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MODULES WITH RD-COMPOSITION SERIES OVER A

COMMUTATIVE RING

FRANÇOIS COUCHOT

Abstract. If R is a commutative ring, then we prove that every finitely gen-
erated R-module has a pure-composition series with indecomposable cyclic
factors and any two such series are isomorphic if and only if R is a Bézout ring
and a CF-ring. When R is a such ring, the length of a pure-composition series
of a finitely generated R-module M is compared with its Goldie dimension and
we prove that these numbers are equal if and only if M is a direct sum of cyclic
modules. We also give an example of an artinian module over a noetherian
domain, which has an RD- composition series with uniserial factors. Finally
we prove that every pure-injective R-module is RD-injective if and only if R

is an arithmetic ring.

In this paper, for a commutative ring R, we study the following properties:

(1) Every finitely generated R-module M has a finite chain of RD-submodules
with cyclic factors.

(2) Every finitely generated R-module M has a finite chain of RD-submodules
with indecomposable cyclic factors.

(3) R satisfies (2) and any two chains of RD-submodules of M, with indecom-
posable cyclic factors, are isomorphic.

In [1], L.Salce and P.Zanardo proved that every valuation ring satisfies (3), and
in [2] C.Naudé showed that each h-local and Bézout domain also satisfies (3).

In section 1, we give definitions and some preliminary results. It is proved that
every ring that satisfies (1), is a Kaplansky ring(or an elementary divisor ring), but
we don’t know if the converse holds.

In section 2, we state that a ring R satisfies (3) if and only if R is a Bézout ring
and a CF-ring([3]). We show that R satisfies (2), when R is a semilocal arithmetic
ring or an h-semilocal Bézout domain, and for every finitely generated R-module
M, we prove that any chain of RD-submodules of M has the same length which is
equal to the number of terms of a finite sequence of prime ideals, associated to M.
However, we give two examples of semilocal arithmetic rings that don’t satisfy (3).

In section 3, when R is a ring that verifies (3), the length l(M) of each chain of
RD-submodules, with indecomposable cyclic factors, is compared with g(M), the
Goldie dimension of M. We show that g(M) ≤ l(M) and that M contains a direct
sum of g(M) nonzero indecomposable cyclic submodules which is an essential RD-
submodule of M. Hence it follows that M is a direct sum of cyclic submodules if
and only if g(M) = l(M). These results were proved in [1], when R is a valuation
ring and in [2], when R is an h-local Bézout domain.

Finally, in section 4, we give an example of an artinian module, over a noetherian
domain, that has a finite chain of RD-submodules, with uniserial factors. We also
give explicit examples of pure-injective modules that fail to be RD-injective, over
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noetherian domains. We prove that every pure-injective R-module is RD-injective
if and only if R is an arithmetic ring. When R is a domain, this result was proved
in [4], by C.G Naudé, G. Naudé and L.M. Pretorius.

1. Preliminaries

All rings in this paper are commutative with unity, and all modules are unital.
We recall that a module, over a ring R, is uniserial if its set of submodules is totally
ordered by inclusion. A ring R is a valuation ring if R is a uniserial module, and R
is arithmetic if RP is a valuation ring for every maximal ideal P. We say that R is a
Bézout ring if every finitely generated ideal is principal and R is a Kaplansky ring
(or elementary divisor ring) if every finitely presented R-module is a finite direct
sum of cyclic presented modules (see [5] and [6]).

An exact sequence of R-modules : 0 → F → E → G → 0 is pure-exact if it
remains exact when tensoring it with any R-module. In this case we say that F is
a pure submodule of E. When rE ∩ F = rF for every r ∈ R, we say that F is an
RD-submodule of E(relatively divisible) and that the sequence is RD-exact. Then
every pure submodule is an RD-submodule, and the equivalence holds if and only
if R is an arithmetic ring ([7] and [8]). We say that an R-module M has a pure-
composition series (respectively an RD-composition series) if there exists a finite
chain {0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M of pure (respectively RD-) submodules.
If we denote Ai =ann(Mi/Mi−1), then (Ai)1≤i≤n is called the annihilator sequence
of the pure-composition series. We say that the annihilator sequence is increasing
if A1 ⊆ A2 ⊆ · · · ⊆ An, and it is totally ordered if Ai and Aj are comparable
∀i, ∀j, 1 ≤ i, j ≤ n.

An R-module F is pure-projective (respectively RD-projective) if for every pure
(respectively RD-) exact sequence: 0 → N → M → L → 0, of R-modules, the
following sequence: 0 → HomR(F, N) → HomR(F, M) → HomR(F, L) → 0, is
exact.

An R-module F is pure-injective (respectively RD-injective) if for every pure
(respectively RD-) exact sequence: 0 → N → M → L → 0 of R-modules, the
following sequence: 0 → HomR(L, F ) → HomR(M, F ) → HomR(N, F ) → 0, is
exact. Then we have the following proposition.

Proposition 1.1. Let R be a ring. The following conditions are equivalent:

(1) Every finitely generated module has a pure-composition series with cyclic
factors.

(2) Every finitely generated module has an RD-composition series with cyclic
factors.

Moreover, if R satisfies one of these conditions, R is a Kaplansky ring.

Proof. If R satifies (1), by the same proof as in [2, Theorem 2.3 and Corollary
2.4], we show that R is a Kaplansky ring.

Since every pure submodule is an RD-submodule, it follows that (1) ⇒ (2).
If R satisfies (2) and if we prove that R is an arithmetic ring, by [7, Theorem 3]

R satisfies (1).
For every maximal ideal P, we must prove that RP is a valuation ring. Clearly

RP also satisfies (2). We may assume that R is local and that P is its maximal
ideal. If R is not a valuation ring, then, as in the proof of [8, Theorem 2], we
may suppose that there exist a and b in P such that Ra ∩ Rb = {0} and ann(a) =
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ann(b) = P. Moreover, there exists an indecomposable R-module M, with two
generators x and y, satisfying the relation bx − ay = 0. Since R satisfies (2), there
exists an RD-composition series: {0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M, such that
Mi/Mi−1 = R(zi + Mi−1) for each i, 1 ≤ i ≤ n. For every i, there exist si and ti
in R such that zi = six + tiy. Clearly M is generated by {zi | 1 ≤ i ≤ n}. Since
dimR/P (M/PM) = 2, there exist at least 2 indexes j and k, 1 ≤ j < k ≤ n such
that (sj , tj) /∈ P × P and (sk, tk) /∈ P × P. Let j be the smallest index such that
(sj , tj) /∈ P × P. Then dimR/P (Mj/PMj) = 1, whence Mj = Rzj. We may assume
that there exists z ∈ M, z = x+ty, where t ∈ R, such that Rz is an RD-submodule
of M. Then M/Rz = R(y + Rz) and if I = ann(M/Rz), I = {r | ry ∈ Rz}. Let
r ∈ I. There exists c ∈ R such that ry = c(x+ty). Since cx+(tc−r)y = 0, it follows
that ∃u ∈ R such that c = ub and r − tc = ua, whence r = u(a + tb). Therefore
I ⊆ R(a + tb) ⊂ Ra ⊕ Rb which is semi-simple. We deduce that I = Rd where
d = 0 or d = a + tb. We get that M/Rz ≃ R/Rd is RD-projective. Consequently
Rz is a direct summand of M, whence a contradiction. �

We don’t know if the converse of the second assertion of this proposition holds.
The following propositions state that some classes of arithmetic rings satisfie the
equivalent conditions of the Proposition 1.1, and therefore these rings are Kaplan-
sky.

We begin with the classe of semi-local arithmetic rings, and we already know
that these rings are Kaplansky by [6, Corollary 2.3].

If M is a finitely generated R-module, we denote µ(M) the minimal number of
generators of M.

Proposition 1.2. Let R be a semilocal arithmetic ring. Then every finitely gener-
ated R-module M has a pure-composition series with cyclic factors and an increas-
ing annihilator sequence.

Proof. Let P1, . . . , Pn be the maximal ideals of R, and J its Jacobson radical.
As in the proof of [9, Theorem 15], we state that, for every k, 1 ≤ k ≤ n, there exists
xk ∈ M such that, for each y ∈ xk + PkMPk

, RPk
y is a pure submodule of MPk

,
and annRPk

(RPk
y) = annRPk

(MPk
). Moreover µRPk

(MPk
/RPk

y) = µRPk
(MPk

) −

1 if MPk
6= {0}. When MPk

= {0} we put xk = 0. By the chinese remainder
Theorem, we get M/JM ≃

∏n
k=1(M/PkM) ≃

∏n
k=1(MPk

/PkMPk
). Consequently

there exists x ∈ M such that x ≡ xk mod PkMPk
, ∀k, 1 ≤ k ≤ n. We deduce

that Rx is a pure submodule of M, that ann(Rx) = ann M and that µ(M/Rx) =
µ(M) − 1. We complete the proof by induction on m = µ(M). �

A domain R is said to be h-semilocal if R/I is semilocal for every nonzero ideal
I, and R is said to be h-local if, in addition, R/P is local for every nonzero prime
ideal P, [10].

Proposition 1.3. Let R be a Bézout ring with a unique minimal prime ideal Q.
We assume that Q is a uniserial module and R/Q an h-semilocal domain. Then
every finitely generated R-module has a pure-composition series with cyclic factors
and an increasing annihilator sequence.

Proof. We may assume that R is not semilocal. If Q 6= {0}, then from [11,
Lemma 17 and 18] there exists only one maximal ideal P such that QRP 6= {0},
every ideal contained in Q is comparable to every ideal of R, Q2 = {0} and Q is a
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torsion divisible R/Q-module. Let M be a finitely generated module. Since R/Q
is a Bézout domain, M/QM ≃ F ⊕ T, where T is a torsion R/Q-module and F a
free R/Q-module of finite rank. Let m be this rank. We prove this proposition by
induction on m.

If m = 0, then for every x ∈ M, there exists s ∈ R \ Q such that sx ∈ QM.
Since Q is uniserial, there exists t ∈ Q and y ∈ M such that sx = ty. Since Q
is a torsion R/Q-module there exists r /∈ Q such that rt = 0. Since M is finitely
generated, we get that Q ⊂ ann(M), and that R/ann(M) is semilocal. From the
previous proposition we deduce the result.

Now suppose m ≥ 1. Let {x1 + QM, . . . , xm + QM} be a basis of F, and {y1 +
QM, . . . , yp + QM} a spanning set of T. Since Q is the nilradical of R, then, by
Nakayama Lemma {x1, . . . , xm} ∪ {y1, . . . , yp} generates M. Let H = {j | 1 ≤ j ≤
m, ann(xj) = ann(M)}. Since P is the only maximal ideal such that QRP 6= {0},
then H = {j | 1 ≤ j ≤ m, annRP

(RP xj) = annRP
(MP )} also. From [9, Theorem

15], it follows that there exists j ∈ H such that RP xj is a pure-submodule of
MP . Let N be a maximal ideal, N 6= P. Then MN ≃ (M/QM)N = FN ⊕ TN .
Consequently RNxj is a direct summand of MN . We deduce that Rxj is a pure-
submodule of M and if M ′ = M/Rxj , then M ′/QM ′ ≃ F ′ ⊕ T where F ′ is a
free R/Q-module of rank (m − 1). From the induction hypothesis it follows that
M has a pure-composition series with cyclic factors and an increasing annihilator
sequence. �

Proposition 1.4. Let R be an arithmetical ring and M be a finitely generated R-
module. If M has a pure-composition series with cyclic factors and an increasing
annihilator sequence, then µ(M) is the length of this pure-composition series.

Proof. Let {0} = M0 ⊂ M1 ⊂ M2 · · · ⊂ Mn−1 ⊂ Mn = M be a pure-
composition series such that Ai = ann(Mi/Mi−1) ⊆ Ai+1 for every i, 1 ≤ i ≤ n−1,
and such that Mi/Mi−1 = R(xi + Mi−1) for every i, 1 ≤ i ≤ n. Then, clearly {xi |
1 ≤ i ≤ n} generates M. Therefore n ≥ µ(M). Since M/Mn−1 6= {0}, there exists
a maximal ideal P such that (M/Mn−1)P 6= {0}. Consequently (Mi/Mi−1)P 6=
{0} for every i, 1 ≤ i ≤ n. Then MP has a pure-composition series of length n.
From [1, Lemma 1.4] we deduce that n = µRP

(MP ). But µRP
(MP ) ≤ µ(M) and

consequently n = µ(M). �

Now, as in [1] or [12], we establish the isomorphy of any two pure-composition
series, with cyclic factors and totally ordered annihilator sequences, i.e. the exis-
tence of a bijection between the two sets of cyclic factors, such that corresponding
factors are isomorphic. We use similar lemmas, with the same proofs, and we get
the following theorem:

Theorem 1.5. Let R be an arithmetic ring. Then any two pure-composition series
of a finitely generated R-module, with cyclic factors and totally ordered annihilator
sequences, are isomorphic.

Proof. See the proof of [12, Theorem 1.6, p. 177]. �

2. Pure-composition series with indecomposable cyclic factors

We follow T.S. Shores and R. Wiegand [3], by defining a canonical form for
an R-module M to be a decomposition M ≃ R/I1 ⊕ R/I2 ⊕ · · · ⊕ R/In, where
I1 ⊆ I2 ⊆ · · · ⊆ In 6= R, and by calling a ring R a CF-ring if every direct sum of
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finitely many cyclic modules has a canonical form. Now, following P. Vámos [13],
we say that R is a torch ring if the following conditions are satisfied :

(1) R is a nonlocal arithmetic ring.
(2) R has a unique minimal prime ideal Q which is a nonzero uniserial R-

module.
(3) R/Q is an h-local domain.

We will say that R is a semi-torch ring if R satisfies the conditions (1), (2) and
(3’): R/Q is an h-semilocal domain.

By [3, Theorem 3.12], a CF-ring is a finite product of indecomposable arithmetic
rings. If R is an indecomposable CF-ring, then R is a valuation ring, or an h-local
domain, or a torch ring.

We will say that R is a semi-CF-ring if R is a finite product of indecompos-
able arithmetic rings, where each indecomposable factor ring is semilocal, or an
h-semilocal domain, or a semi-torch ring.

In the sequel, we will call a ring R to be a PCS-ring if every finitely generated
module has a pure-composition series with indecomposable cyclic factors and if any
two such pure-composition series are isomorphic.

We will state the following theorem which is one of the main results of this paper.

Theorem 2.1. Let R be a ring. Then the following assertions are equivalent :

(1) R is a Bézout ring and a CF-ring.
(2) R is a PCS-ring.

Some preliminary results are needed to prove this theorem. First we will state
some results on finitely generated modules over a Bézout semi-CF-ring R. Recall
that a module M has Goldie dimension n if it has an independant set of uniform
submodules M1, . . . , Mn such that M1 ⊕ · · ·⊕Mn is essential in M. We will denote
g(M) the Goldie dimension of M. Then g(M) = n if and only if the injective hull
E(M) of M is a direct sum of n indecomposable injective modules.

Proposition 2.2. Let R be a Bézout semi-CF-ring. Then every finitely generated
R-module has a pure-composition series with indecomposable cyclic factors and a
finite Goldie dimension.

Proof. Let M be a finitely generated R-module. We put R =
∏m

j=1 Rj , where
Rj is indecomposable. Then M ≃ ⊕m

j=1Mj, where Mj = Rj ⊗R M. From Proposi-
tions 1.2 and 1.3, Mj has a pure-composition series:

0 ⊂ M1,j ⊂ · · · ⊂ Mnj ,j = Mj ,

with cyclic factors. Then the chain (c):

0 ⊂ M1,1 ⊂ · · · ⊂ Mn1,1 = M1 ⊂ M1 ⊕ M1,2 ⊂ · · · ⊂ M1 ⊕ M2 ⊂ . . .

· · · ⊂ M1 ⊕ · · · ⊕ Mm−1 ⊕ M1,m ⊂ · · · ⊂ M1 ⊕ · · · ⊕ Mm = M

is a pure-composition series of M, with cyclic factors. Let N be a factor of this
pure-composition series. Then N is a module over an indecomposable factor ring
R′ of R. When R′ is a domain and annR′(N) = {0}, or when R′ is a semitorch ring
and annR′(N) ⊆ Q, where Q is the minimal prime of R′, N is indecomposable. In
the other cases, R/ann(N) is semilocal. Since each semilocal arithmetic ring has
only finitely many minimal prime ideals which are pairwise comaximal, it follows
that N is a finite direct sum of indecomposable cyclic modules. Consequently, we
deduce from (c) a pure-composition series of M, with indecomposable cyclic factors.



6 FRANÇOIS COUCHOT

It is sufficient to prove that Mj has a finite Goldie dimension for every j, 1 ≤
j ≤ m. We may assume that R is indecomposable. First, we suppose that M is
cyclic. When R is a domain and ann(M) = {0}, or when R is a semitorch ring
and ann(M) ⊆ Q, where Q is the minimal prime of R, we have g(M) = 1. In the
other cases R/ann(M) is a semilocal ring. We may assume that R is semilocal. Let
(Si)i∈I be a family of independant submodules of M such that ⊕i∈ISi is essential
in M. For every maximal ideal P , MP is a uniserial RP -module and consequently
there is at most one index i in I such that (Si)P 6= {0}. It follows that I is a
finite set. Hence M has a finite Goldie dimension. In the general case, let N be a
submodule of M such that µ(N) = µ(M)−1 and M/N is cyclic.The inclusion map
N → E(N) can be extended to w : M → E(N). Let f : M → E(N) ⊕ E(M/N)
defined by f(x) = (w(x), x + N), for each x ∈ M. It is easy to verify that f is a
monomorphism. It follows that g(M) ≤ g(N) + g(M/N). By induction on µ(M),
we complete the proof. �

If R is a Bézout semi-CF-ring and N an indecomposable cyclic R-module, then
J = rad(ann(N)) = {r ∈ R | ∃p ∈ N, such that rp ∈ ann(N)} is the minimal
prime ideal over ann(N). For every finitely generated module M, from each pure-
composition series of M, with indecomposable cyclic factors, we can associate a
sequence of prime ideals. Then we have the following proposition:

Proposition 2.3. Let R be Bézout semi-CF-ring, and M a finitely generated mod-
ule. We consider two pure-composition series of M with indecomposable cyclic
factors:

(s): {0} = M0 ⊂ M1 ⊂ M2 . . . · · · ⊂ Mn−1 ⊂ Mn = M.
(s’): {0} = M ′

0 ⊂ M ′
1 ⊂ M ′

2 . . . · · · ⊂ M ′
n′−1 ⊂ M ′

n′ = M.
We denote Ai = ann(Mi/Mi−1), A′

i = ann(M ′
i/M

′
i−1), Ji = rad(Ai), J ′

i =
rad(A′

i), S = (Ji)1≤i≤n and S′ = (J ′
i)1≤i≤n′ .

Then n = n′, and there exists σ in the symmetric group Sn such that Jσ(i) = J ′
i

for every i, 1 ≤ i ≤ n.

Proof. Let C be a maximal totally ordered subsequence of S and P a maximal
ideal of R containing every term of C. For each i such that Ji 6⊆ P we have
(Mi)P = (Mi−1)P , and for each i such that Ji ⊆ P we have (Mi)P ⊃ (Mi−1)P .
We deduce from (s) a pure-composition series of MP , with cyclic factors, whose the
length is equal to the number of terms of C. By [12, Theorem 1.6, p. 177], the
pure-composition series of MP , deduced from (s) and (s’) are isomorphic, and this
conclusion holds for each maximal ideal P containing all terms of C. Consequently
there is a maximal totally ordered subsequence C′ of S′, which has the same terms
as C. Conversely, the same conclusion holds for every maximal totally ordered
subsequence of S′. Therefore S and S′ have the same terms, eventually with different
indices. �

We will say that a sequence of ideals (Ai)1≤i≤n is almost totally ordered if Ai

and Aj are either comparable, or comaximal, ∀i, ∀j, 1 ≤ i, j ≤ n, and that this
sequence is almost increasing if either Ai ⊆ Aj , or Ai and Aj are comaximal, ∀i, ∀j,
1 ≤ i < j ≤ n, . Let us observe that every sequence of prime ideals of an arithmetic
ring is almost totally ordered.
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In the sequel, if R is a Bézout semi-CF-ring and M a finitely generated R-
module, we denote ℓ(M) the length of every pure-composition series of M, with
indecomposable cyclic factors.

Proposition 2.4. Let R be a Bézout semi-CF-ring, and M a finitely generated
R-module. Then the following assertions are true:

(1) From every pure-composition series of M, with indecomposable cyclic fac-
tors, we deduce a pure-composition series with an almost increasing anni-
hilator sequence.

(2) Any two pure-composition series of M, with indecomposable cyclic factors
and almost totally ordered annihilator sequences, are isomorphic.

Proof.

(1) We consider the following pure-composition series of M, with indecomposable
cyclic factors,

(s) :0 = M0 ⊂ M1 ⊂ M2 . . . · · · ⊂ Mn−1 ⊂ Mn = M,

where Mi/Mi−1 = R(xi + Mi−1).
We denote Ai = ann(Mi/Mi−1) and S the sequence of prime ideals associated

to M. We put S = (Ji)1≤i≤n.
We claim that, after a possible permutation of indices, we may assume that S is

almost increasing. To prove this, we induct on n. If n = 1, it is obvious. Suppose
n > 1. Let C be a maximal totally ordered subsequence of S, and S′ the subsequence
of all terms of S which are not terms of C. If C = S the claim is obvious. We may
assume that C 6= S. Clearly, if Ji is a term of C and Jk a term of S′, then Ji ⊂ Jk

or Ji and Jk are comaximal. Since the induction hypothesis can be applied to S′,
then it is possible to get an almost increasing sequence, if we begin to index the
terms of C and we end with the terms of S′.

We will prove, by induction on n = ℓ(M), that we can get a pure-composition
series (t) of M, with indecomposable cyclic factors: {0} ⊂ N1 ⊂ . . . Nn−1 ⊂ M, with
an almost increasing annihilator sequence (Bi)1≤i≤n and such that rad(Bi) = Ji,
for each i, 1 ≤ i ≤ n.

If n = 1, this is obvious. We assume that n > 1. Let k be the smallest index
such that rad(Ak) = Jn. If k < n, one of the five following cases holds:

(a): rad(Ak+1) and Jn are comaximal. It follows that Ak and Ak+1 are also
comaximal. Therefore, for every maximal ideal P, we have (Mk+1/Mk)P = {0} or
(Mk/Mk−1)P = {0}. Hence Mk+1/Mk−1 is cyclic and its annihilator is Ak ∩Ak+1.
Then Mk+1/Mk−1 ≃ R/(Ak ∩ Ak+1) ≃ R/Ak ⊕ R/Ak+1. Hence Mk+1/Mk−1 =
R(x′

k + Mk−1) ⊕ R(x′
k+1 + Mk−1), where ann(x′

k + Mk−1) = Ak and ann(x′
k+1 +

Mk−1) = Ak+1. Therefore Mk can be replaced with M ′
k = Mk−1 + Rx′

k+1, where
ann(M ′

k/Mk−1) = Ak+1 and Ak = ann(Mk+1/M
′
k). Then we replace k with (k + 1)

for the next step.
(b): rad(Ak+1) ⊂ Jn. By applying [3, Lemma 3.1] to R/(Ak ∩ Ak+1), we get

that Ak+1 ⊂ Ak. With the same proof as in [12, Lemma 1.3 p.172], we state that
Mk+1/Mk−1 = Mk/Mk−1 ⊕ R(xk+1 + Mk−1). Therefore Mk can be replaced with
M ′

k = Mk−1 + Rxk+1, where ann(M ′
k/Mk−1) = Ak+1 ⊂ Ak = ann(Mk+1/M

′
k).

Then we replace k with (k + 1) for the next step.
(c): rad(Ak+1) = Jn and Ak ⊆ Ak+1. Then we replace k with (k + 1) for the

next step.
(d): rad(Ak+1) = Jn and Ak+1 ⊂ Ak. We do as in the case (b).
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(e): rad(Ak+1) = Jn and Ak+1 is not comparable with Ak. By applying Propo-
sition 1.2 or 1.3 to Mk+1/Mk−1, it follows that there exists a pure submodule
M ′

k of Mk+1, containing Mk−1, such that M ′
k/Mk−1 and Mk+1/M

′
k are cyclic and

ann(M ′
k/Mk−1) = Ak ∩ Ak+1. For every maximal ideal P , {(Ak)P , (Ak+1)P } =

{(Ak ∩ Ak+1)P , (Ak + Ak+1)P }. By using [12, Theorem 1.6, p.177], it follows that
the annihilator of Mk+1/M

′
k is Ak +Ak+1. Therefore Mk can be replaced with M ′

k.
Then we replace k with (k + 1) for the next step.

After (n− k) similar steps, we get from (s), a pure-composition series (s’) of M,
{0} ⊂ M ′

1 · · · ⊂ M ′
n−1 ⊂ M ′

n = M, with the annihilator sequence (A′
i)1≤i≤n, and

such that rad(A′
n) = Jn. Let us observe that, if rad(A′

k) = Jn, then A′
k ⊆ A′

n, for
each k, 1 ≤ k < n. Hence, either A′

i ⊆ A′
n, or A′

i and A′
n are comaximal, for each

i, 1 ≤ i < n.
Now ℓ(M ′

n−1) = n − 1 and (Ji)1≤i<n is the sequence of prime ideals associated
to M ′

n−1. Moreover, (s’) induces a pure-composition series (s”) of M ′
n−1, with the

annihilator sequence (A′
i)1≤i<n. From the induction hypothesis, we get from (s”),

a pure-composition series (t’) of M ′
n−1, {0} ⊂ N1 ⊂ . . . Nn−1 = M ′

n−1, with an
almost increasing annihilator sequence (Bi)1≤i<n such that Ji = rad(Bi), for every
i, 1 ≤ i < n. We put Bn = A′

n. From the above observation, it follows that
(Bi)1≤i≤n is an almost increasing sequence.

Let us observe that the case (e) is not possible if (Ai)1≤i≤n is almost totally
ordered. In this case, (s) and (t) are isomorphic.

(2) We consider two pure-composition series of M, with indecomposable cyclic
factors and almost totally ordered annihilator sequences:

(s): {0} = M0 ⊂ M1 ⊂ M2 . . . · · · ⊂ Mn−1 ⊂ Mn = M.
(s’):{0} = M ′

0 ⊂ M ′
1 ⊂ M ′

2 . . . · · · ⊂ M ′
n′−1 ⊂ M ′

n = M.
We denote Ai = ann(Mi/Mi−1) and A′

i = ann(M ′
i/M

′
i−1). From (1) we may

assume that the annihilator sequences are almost increasing and that rad(Ai) =
rad(A′

i) = Ji, ∀i, 1 ≤ i ≤ n. Let P be a maximal ideal of R. If Ji ⊆ P, then by
[12, Theorem 1.6, p.117], (Ai)P = (A′

i)P . If Ji 6⊆ P, then (Ai)P = (A′
i)P = RP .

Therefore Ai = A′
i, for every i, 1 ≤ i ≤ n. �

Now, we can prove the implication (1) ⇒ (2) of Theorem 2.1.
Proof of Theorem 2.1. (1) ⇒ (2). By [3, Corollary 3.9], every pure-composition

series of a finitely generated R-module, with indecomposable cyclic factors, has an
almost totally ordered annihilator sequence. Hence the result follows from Propo-
sition 2.2 and Proposition 2.4. �

The following propositions are needed to prove the implication (2) ⇒ (1) of
Theorem 2.1. Now we suppose that R is a PCS-ring and if M is a finitely generated
module, we denote ℓ(M) the length of every pure-composition series of M with
indecomposable cyclic factors.

Proposition 2.5. Let R be a PCS-ring. The following assertions are true:

(1) For each indecomposable cyclic module N, g(N) = 1
(2) For every finitely generated R-module M, g(M) ≤ ℓ(M).

Proof.

(1) Since N ≃ R/ann(N), we can replace R with R/ann(N) and assume that
R is an indecomposable module. Let I and J be ideals of R such that
I ∩ J = {0}. Then R/I ⊕ R/J is a finite direct sum of indecomposable
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cyclic modules. If I 6= {0} and J 6= {0} then every annihilator of each
summand of R/I ⊕R/J is a nonzero ideal. On the other hand we consider
the following exact sequence :

(i) 0 → R
σ
→ R/I⊕R/J

ϕ
→ R/(I +J) → 0 such that σ(r) = (r+I, r+J)

and ϕ(r+ I, t+J) = (r− t)+(I +J). Let P be a maximal ideal of R. Then
we may assume that IP ⊆ JP , and, if r(x+IP , y+JP ) = (z+IP , z+JP ), it
is obvious that r(x+IP , x+JP ) = (z+IP , z+JP ). Hence RP is isomorphic
to a pure RP -submodule of (R/I ⊕ R/J)P . We deduce that (i) is a pure
exact sequence, and from a pure-composition series of R/(I + J), we get a
pure-composition series of R/I ⊕R/J such that the first annihilator is {0}.
Consequently, if I 6= {0} and J 6= {0}, R/I⊕R/J has two pure-composition
series which are not isomorphic. Since R is a PCS-ring, we deduce that R
is a uniform module and that g(R) = 1.

(2) By induction on n = ℓ(M). If n = 1 the result follows from (1). Now
suppose n > 1. Let {0} ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M be a pure-
composition series of M, with indecomposable cyclic factors. As in the proof
of Proposition 2.2, we get that g(M) ≤ g(Mn−1)+1, because g(M/Mn−1) =
1. Since ℓ(Mn−1) = n − 1, it follows from the induction hypothesis that
g(M) ≤ n. �

Proposition 2.6. Let R be a PCS-ring. Then R has only finitely many minimal
prime ideals.

Proof. We may assume that R is a reduced ring. If S denotes the total ring of
quotients of R, then by [14, Proposition 2, p. 106], S is a Von Neumann regular
ring. By Proposition 2.5, g(R) is finite. We deduce from [14, Proposition 2, p.
103] that S is semi-local. Consequently S is a semi-simple ring, i.e. S =

∏n
i=1 Ki,

where Ki is a field for every i, 1 ≤ i ≤ n. If u : R → S is the natural map, and,
∀i, 1 ≤ i ≤ n, pi : S → Ki the canonical epimorphism, we denote Pi = ker(pi ◦ u).
Then Pi is a prime ideal and

⋂n
i=1 Pi = {0}. We deduce that {Pi | 1 ≤ i ≤ n} is

the set of minimal prime ideals of R. �

Proposition 2.7. Let R be a PCS-ring with a unique minimal prime ideal Q. Then
Q is a uniserial module.

Proof. If there exist a and b in Q such that a /∈ Rb and b /∈ Ra, then R/(Ra ∩
Rb) is indecomposable with g(R/(Ra ∩ Rb)) ≥ 2. From Proposition 2.5, we get a
contradiction. �

Proposition 2.8. Let R be a PCS-ring. Then every nonminimal prime ideal is
contained in only one maximal ideal.

Proof. We do a similar proof as in [11, Lemma 10]. By Proposition 2.6, R
has only finitely many minimal prime ideals. Since R is arithmetic, these minimal
prime ideals are pairwise comaximal and consequently R is a finite product of
indecomposable PCS-rings with a unique minimal prime. Hence we may assume
that R has only one minimal prime ideal Q. Let P be a prime ideal such that Q ⊂ P
and a ∈ P \ Q. Then, from [3, Lemma 3.1], it follows that Q ⊂ Ra. We may also
assume that P is minimal over Ra. Suppose that P ⊆ M1 ∩ M2 where M1 and M2

are two distinct maximal ideals of R. Let x1 and x2 in R, xi ∈ Mj \ Mi, i 6= j,
such that x1 + x2 = 1. If S = R \ (M1 ∪ M2), we denote R′ = S−1R. Then

axi /∈ aMiR
′, ∀i, i = 1 or 2. Else, axi =

ami

s
where mi ∈ Mi and s ∈ S. Hence
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there exists t ∈ S such that a(tsxi − tmi) = 0. It follows that (tsxi − tmi) ∈ Q,
and since tmi ∈ Mi, we get that tsxi ∈ Mi. But t, s and xi are not in Mi, hence

we get a contradiction. Let I = aM1 ∩ aM2. Then
axi

1
/∈ R′I. Now we consider

R1 = R/I. Then R1 is also a finite product of indecomposable rings with a unique
minimal prime ideal. Hence we may assume that P1 = P/I is the only minimal
prime ideal of R1. Then, if S1 = R1 \ (M1/I ∪ M2/I) we have S−1

1 R1 ≃ R′/R′I.
Consequently axi + I 6= I, ∀i, i ∈ {1, 2}. Since R is a Bézout ring and x1 + x2 =
1, Rax1 ∩Rax2 = Rax1x2. We deduce that R1(ax1 + I)∩R1(ax2 + I) = {0}. This
contradicts that P1 is uniserial by Proposition 2.7. �

Now, we complete the proof of Theorem 2.1.
Proof of Theorem 2.1. (2) ⇒ (1). By Proposition 1.1, R is a Bézout ring.

We deduce from Propositions 2.6, 2.7 and 2.8 and from [3, Theorem 3.12] that R
is also a CF-ring. �

It is easy to get a semilocal arithmetic ring R which is not a PCS-ring.

Example 2.9. Let D a semilocal and h-local Bézout domain, F its classical field
of quotients, P and Q two distinct maximal ideals of D, E = (F/PDP )⊕(F/QDQ)

and R =
{(

d e

0 d

)
| d ∈ D, e ∈ E

}
the trivial extension of D by E. Then R is a

semilocal arithmetic ring with a unique minimal prime ideal which is not uniserial.
By Proposition 2.7, R is not a PCS-ring.

Example 2.10. Let R be the Kaplansky domain of [15, example 1] . We may
assume that R is semilocal and nonlocal. Then its Jacobson radical is a nonzero
prime ideal contained in every maximal ideal. Since R is not h-local, R is not a
PCS-ring.

The following questions can be proposed :
Let R be a ring such that every finitely generated R-module has a pure-composition

series with indecomposable cyclics factors.

(1) Is g(M) finite, for every finitely generated R-module M?
(2) Is Minspec(R) a finite set ? Minspec(R) denotes the set of minimal prime

ideals of R.
(3) For every finitely generated R-module M, are the lengths of any two pure-

composition series of M, with indecomposable cyclic factors, equal?

Let us observe that, if the answer to the question (1) is positive, then Minspec(R)
is finite (see the proof of Proposition 2.6), and if Minspec(R/I) is finite, for every
proper ideal I, then the question (3) also has a positive answer (see the proof of
Proposition 2.3.)

When Minspec(R) is compact in its Zariski topology, we can answer to the
question (2).

Proposition 2.11. Let R be an arithmetic ring. We suppose that Minspec(R)
is compact and every finitely generated module has a pure-composition series with
indecomposable cyclic factors.

Then Minspec(R) is a finite set.

Proof. Since R has a pure-composition series with indecomposable cyclic fac-
tors, R is a finite direct product of indecomposable Kaplansky rings. We may
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assume that R is semi-prime and indecomposable. Since RP is a valuation do-
main for every maximal ideal P, by [16, Proposition 10], R is semi-hereditary. Let
r ∈ R, r 6= 0. Since ann(r) is generated by an idempotent, ann(r) = {0}. Hence R
is a domain. �

We can answer to these questions when R is a Von Neumann regular ring. Then
every exact short sequence of R-modules is pure. It follows that every finitely
generated R-module has a pure-composition series with cyclic factors. However, we
have the following result.

Proposition 2.12. Let R be a Von Neumann regular ring. Then the following
statements are true.

(1) A finitely generated R-module has a pure-composition series with indecom-
posable cyclic factors if and only if it is a semi-simple module.

(2) Every finitely generated R-module has a pure-composition series with inde-
composable cyclic factors if and only if R is a semi-simple ring.

Proof. Clearly (1) ⇒ (2). We can also deduce (2) from Proposition 2.11. (1) is
an immediate consequence of the following Theorem. �

Theorem 2.13. Let R be a ring. Then the following assertions are equivalent :

(1) R is a Von Neumann regular ring.
(2) Every indecomposable R-module is simple.

Proof. (2) ⇒ (1). For every simple R-module S, ER(S) ≃ S. Since every simple
R-module is injective, we deduce that R is Von Neumann regular.

(1) ⇒ (2). Let M be an indecomposable R-module, M 6= {0}. Then there exists
a maximal ideal P such that MP 6= {0}. Let a ∈ P. Then there exists an idempotent
e such that Ra = Re. Since MP 6= {0} and (1 − e) /∈ P, we have (1 − e)M 6= {0}.
We deduce that eM = {0} since M is indecomposable. Consequently M is an
R/P -module. Since R/P is a field, M is a simple module. �

By using this theorem, we can also answer to the following question proposed
by R. Wiegand in [17] : are the following assertions equivalent for a commutative
ring R and an integer n ≥ 1 ?

(1) Every finitely generated R-module is a finite direct sum of submodules
generated by at most n elements.

(2) µ(M) ≤ n, for every indecomposable finitely generated R-module M.

If R is a Von Neumann regular ring, then R satisfies the second assertion by
Theorem 2.13, with n = 1. But if R satisfies the first assertion, then R is semi-
simple by [18, Corollary 21.7] . Consequently the answer to Wiegand’s question is
negative.

3. The Goldie dimension

In this section we will prove the following theorem.

Theorem 3.1. Let R be a PCS-ring. Then a finitely generated R-module M is a
direct sum of cyclic submodules if and only if g(M) = ℓ(M).

When R is a valuation ring this theorem was proved by L. Salce and P. Zanardo
[1, Corollary 3.5], and when R is an h-local Bézout domain, it was proved by C.
Naudé [2, Theorem 2.2]. Some preliminary results are needed to prove this theorem.
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Lemma 3.2. Let R be an arithmetic ring, {0} ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M
a pure-composition series of a finitely generated R-module M, with Mi/Mi−1 =
R(xi + Mi−1) for all i, 1 ≤ i ≤ n, and with an increasing annihilator sequence
(Ai)1≤i≤n. Let c1, . . . , cn in R such that

∑n
i=1 cixi = 0.

Then ci ∈ An, for every i, 1 ≤ i ≤ n.

Proof. We prove this lemma by induction on n. If n = 1 it is obvious. If
n > 1, then cn ∈ An. Moreover, since Mn−1 is a pure submodule of M, there exist

d1, . . . , dn−1 in R such that cnxn = cn(
∑n−1

i=1 dixi) = −
∑n−1

i=1 cixi. We deduce the

following equality
∑n−1

i=1 (cndi + ci)xi = 0. From the induction hypothesis it follows
that (cndi + ci) ∈ An−1 for every i, 1 ≤ i ≤ n − 1. Since An−1 ⊆ An and cn ∈ An,
we deduce that ci ∈ An, ∀i, 1 ≤ i ≤ n. �

Lemma 3.3. Let R be a Bézout and a torch ring, Q its minimal prime ideal and
P the only maximal ideal such that QP 6= {0}. Let M be a finitely generated R-
module, {0} ⊂ M1 ⊂ · · · ⊂ Mn = M a pure-composition series, with Mi/Mi−1 =
R(xi + Mi−1) for all i, 1 ≤ i ≤ n, and with an increasing annihilator sequence
(Ai)1≤i≤n. We assume that An ⊆ Q. Let M ′ = Mn−1.

If M ′ is not essential in M, then M has a non-zero cyclic summand.

Proof. Let y ∈ M \ M ′ such that Ry ∩ M ′ = {0}. Then y =
∑n

i=1 aixi, where
ai ∈ R for all i, 1 ≤ i ≤ n. By Propositions 1.3 and 1.1 R is a Kaplansky ring,
hence there exist a, b1, . . . , bn in R such that ai = abi for every i, 1 ≤ i ≤ n, and∑n

i=1 Rbi = R. We put z =
∑n

i=1 bixi.
We claim that M/QM is a free R/Q-module with basis {xi + QM | 1 ≤ i ≤ n}.

Let c1, . . . , cn ∈ R such that
∑n

i=1 cixi ∈ QM. There exist q1, . . . , qn in Q such
that

∑n
i=1(ci − qi)xi = 0. From Lemma 3.2, since An ⊆ Q, it follows that ci ∈ Q,

∀i, 1 ≤ i ≤ n.
Now we claim that RP y 6= {0}. Else there exists s /∈ P such that sy = 0. From

Lemma 3.2, it follows that ai ∈ Q, ∀i, 1 ≤ i ≤ n, whence y ∈ QM. If P ′ is a
maximal ideal, P ′ 6= P, then MP ′ ≃ (M/QM)P ′ and consequently RP ′y = {0}.
Since Ry 6= {0}, we get a contradiction.

Since RP y 6= {0}, RP y ∩ M ′
P = {0} and RP is a valuation ring, it follows that

RP z ∩ M ′
P = {0}.

Since R is a Kaplansky ring, there exists an invertible n× n matrix Λ such that
[b1, . . . , bn]Λ = [1, 0, . . . , 0].

Then z = [b1, . . . , bn][x1, . . . , xn]t = [b1, . . . , bn]ΛΛ−1[x1, . . . , xn]t.
Hence z = [1, 0, . . . , 0]Λ−1[x1, . . . , xn]t. We put [z1, . . . , zn]t = Λ−1[x1, . . . , xn]t.

Thus z = z1 and {z1, . . . , zn} generates M. Let N be the submodule of M generated
by {z2, . . . , zn}. Then {zi + QM | 1 ≤ i ≤ n} is a basis of M/QM, and for every
maximal ideal P ′, P 6= P ′, we have MP ′ = (Rz1)P ′ ⊕ NP ′ .

We put Λ = (λi,k)1≤i,k≤n. Then, since RP is a valuation ring, there exists j,
1 ≤ j ≤ n, such that λj,1 and bj are units of RP and such that Λj,1 is an invertible
matrix, where Λj,1 is the (n− 1)× (n− 1) matrix obtained from Λ, by deleting its
first column and its j-th row.

Moreover Λj,1[z2, . . . , zn]t =

[x1 − λ1,1z1, . . . , xj−1 − λj−1,1z1, xj+1 − λj+1,1z1, . . . , xn − λn,1z1]
t
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and {xi − λi,1z1 | 1 ≤ i ≤ n, i 6= j} also generates NP . Since bj is a unit of RP , as

in the proof of of [12, Lemma 2.1, p. 179], we get that RP z1 ∩
( n∑

i=1
i6=j

RP xi

)
= {0}.

Let x ∈ (Rz1)P ∩ NP . Then there exist c and ci in RP , for every i, 1 ≤ i ≤

n, i 6= j, such that x = cz1 =
n∑

i=1
i6=j

ci(xi − λi,1z1). From above, we deduce that

(
c +

n∑

i=1
i6=j

ciλi,1

)
z1 =

n∑

i=1
i6=j

cixi = 0. From Lemma 3.2, it follows that ci ∈ (An)P

for every i, 1 ≤ i ≤ n, i 6= j. On the other hand, if we set d = c +

n∑

i=1
i6=j

ciλi,1,

then dz1 = 0 implies that dbi ∈ (An)P , ∀i, 1 ≤ i ≤ n. Since bj is a unit of
RP , it follows that d ∈ (An)P , whence c ∈ (An)P . Consequently cz1 ∈ M ′

P . Since
M ′

P ∩ RP z1 = {0}, we also get that RP z1 ⊕ NP = MP . �

Lemma 3.4. Let R be a Bézout and a torch ring and Q its minimal prime ideal.
Let M be a finitely generated module and {0} ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn = M
a pure-composition series with Mi/Mi−1 = R(xi + Mi−1) for all i, 1 ≤ i ≤ n,
and with an increasing annihilator sequence (Ai)1≤i≤n. We assume that Q ⊂ An. If
M/Mn−1 = R(x′

n+Mn−1)⊕R(x”n+Mn−1), where R(x′
n+Mn−1) is indecomposable,

we set M ′ = Mn−1 + Rx”n.
If M ′ is not essential in M, then M has a nonzero cyclic summand.

Proof. There exists y ∈ M \M ′ such that M ′∩Ry = {0}. Let A′ = ann(M/M ′).
Then An ⊆ A′ and there exists only one maximal ideal P such that A′ ⊆ P.
Therefore, if P ′ is a maximal ideal, P ′ 6= P, we have (M/M ′)P ′ = {0}. It follows
that there exists s /∈ P ′ such that sx′

n ∈ M ′. We also get that sy ∈ M ′ and since
M ′ ∩ Ry = {0}, we have sy = 0. Consequently RP ′y = {0} and M ′

P ′ = MP ′ for
every maximal ideal P ′ 6= P.

There exist a1, . . . , an in R such that y =
∑n

i=1 aixi. As in the previous lemma,
there exist a, b1, . . . , bn such that ai = abi for every i, 1 ≤ i ≤ n, and such that∑n

i=1 Rbi = R. Then a /∈ A′, else y ∈ M ′. Since a /∈ Q and R/Q is an h-local Bézout
domain, it follows that R/Ra =

⊕m
j=1 R/Rcj, where R/Rcj is indecomposable for

every j, 1 ≤ j ≤ m. We denote Pj the only maximal ideal of R such that Rcj ⊆ Pj ,
for each j, 1 ≤ j ≤ m.

If P 6= Pj for each j, 1 ≤ j ≤ m, then a is a unit of RP . In this case we set z = y
and di = ai, for every i, 1 ≤ i ≤ n.

If there exists j, 1 ≤ j ≤ m, such that P = Pj , then we put c = cj . There
exists d ∈ R such that a = cd, and d is a unit of RP . We set di = bid, for every
i, 1 ≤ i ≤ n, and we put z =

∑n
i=1 dixi. For every maximal ideal P ′ 6= P, c is

a unit of RP ′ , whence RP ′z = RP ′y = {0}. Since M ′
P ∩ RP y = {0} and RP is a

valuation ring, it follows that RP z ∩ M ′
P = {0}.

In the two cases, there exists j, 1 ≤ j ≤ n, such that dj is a unit of RP . Let
ℓ be the greatest index such that Aℓ ⊆ Q. We claim that ℓ < j. Else there exist
t ∈ PRP , and d′ℓ+1, . . . , d

′
n ∈ RP such that di = td′i for every i, ℓ < i ≤ n. Let

s ∈ RP A′ \ RP Q. Then sz = 0. We get the following equality : st(
∑n

i=ℓ+1 d′ixi) =
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−s(
∑ℓ

i=1 dixi). Since (Mℓ)P is a pure-submodule of MP , there exist d′1, . . . , d
′
ℓ in

RP such that
∑ℓ

i=1 s(td′i + di)xi = 0. From Lemma 3.2 it follows that s(td′i + di) ∈
RP Aℓ ⊆ RP Q, for every i, 1 ≤ i ≤ ℓ. Since s /∈ RP Q and t ∈ PRP , we deduce that
di ∈ PRP for every i, 1 ≤ i ≤ ℓ. Hence we get a contradiction.

Since Q ⊂ Aj ⊆ An, then Mj/Mj−1 = R(x′
j + Mj−1) ⊕ R(x”j + Mj−1), such

that (Mj/Mj−1)P = RP (x′
j + (Mj−1)P ), RP (x”j + (Mj−1)P ) = {0} and RP ′(x′

j +

(Mj−1)P ′) = {0} for every maximal ideal P ′ 6= P.

Let N =

n∑

i=1
i6=j

Rxi + Rx”j . Then NP =

n∑

i=1
i6=j

RP xi and NP ′ = MP ′ for every

maximal ideal P ′ 6= P. As in the proof of [12, Lemma 2.1, p. 179], we state that
NP ⊕ RP z = MP . Consequently we get M = N ⊕ Rz. �

Proposition 3.5. Let R be a Bézout and a torch ring. Then every finitely R-
module M contains a pure and essential submodule B which is a direct sum of
g(M) cyclic modules.

Proof. We induct on m = ℓ(M). The case m = 1 is obvious. Let m > 1 and
{0} ⊂ M1 · · · ⊂ Mn = M be a pure-composition series with cyclic factors and
an increasing annihilator sequence (Ai)1≤i≤n. Let Q be the minimal prime of R.
If An ⊆ Q, then n = m and we set M ′ = Mn−1. If Q ⊂ An, then M/Mn−1 =
R(x′

n + Mn−1) ⊕ R(x”n + Mn−1) where R(x′
n + Mn−1) is indecomposable ; in this

case we set M ′ = Mn−1 + Rx”n. In the two cases, ℓ(M ′) = m − 1.
If M ′ is essential, M ′ has a pure and essential submodule B′ which is a direct

sum of g(M ′) non-zero indecomposable cyclic modules ; in this case, we are done
by setting B = B′.

If M ′ is not essential, then by Lemma 3.3 or Lemma 3.4, M = N ⊕ Rz, for
some z ∈ M, z 6= 0, where Rz is indecomposable and N a submodule of M. Then
ℓ(N) = m − 1. Thus N has a pure and essential submodule B” which is a direct
sum of g(N) non-zero indecomposable cyclic submodules. We put B = B”⊕Rz to
conclude the proof. �

Now we can prove the Theorem 3.1.
Proof of Theorem 3.1. By Proposition 2.5, the Goldie dimension of every

cyclic indecomposable module is one. Consequently if M is a finite direct sum of
cyclic modules, we have ℓ(M) = g(M).

Conversely let M be a finitely generated module such that ℓ(M) = g(M). By
Proposition 2.6, R =

∏m
j=1 Rj , where Rj is an indecomposable PCS-ring for every

j, 1 ≤ j ≤ m. We deduce that M ≃
∏m

j=1 Mj , where Mj = Rj ⊗R M. Then

ℓ(M) =
∑m

j=1 ℓ(Mj) and g(M) =
∑m

j=1 g(Mj). From Proposition 2.5, we deduce

that ℓ(Mj) = g(Mj) for every j, 1 ≤ j ≤ m. Consequently we may assume that R
is indecomposable. When R is a valuation ring, the result was proved by L. Salce
and P. Zanardo [1, Corollary 3.5], (or [12, Theorem 2.4, p. 180]), and when R is
an h-local Bézout domain, it was proved by C. Naudé [2, Theorem 2.2.]. Hence
we may assume that R is a Bézout and torch ring. We prove the result by using
Proposition 3.5 and Proposition 2.5, with the same proof as in [12, Theorem 2.4,
p. 180]. �

Let R be a Bézout semi-CF-ring, M a finitely generated R-module and (s) :
{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M, a pure-composition series of M, with
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indecomposable cyclic factors. We put g((s)) =
∑n

i=1 g(Mi/Mi−1). As in the proof
of Proposition 2.5, we state that g(M) ≤ g((s)).

However, if (s′) is another pure-composition series of M, with indecomposable
cyclic factors, we have not necessarely g((s)) = g((s′)). For instance:

Example 3.6. Let R be the ring defined in example 2.9. We put E1 = F/PDP ,

E2 = F/QDQ, Ai =
{(

0 e

0 0

)
| e ∈ Ei

}
, where i = 1 or 2, and J = A1 + A2. Then

A1 ∩ A2 = {0} and J is the minimal prime ideal of R. Let M = R/A1 ⊕ R/A2 and
(s) be the pure-composition series with the annihilator sequence (A1, A2). Then
g(M) = g((s)) = 2. But M has a pure-composition series (s′) whose factors are R
and R/J. We have g((s′)) = 3. Let us observe that M is not isomorphic to R⊕R/J.

If M is a finitely generated module over a Bézout semi-CF-ring R, we denote
S(M) the set of all pure-composition series of M, with indecomposable cyclic fac-
tors, and we put h(M) = inf{g((s)) | (s) ∈ S(M)}. Then we have the following
proposition:

Proposition 3.7. Let R be a Bézout semi-CF-ring and M a finitely generated
R-module. Then the following assertions are true:

(1) µ(M) ≤ ℓ(M) ≤ h(M).
(2) g(M) ≤ h(M).
(3) If M is a direct sum of cyclic modules, then g(M) = h(M).

We don’t know if the converse of the third assertion holds.

4. Pure-injectivity and RD-injectivity

First, for every integer n ≥ 2, we give an example of an artinian module M
over a noetherian domain R, which has an RD-composition series of length n, with
uniserial factors.

Example 4.1. Let K be an algebraically closed field of characteristic 0, K[X, Y ]
the polynomial ring in two variables X and Y, and f(X, Y ) = Y n−Xn(1+X), where
n ∈ N, n ≥ 2. By considering that f(X, Y ) is a polynomial in one variable Y with
coefficients in K[X ], it follows from Eisenstein’s criterion that f(X, Y ) is irreducible.

Then R =
K[X, Y ]

f(X, Y )K[X, Y ]
is a domain. Let x and y be the images of X and Y in

R by the natural map and P the maximal ideal of R generated by {x, y}. If R̂ is the

completion of R in its P -adic topology, then R̂ ≃
K[[X, Y ]]

f(X, Y )K[[X, Y ]]
. Since K has n

distinct n-th roots of unity, by applying Hensel’s Lemma to K[[X ]], we deduce that
there exist u1(X), . . . , un(X) in K[[X ]] such that f(X, Y ) =

∏n
i=1(Y − Xui(X)).

Let E = ER(R/P ). Then by [19], EndRE = R̂, E is also an injective R̂-module

and every R-submodule of E is also an R̂-submodule. Moreover, there is a bijection

between the set of ideals of R̂ and the set of submodules of E. For every k, 1 ≤ k ≤

n, Qk = (y − xuk(x))R̂ is a minimal prime ideal of R̂, and Qk ∩ R = {0}.

For every k, 1 ≤ k ≤ n, let Fk = {e ∈ E | Qk ⊆ annR̂(e)}. Then R̂/Qk ≃
K[[Z]], and consequently it is a discrete valuation domain. We deduce that Fk is

a uniserial R-module. Since Fk is an injective R̂/Qk-module, it follows that Fk

is a divisible R-module for every k, 1 ≤ k ≤ n. We set Ek =
∑k

i=1 Fi for every
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k, 1 ≤ k ≤ n. Then annR̂(Ek) =
⋂k

i=1 Qi and consequently En = E. Moreover,
Ek/Ek−1 = (Ek−1 + Fk)/Ek−1 ≃ Fk/(Fk ∩ Ek−1). We deduce that Ek/Ek−1 is
a uniserial R-module, and since R is a domain it follows that Ek/Ek−1 is also
divisible. Consequently Ek is divisible over R, ∀k, 1 ≤ k ≤ n, and the following
chain {0} ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E, is an RD-composition series of E, of
length n, with uniserial factors.

Now, we give some examples of pure-injective modules that fail to be RD-
injective, over noetherian domains.

Example 4.2. Suppose that R, Fk and Ek, 1 ≤ k ≤ n, are defined as in the
example 4.1. Then, since Fk and Ek are artinian R-modules, they are also pure-
injective by [7, Proposition 9]. Since E is indecomposable, Fk and Ek (k ≤ n − 1)
are not RD-injective.

Recall that an R-module M is linearly compact (in its discrete topology) if for
every family of cosets {xi + Mi | i ∈ I}, with the finite intersection property, has a
non-void intersection.

We can also find a noetherian and linearly compact module M which is not
RD-injective over a noetherian domain R.

Example 4.3. Let R be a complete local regular noetherian domain R with Krull
dimension n ≥ 2 (for example, R = K[[X1, . . . , Xn]], where K is a field). Then
there exists an exact sequence:

0 −→ Fn
un−→ Fn−1

un−1

−→ Fn−2 . . . . . . F1
u1−→ F0,

where Fi is a free module of finite rank, for every i, 0 ≤ i ≤ n, and such that Im
un−1 is not a projective module. Since Im un−1 is a torsion-free R-module, then
Fn is an RD-submodule of Fn−1, which is not RD-injective. We deduce that R is
a pure-injective module since it is a linearly compact module by [7, Proposition 9],
that fails to be RD-injective.

It is proved in [4, Theorem 3.1] that a domain R is Prüfer, i.e. arithmetic, if and
only if every pure-injective module is RD-injective. This result can be extended to
every commutative ring.

Theorem 4.4. Let R be a commutative ring. Then the following assertions are
equivalent :

(1) R is an arithmetic ring.
(2) Every RD-exact sequence of R-modules is pure-exact.
(3) Every pure-injective R-module is RD-injective.

Proof. (1) ⇒ (2) follows from [8, Theorem 3]. (2) ⇒ (3) is obvious. (3) ⇒ (1)
is an immediate consequence of the following proposition. �

Proposition 4.5. Let R be a commutative ring. If R is not arithmetic, there
exists a pure-injective module which is not RD-injective. More precisely, there exist
a maximal ideal P, and two elements a and b in P, such that S = {x ∈ ER(R/P ) |
ax = 0 and bx = 0} is a pure-injective module which is not RD-injective.



MODULES WITH RD-COMPOSITION SERIES OVER A COMMUTATIVE RING 17

Proof. There exists a maximal ideal P such that RP is not a valuation ring. Let
a and b in P such that a /∈ RP b and b /∈ RP a. By [8, Theorem 2], there exists an
indecomposable finitely presented RP -module M, generated by two elements x1 and
x2, with the relation ax1 = bx2. By [7, Corollary 2], M is not an RD-projective RP -

module. Consequently there exists an RD-exact sequence 0 → L → N
ϕ
→ M → 0

which is not pure-exact, where N is an RD-projective RP -module. We consider the

following presentation of M : 0 → RP
u
→ F

v
→ M → 0, where F is a free RP -

module with basis {e1, e2}, such that v(ei) = xi, i = 1, 2 and u(1) = ae1−be2. Since
F is a free module there exists α : F → N such that ϕ ◦ α = v and consequently
Im(α ◦ u) ⊆ L. Then aα(e1) − bα(e2) /∈ aL + bL. Else there exist y1 and y2 in L
such that ay1 − by2 = aα(e1) − bα(e2). We define β : F → L by β(ei) = yi. Then
(α−β)(ae1− be2) = 0, whence (α−β) induces an homomorphism γ : M → N such
that ϕ ◦ γ = 1M . This is not possible.

Consequently if G = RP /(aRP + bRP ), then G ⊗RP
L → G ⊗RP

N is not in-
jective. If E = ER(R/P ) ≃ ERP

(RP /PRP ), then E is an injective cogenerator in
the category of RP -modules, whence the homomorphism HomRP

(G ⊗RP
N, E) →

HomRP
(G ⊗RP

L, E) is not surjective. If S is the RP -module HomRP
(G, E),

then S is pure-injective by [7, Proposition 7], but the morphism HomRP
(N, S) →

HomRP
(L, S) is not surjective, so S is not RD-injective over RP .

But S ≃ HomR(R/(aR + bR), E) ≃ {x ∈ E | ax = 0 and bx = 0}, and S is also
a pure-injective R-module that fails to be RD-injective over R. �

We deduce from this proposition the following example.

Example 4.6. Let K be a field and R = K[X, Y ] the polynomial ring in two
variables X and Y. If we take a = X −α, b = Y −β, α, β ∈ K and P the maximal
ideal generated by a and b, then S is isomorphic to the simple R-module R/P. This
is an example of a simple module which is not RD-injective over a domain R. Let
us observe that S is finite if K is a finite field.
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