if and only if A =

⋂
n∈N

Pan, and this

last condition is equivalent to: R/A is a submodule of
∏

n∈N
(R/Pan) ⊆ E(R/P )N.

Hence conditions (2) and (3) are equivalent. �

Lemma 4.3. Let R be a ring (not necessarily commutative). Then the following
conditions are equivalent.

(1) Every cyclic left R-module is countably cogenerated.
(2) Each finitely generated left R-module is countably cogenerated.

Proof. Only (1) ⇒ (2) requires a proof. Let M be a left R-module generated
by {xk | 1 ≤ k ≤ p}. We induct on p. Let N be the submodule of M generated by
{xk | 1 ≤ k ≤ p−1}. The induction hypothesis implies that N is a submodule of G
and M/N a submodule of I, where G and I are product of countably many injective
hulls of simple left R-modules. The inclusion map N → G can be extended to a
morphism φ : M → G. Let ϕ be the composition map M →M/N → I. We define
λ : M → G⊕ I by λ(x) = (φ(x), ϕ(x)) for every x ∈ M . It is easy to prove that λ
is a monomorphism and conclude the proof. �

Proposition 4.4. Let R be a valuation ring such that Z = P . Consider the
following conditions:

(1) R and R/(0 : P ) are countably cogenerated.
(2) P is countably generated.
(3) Every indecomposable injective R-module U such that U# = P is countably

generated.

Then conditions (1) and (2) are equivalent, and they are equivalent to (3) when R
is almost maximal.

Moreover, when the two first conditions are satisfied, every ideal A such that
A# = P is countably generated and R/A is countably cogenerated.

Proof. (1)⇒(2). We may assume that P is not finitely generated. If (0 :
P ) = ∩n∈NRsn, where sn /∈ (0 : P ) and sn /∈ Rsn+1 for every n ∈ N, then,
by using [11, Proposition 1.3], it is easy to prove that P = ∪n∈N(0 : sn). Since
(0 : sn) ⊂ (0 : sn+1) for each n ∈ N, we deduce that P is countably generated.

(2)⇒(1). First we assume that P is principal. Then (0 : P ) is the nonzero
minimal submodule of R, and (0 : P 2)/(0 : P ) is the nonzero minimal submodule
of R/(0 : P ). Hence R and R/(0 : P ) are finitely cogenerated. Now assume
that P = ∪n∈NRtn where tn+1 /∈ Rtn for each n ∈ N. As above we get that
(0 : P ) = ∩n∈N(0 : tn). Since (0 : tn+1) ⊂ (0 : tn) for each n ∈ N it follows that
R/(0 : P ) is countably cogenerated. If (0 : P ) 6= 0 then R is finitely cogenerated.

(3)⇒(1). It is sufficient to prove that R/(0 : P ) is countably cogenerated. We
may assume that P is not principal. Then F 6≃ E(R/P ) and F# = P . Let
{xn | n ∈ N} be a generating subset of F such that xn+1 /∈ Rxn for each n ∈ N.
By Proposition 3.11 the following equality holds: (0 : P ) = ∩n∈N(0 : xn). We
claim that (0 : xn+1) ⊂ (0 : xn) for each n ∈ N else Rxn+1 = Rxn. Consequently
R/(0 : P ) is countably cogenerated.

(1)⇒(3). If P is principal then an ideal A satisfies A# = P if and only if A
is principal (see the proof of Proposition 3.11). It follows that U ≃ R. Now we
suppose that P is not finitely generated. Assume that there exists x ∈ U such that
(0 : x) = (0 : P ). If (0 : P ) = 0 then Rx ≃ R. It follows that U = Rx. If (0 : P ) 6= 0



INJECTIVE MODULES AND FP-INJECTIVE MODULES OVER VALUATION RINGS 13

then Rx ≃ R/(0 : P ). Since R is not an IF-ring in this case, R/(0 : P ) is injective
by Corollary 2.9. It follows that U = Rx. If (0 : P ) 6= 0 then E(R/P ) ≃ R.
Hence, if U is not finitely generated, we may assume that (0 : P ) ⊂ (0 : x) for each
x ∈ U . We know that ∩n∈NRsn = (0 : P ) where sn /∈ (0 : P ) and sn+1 /∈ Rsn for
each n ∈ N. Let (xn)n∈N a sequence of elements of U obtained by the following
way: we pick x0 a nonzero element of U ; by induction on n we pick xn+1 such
that (0 : xn+1) ⊂ (0 : xn) ∩ Rsn+1. This is possible since ann(U) = (0 : P ) by
Proposition 3.11. Then we get that ∩n∈N(0 : xn) = (0 : P ). If x ∈ U then there
exists n ∈ N such that (0 : xn) ⊆ (0 : x). Hence x ∈ Rxn since U is uniserial.

Now we prove the last assertion. If P is principal then A is also principal
and R/A finitely cogenerated. Assume that P = ∪n∈NRsn. If A = Pt for some
t ∈ R then A is countably generated and R/A is finitely cogenerated. We may
assume that (A : t) ⊂ P for each t ∈ R \ A. Clearly A ⊆ ∩n∈N(A : sn). If
b ∈ ∩n∈N(A : sn), then b ∈ (A : P ) and it follows that P ⊆ (A : b). Hence b ∈ A,
A = ∩n∈N(A : sn) and R/A is countably cogenerated. Let s ∈ P \ (0 : A). Thus
((0 : A) : s) = (0 : sA) ⊃ (0 : A). It follows that (0 : A)# = P . Therefore
R/(0 : A) is countably cogenerated. If (0 : A) = Pt for some t ∈ R, then tA is the
nonzero minimal ideal of R and by using Lemma 1.5 we show that A is principal. If
(0 : A) = ∩n∈NRtn then we prove that A = ∪n∈N(0 : tn), by using [11, Proposition
1.3], when A is not principal. Hence A is countably generated. �

Recall that a valuation ring R is archimedean if its maximal ideal P is the only
non-zero prime ideal, or equivalently ∀a, b ∈ P, a 6= 0, ∃n ∈ N such that bn ∈ Ra.
By using this last condition we prove that P is countably generated.

Lemma 4.5. Let R be an archimedean valuation ring. Then its maximal ideal P
is countably generated.

Proof. We may assume that P is not finitely generated. Let r ∈ P. Then there
exist s and t in P such that r = st and there exists q ∈ P such that q /∈ Rs ∪ Rt.
Hence for each r ∈ P there exists q ∈ P such that q2 /∈ Rr. Now we consider the
sequence (an)n∈N of elements of P defined in the following way: we choose a nonzero
element a0 of P and by induction on n we choose an+1 such that a2

n+1 /∈ Ran. We

deduce that a2n

n /∈ Ra0, for every integer n ≥ 1. Let b ∈ P. There exists p ∈ N

such that bp ∈ Ra0. Let n be an integer such that 2n ≥ p. It is easy to check that
b ∈ Ran. Then {an | n ∈ N} generates P. �

By using this lemma, we deduce from Proposition 4.4 the following corollary.

Corollary 4.6. Let R be a valuation ring and N its nilradical. Consider the
following conditions:

(1) For every prime ideal J ⊆ Z, J is countably generated and R/J is countably
cogenerated.

(2) For every prime ideal J ⊆ Z which is the union of the set of primes properly
contained in J there is a countable subset whose union is J, and for every
prime ideal J ⊆ Z which is the intersection of the set of primes containing
properly J there is a countable subset whose intersection is J.

(3) Every indecomposable injective R-module is countably generated.

Then conditions (1) and (2) are equivalent and they are equivalent to (3) when R
is almost maximal.
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Moreover, when the two first conditions are satisfied, every ideal A of Q is count-
ably generated and Q/A is countably cogenerated.

Proof. (3) ⇒ (1). For each prime ideal J ⊆ Z, RJ is an indecomposable injective
R-module. Hence RJ is countably generated. It is obvious that J = ∩n∈NRtn,
where tn /∈ J for each n ∈ N if and only if {t−1

n | n ∈ N} generates RJ . Hence R/J
is countably cogenerated. By Proposition 4.4 JRJ is countably generated over RJ .
It follows that J is countably generated over R too.

(1) ⇒ (3). Since R/J is countably cogenerated and J is countably generated
it follows that RJ and JRJ are countably generated. By Proposition 4.4 U is
countably generated over RJ and over R too, for every indecomposable injective
R-module U such that U# = J . The result follows from Corollary 1.7.

(1) ⇒ (2). Suppose that J is the union of the prime ideals properly contained
in J. Let {an | n ∈ N} be a spanning set of J such that an+1 /∈ Ran for each n ∈ N.
We consider (In)n∈N a sequence of prime ideals properly contained in J defined in
the following way: we pick I0 such that a0 ∈ I0 and for every n ∈ N we pick In+1

such that Ran+1 ∪ In ⊂ In+1. Then J is the union of the family (In)n∈N. Now if
J is the intersection of the prime ideals containing properly J , in a similar way we
prove that J is the intersection of a countable family of these prime ideals.

(2) ⇒ (1). By Lemma 4.2 we may assume that V (J)\{J} has a minimal element
I. If a ∈ I \ J then J = ∩n∈NRa

n. Now we prove that J is countably generated. If
J = N then RJ is archimedean. If J 6= N, we may assume that D(J) has a maximal
element I. Then RJ/IRJ is archimedean too. In the two cases JRJ is countably
generated over RJ by Lemma 4.5. On the other hand R/J is countably cogenerated,
whence RJ is countably generated over R. Let us observe that JRJ ≃ J/ke(J). It
follows that J is countably generated over R too.

Now we prove the last assertion. We put J = A#. Then J ⊆ Z. By Proposition
4.4 A is countably generated over RJ . Since RJ is countably generated over R
it follows that A is countably generated over R too. On the other hand, since
RJ/ARJ is countably cogenerated, the inclusion Q/A ⊆ RJ/ARJ implies that Q/A
is countably cogenerated too, by Lemma 4.2. �

From this corollary we deduce the following results:

Corollary 4.7. Let R be a valuation ring. Then the following conditions are equi-
valent:

(1) Every finitely generated R-module is countably cogenerated and every ideal
of R is countably generated.

(2) For each prime ideal J which is the union of the set of primes properly con-
tained in J there is a countable subset whose union is J, and for each prime
ideal J which is the intersection of the set of primes containing properly J
there is a countable subset whose intersection is J.

Proof. It is obvious that (1) ⇒ (2).
(2) ⇒ (1). When R satisfies the condition (D): Z = P , this implication holds by

Corollary 4.6. Now we return to the general case. Let A be a non-principal ideal of
R and r ∈ A, r 6= 0. Then the factor ring R/Rr satisfies the condition (D). Hence A
is countably generated and R/A is countably cogenerated. If R is a domain then as
in the proof of Corollary 4.6 we show that R is countably cogenerated. If R is not
a domain, then Q satisfies (D) and consequently Q is countably cogenerated over
Q. By Lemma 4.2 R is countably cogenerated. We conclude by Lemma 4.3. �
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Corollary 4.8. Let R be a valuation ring such that Spec(R) is a countable set.
Then:

(1) Every finitely generated R-module is countably cogenerated.
(2) Every ideal is countably generated.
(3) Each fp-injective R-module is locally injective if and only if R is almost

maximal.

Remark 4.9. Let R be a valuation ring and Γ(R) its value group. See [15] for
the definition of Γ(R). If Spec(R) is countable, then by [15, Theorem 2] and [8,
Lemma 12.11, p. 243] we get that ℵ0 ≤ |Γ(R)| ≤ 2ℵ0 . Conversely if |Γ(R)| ≤ ℵ0 it
is obvious that every ideal is countably generated and that each finitely generated
R-module is countably cogenerated.

Let us observe that if an almost maximal valuation ring R satisfies the conditions
of Corollary 4.6, then every indecomposable injectiveR-module U such that U# ⊂ Z
is flat since RJ is an IF-ring. It follows that p.d.R U ≤ 1 by [8, Proposition 9.8
p.233]. On the other hand, when R is a valuation domain that satisfies (C), first
it is proved that p.d.RQ = 1 and afterwards, by using [7, Theorem 2.4 p.76], or by
using methods of R.M. Hamsher in [10], it is shown that Q is countably generated.
When R is not a domain it is possible to prove the following proposition:

Proposition 4.10. Let R be a valuation ring and J a nonmaximal prime ideal.
The following assertions are equivalent:

(1) RJ is countably generated.
(2) p.d.RRJ = 1.

Proof. (1)⇒(2). By [8, Proposition 9.8 p.233] , p.d.R RJ = 1 since RJ is flat
and countably generated.

(2)⇒(1). If R′ = R/ke(J) then p.d.R′ RJ = 1 since RJ is flat. Then, after
eventually replacing R with R′, we may assume that every element of R \ J is not
a zerodivisor. We use similar methods as in [10]. If S is a multiplicative subset
(called semigroup in [10]) of R then R \ S is a prime ideal. First, if s ∈ P \ J
we prove there exists a prime ideal J ′ such that s /∈ J ′, J ⊆ J ′, RJ′ is countably
generated and p.d.R (RJ/RJ′) ≤ 1: we do a similar proof as in [10, Proposition
1.1]. Now we prove that RJ′/tRJ′ is free over R/tR, for every non-zerodivisor t of
R: we do as in the proof of [10, Proposition 1.2] . Suppose that J ′ 6= J and let
t ∈ J ′ \ J . Since s divides RJ′/tRJ′ and that this module is free over R/tR, we get
that RJ′ = tRJ′ , whence a contradiction. �
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