THE λ - DIMENSION OF COMMUTATIVE ARITHMETIC RINGS

FRANÇOIS COUCHOT

Abstract

It is shown that every commutative arithmetic ring R has λ dimension ≤ 3. An example of a commutative Kaplansky ring with λ-dimension 3 is given. Moreover, if R satisfies one of the following conditions, semilocal, semi-prime, self $f p$-injective, zero-Krull dimensional, CF or FSI then $\lambda-\operatorname{dim}(R) \leq 2$. It is also shown that every zero-Krull dimensional commutative arithmetic ring is a Kaplansky ring and an adequate ring, that every Bézout ring with compact minimal prime spectrum is Hermite and that each Bézout fractionnally self $f p$-injective ring is a Kaplansky ring.

1. Introduction, DEFINITIONS AND PRELIMINARIES

All rings in this paper are commutative with unity and modules are unitary. Following P . Vámos [1] , if \mathcal{P} is a ring property, we say that a $\operatorname{ring} R$ is locally \mathcal{P} if R_{M} has \mathcal{P} for every maximal ideal M, and R is fractionnally \mathcal{P} if the classical quotient ring $Q(R / A)$ of R / A has \mathcal{P} for every proper ideal A of R.

An R-module E is said to be of finite n-presentation if there exists an exact sequence:

$$
F_{n} \rightarrow F_{n-1} \rightarrow \cdots F_{1} \rightarrow F_{0} \rightarrow E \rightarrow 0
$$

with the F_{i} 's free R-modules of finite rank. We write $\lambda_{R}(E)=\sup \{n \mid$ there is a finite n-presentation of $E\}$. If E is not finitely generated we also put $\lambda_{R}(E)=-1$.

The λ-dimension of a ring $R(\lambda$ - $\operatorname{dim}(R))$ is the least integer n (or ∞ if none such exists) such that $\lambda_{R}(E) \geq n$ implies $\lambda_{R}(E)=\infty$. See [2, chapter 8]. Recall that R is noetherian if and only if λ - $\operatorname{dim}(R)=0$ and R is coherent if and only if $\lambda-\operatorname{dim}(R) \leq 1$.

This notion of λ-dimension of a ring was formulated in [2, chapter 8] to study the rings of polynomials or power series over a coherent ring.

In section 2 of this paper it is proved that every arithmetic ring has a λ-dimension ≤ 3. We give an example of a Kaplanky ring whose the λ-dimension is exactly 3 . However, if an arithmetic ring satisfies an additional property,(reduced, self $f p$ injective, semi-local, CF or fractionnally self-injective), its λ-dimension is at most 2.

In section 3 we study fractionnally self $f p$-injective rings. We prove that every reduced factor ring of a fractionnally self $f p$-injective ring is semihereditary. It is shown that each fractionnally self $f p$-injective ring which is Bézout is Kaplansky. To state this last result, we give a positive answer to a question of Henriksen by proving that any Bézout ring with compact minimal prime spectrum is Hermite.

An R-module E is said to be uniserial if the set of its submodules is totally ordered by inclusion. A ring R is a valuation ring if R is a uniserial module, and R is arithmetic if R is locally a valuation ring. A ring is a Bézout ring if every finitely generated ideal is principal. A ring R is an Hermite ring if R satisfies the following
property : for every $(a, b) \in R^{2}$, there exist $d, a^{\prime}, b^{\prime}$ in R such that $a=d a^{\prime}, b=d b^{\prime}$ and $R a^{\prime}+R b^{\prime}=R$. We say that R is a Kaplansky ring (or an elementary divisor ring) if for every matrix A, with entries in R, there exist a diagonal matrix D and invertible matrices P and Q, with entries in R, such that $P A Q=D$. Then we have the following implications :

Kaplansky ring \Rightarrow Hermite ring \Rightarrow Bézout ring \Rightarrow arithmetic ring ;
but these implications are not reversible [3] or [4].
Recall that R is a Kaplansky ring if and only if every finitely presented module is a finite direct sum of cyclic finitely presented modules (5 5] and [6]). We say that R is an adequate ring if R is a Bézout ring satisfying the following property : for every $(a, b) \in R^{2}, a \neq 0$, there exist r and s in R such that $a=r s, R r+R b=R$, and if s^{\prime} is a nonunit that divides s, then $R s^{\prime}+R b \neq R$. An exact sequence $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$ is pure if it remains exact when tensoring it with any R-module. In this case we say that F is a pure submodule of E. When R is an arithmetical ring then F is a pure submodule of E if and only if $r F=r E \cap F$ for every $r \in R$, 7, Theorem 3].

The following proposition will be useful to provide us many examples in the second part of this paper.
Proposition 1.1. Let I be an infinite set, D a valuation domain and N its maximal ideal. We consider

$$
S=\{f: I \rightarrow D \mid f \text { constant except on a finite subset of } I\}
$$

. Then the following statements are true.
(1) S is a free D-module with basis $\mathcal{B}=\left\{\mathbf{1}, \mathbf{e}_{i} \mid i \in I\right\}$ where $\mathbf{1}(j)=1$, and $\mathbf{e}_{i}(j)=\delta_{i j}$, for every $j \in I$, and where $\delta_{i j}$ is the Kronecker symbol.
(2) $M_{0}=N \mathbf{1}+\sum_{i \in I} D \mathbf{e}_{i}$ and $M_{i}=D\left(\mathbf{1}-\mathbf{e}_{i}\right)+N \mathbf{e}_{i}$, for every $i \in I$, are the maximal ideals of S. Moreover, $S_{M_{0}} \simeq D$ and $S_{M_{i}} \simeq D$ for every $i \in I$. The Jacobson radical $J(S)=S N=N \mathbf{1}+\sum_{i \in I} N \mathbf{e}_{i}$.
(3) S is a Kaplansky ring and an adequate ring.

Proof.

(1) This assertion is obvious.
(2) Let M be a maximal ideal of R. If $\mathbf{e}_{i} \in M$, for every $i \in I$, then $M=M_{0}$. The ideal E of S generated by $\left\{\mathbf{e}_{i} \mid i \in I\right\}$ is a pure ideal of S, hence S / E is a flat S-module and $S / E \simeq D$. From this we deduce that $S_{M_{0}} \simeq D$. If there exists $i \in I$ such that $\mathbf{e}_{i} \notin M$, then $\left(\mathbf{1}-\mathbf{e}_{i}\right) \in M$ and we have $M=M_{i}$. Moreover, $S / S\left(\mathbf{1}-\mathbf{e}_{i}\right)$ is a projective S-module and $S / S\left(\mathbf{1}-\mathbf{e}_{i}\right) \simeq D$. We deduce that $S_{M_{i}} \simeq D$. Now, it is easy to get that $J(S)=N \mathbf{1}+\sum_{i \in I} N \mathbf{e}_{i}$.
(3) By using the basis \mathcal{B} of S over D, it is easy to prove that S is an Hermite ring and an adequate ring. From [8, Theorem 8] we deduce that S is a Kaplansky ring.

An R-module E is $f p$-injective if $\operatorname{Ext}_{R}^{1}(F, E)=0$ for any finitely presented R module F, and R is self fp-injective if R is fp-injective as R-module. Recall that a valuation ring R is self fp-injective if and only if the set $Z(R)$ of its zero divisors is its maximal ideal, [9, Theorem 2.8]. We recall that a module E is fp-injective if and only if it is a pure submodule of every overmodule.

We denote respectively $\operatorname{Spec}(R), \operatorname{MaxSpec}(R)$ and $\operatorname{MinSpec}(R)$, the space of prime ideals, maximal ideals, and minimal prime ideals of R, with the Zariski
topology. If $X=\operatorname{Spec}(R), \operatorname{MaxSpec}(R)$ or $\operatorname{MinSpec}(R)$, and A a subset of R, then we denote $V(A)=\{P \in X \mid A \subseteq P\}$ and $D(A)=\{P \in X \mid A \nsubseteq P\}$.

Finally if E is an R-module, flat- $\operatorname{dim}(E)$ is the least integer n such that $\operatorname{Tor}_{n+1}^{R}(F, E)=0$ for every R-module F, and $g l-w-\operatorname{dim}(R)=\sup \{$ flat-dim $(E) \mid E \quad R$-module $\}$.

2. The λ-dimension

We begin with the more general result of this part.
Theorem 2.1. Let R be an arithmetic ring. Then the following statements are true.
(1) $\lambda-\operatorname{dim}(R) \leq 3$.
(2) If R is a reduced ring then λ - $\operatorname{dim}(R) \leq 2$.

Proof.

(1) Let E be a module such that $\lambda_{R}(E) \geq 3$. We consider the following finite 3-presentation of E :

$$
F_{3} \xrightarrow{u_{3}} F_{2} \xrightarrow{u_{2}} F_{1} \xrightarrow{u_{1}} F_{0} \rightarrow E \rightarrow 0 .
$$

We choose bases \mathcal{B}_{0} and \mathcal{B}_{1} of F_{0} and F_{1} respectively, and let A be the matrix associated with u_{1}, with respect to our given bases. Let M be a maximal ideal of R. By [$\left[\right.$. Theorem 1] E_{M} is a direct sum of cyclic finitely presented R_{M}-modules. Therefore there exist a diagonal matrix D and two invertible matrices P and Q, with entries in R_{M} such that $P A Q=D$. It is not difficult to find $t \in R \backslash M$, such that P and Q are invertible matrices with entries in R_{t}, D a diagonal matrix with entries in R such that $P A Q=D$. It follows that there exist $a_{1}, \ldots, a_{n} \in R$ such that $E_{t} \simeq \bigoplus_{k=1}^{n}\left(R_{t} / a_{k} R_{t}\right)$. Since $\lambda_{R_{t}}\left(E_{t}\right) \geq 2$, we deduce that ($0:_{R_{t}} a_{k}$) is a finitely generated ideal of R_{t}, and there exists $b_{k} \in R$, such that $\left(0:_{R_{M}} a_{k}\right)=b_{k} R_{M}$, for every $k, 1 \leq k \leq n$. By multiplying t with an element of $R \backslash M$, we may assume that $\left(0:_{R_{t}} a_{k}\right)=b_{k} R_{t}$ for every $k, 1 \leq k \leq n$. Now, since $\lambda_{R_{t}}\left(E_{t}\right) \geq 3$, by the same way, we get that there exists $c_{k} \in R$, such that $\left(0:_{R_{t}} b_{k}\right)=c_{k} R_{t}$ for every $k, 1 \leq k \leq n$. Then, the equality $\left(0:_{R_{t}} a_{k}\right)=b_{k} R_{t}$ implies that $\left(0:_{R_{t}} c_{k}\right)=b_{k} R_{t}$, for every $k, 1 \leq k \leq n$. Hence $\lambda_{R_{t}}\left(E_{t}\right) \geq 4$.

If we denote $U_{M}=D(t)$, then $\left(U_{M}\right)_{M \in \operatorname{MaxSpec}(R)}$ is an open overing of $\operatorname{MaxSpec}(R)$, and since this space is quasi-compact, a finite number of these open subsets cover $\operatorname{MaxSpec}(R)$. Thus, $\operatorname{MaxSpec}(R)=\cup_{j=1}^{m} U_{j}$, where $U_{j}=D\left(t_{j}\right)$. Let
$K=\operatorname{ker}\left(u_{3}\right)$. Now, for every $j, 1 \leq j \leq m, K_{t_{j}}$ is a finitely generated $R_{t_{j}}$-module, hence there exists a finite subset G_{j} of K such that $K_{t_{j}}=$ $\sum_{g \in G_{j}} R_{t_{j}} g$. Then K is generated by $\cup_{j=1}^{m} G_{j}$ and we get that $\lambda_{R}(E) \geq 4$.
(2) If R is reduced, then R_{M} is a valuation domain for every maximal ideal M of R. Consequently $g l$ - w - $\operatorname{dim}(R) \leq 1$, and from [2, Chapter 8] we deduce that $\lambda-\operatorname{dim}(R) \leq 2$. We can also deduce this result from our following Corollary 2.13.

The example 1.3b of [2] is a reduced arithmetic ring of λ-dimension 2. Now, to complete the proof of our Theorem 2.1, an example of arithmetic ring with λ-dimension 3 must be given.

Example 2.2. Let S be the ring defined in Proposition 1.1. We suppose that D has a nonzero and nonmaximal prime ideal J. Let $a \in N \backslash J, b \in J, b \neq 0$ and $A=D a b \mathbf{1}+\sum_{i \in I} J \mathbf{e}_{i}$. We denote $R=S / A$ and $\bar{r}=r+A$ for every $r \in S$. Then R is a Kaplansky ring and also an adequate ring since $A \subseteq J(S)$ by 6 , Proposition 4.4]. Now it is easy to prove that $(0: \overline{a \mathbf{1}})=R \overline{b \mathbf{1}}$ and $(0: \overline{b \mathbf{1}})=R \overline{a \mathbf{1}}+\sum_{i \in I} R \overline{\mathbf{e}}_{i}$. We deduce from this that $\lambda_{R}(R / R \overline{a \mathbf{1}})=2$. Hence $\lambda-\operatorname{dim}(R)=3$.
Example 2.3. Let S be the ring defined in Proposition 1.1, $A=\sum_{i \in I} N \mathbf{e}_{i}$ and $R=S / A$. If M is a maximal ideal of S, we denote $\bar{M}=M / A$. Then it is easy to prove that $R_{\bar{M}_{0}} \simeq D$ and $R_{\bar{M}_{i}} \simeq D / N$ for every $i \in I$. Consequently R is a reduced ring, a Kaplansky ring and an adequate ring. For every $a \in N, a \neq 0$, $(0: \overline{a \mathbf{1}})=\sum_{i \in I} R \overline{\mathbf{e}}_{i}$ is not finitely generated. Then λ - $\operatorname{dim}(R)=2$. When $D=\mathbb{Z}_{2}$, the ring of 2 -adics numbers, and $I=\mathbb{N}$, we obtain the example 1.3 b of $[2]$, if, in this example we replace \mathbb{Z} with \mathbb{Z}_{2}.

Theorem 2.4. Let R be an arithmetic ring.
If R is self fp-injective then λ - $\operatorname{dim}(R) \leq 2$.
Proof. Let E be a module with $\lambda_{R}(E) \geq 2$. As in the proof of Theorem 2.1, for every $M \in \operatorname{MaxSpec}(R)$, we can find $t \in R \backslash M, a_{1}, \ldots, a_{n} \in R, b_{1}, \ldots, b_{n} \in R$ such that $E_{t} \simeq \bigoplus_{k=1}^{n}\left(R_{t} / a_{k} R_{t}\right)$ and $\left(0:_{R_{t}} a_{k}\right)=b_{k} R_{t}$ for every $k, 1 \leq k \leq n$.

Since $\lambda_{R}(E) \geq 2$, then the canonical homomorphism
$\left(\operatorname{Ext}_{R}^{1}(E, R)\right)_{t} \rightarrow \operatorname{Ext}_{R_{t}}^{1}\left(E_{t}, R_{t}\right)$ is an isomorphism. Thus
$\operatorname{Ext}_{R_{t}}^{1}\left(E_{t}, R_{t}\right)=0$ and $\operatorname{Ext}_{R_{t}}^{1}\left(R_{t} / a_{k} R_{t}, R_{t}\right)=0$
for every $k, 1 \leq k \leq n$. From the following projective resolution of $R_{t} / a_{k} R_{t}$: $R_{t} \xrightarrow{b_{k}} R_{t} \xrightarrow{a_{k}} R_{t}$, we deduce that $\left(0:_{R_{t}} b_{k}\right)=a_{k} R_{t}$ for every $k, 1 \leq k \leq n$. Hence $\lambda_{R_{t}}\left(E_{t}\right) \geq 3$. Now, as in the proof of Theorem 2.1, we get that $\lambda_{R}(E) \geq 3$.

When R is a reduced ring we have a more general result.
Theorem 2.5. Let R be a reduced ring. Then R is self fp-injective if and only if R is a Von Neumann regular ring.

Proof. Only necessity requires a proof. Since R is reduced, R is a subring of $S=\Pi_{P \in \operatorname{MinSpec}(R)} Q(R / P)$, and S is a Von Neumann regular ring. Hence, for every $r \in R$, there exists $s \in S$ such that $r^{2} s=r$. But, since R is self $f p$-injective, R is a pure submodule of S. Thus, there exists $s^{\prime} \in R$ such that $r^{2} s^{\prime}=r$.

Remark 2.6. We can prove that for every $n \in \mathbb{N}$, there exists a self injective ring R such that $\lambda-\operatorname{dim}(R)=n$. Let D be a local noetherian regular ring, N its maximal ideal and E the D-injective hull of D / N. If $R=\left\{\left.\left(\begin{array}{ll}d x \\ 0 & d\end{array}\right) \right\rvert\, d \in D\right.$ and $\left.x \in E\right\}$ is the trivial extension of D by E, J.E. Roos proved that λ - $\operatorname{dim}(R)=n$ if and only if Krull $\operatorname{dim}(D)=n(10$, Theorem A']). If D is complete in its N-adic topology, then D is a linearly compact D-module, and since E is an artinian D-module, R is a linearly compact D-module. We deduce that R is a local linearly compact ring, and since R is an essential extension of a simple R-module, from 11, Theorem 7] it follows that R is a self injective ring. In the general case, we can prove that R is self $f p$ - injective.

Corollary 2.7. Let R be an arithmetic ring of Krull dimension 0 .
Then λ - $\operatorname{dim}(R) \leq 2$.

Proof. For every $M \in \operatorname{MaxSpec}(R)$, any element of $M R_{M}$ is a zero divisor. From [9, Theorem 2.8], we deduce that R is locally self $f p$-injective, and from [9, Proposition 1.2] or 12, Corollary 8] that R is self $f p$-injective. The result is an immediate consequence of Theorem 2.4.

Now, we give an example of a noncoherent Kaplansky ring R with Krull dimension 0 , which is locally coherent.

Example 2.8. Let S be the ring defined in Proposition 1.1. We suppose that D is a valuation domain with Krull dimension one and its maximal ideal N is not finitely generated. We take $I=\mathbb{N}^{*}$. Let $a \in N \backslash 0$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ a sequence of nonzero elements of N such that $b_{n+1} \notin D b_{n}$ for every $n \in \mathbb{N}$. We consider the ideal $A=D a b_{0} \mathbf{1}+\sum_{n \in \mathbb{N}^{*}} D a b_{n} \mathbf{e}_{n}$ and the ring $R=S / A$. Then $\left(0:_{R} \overline{a \mathbf{1}}\right)=$ $R \overline{\bar{b}_{0} \mathbf{1}}+\sum_{n \in \mathbb{N}^{*}} R \overline{b_{n} \mathbf{e}_{n}}$. Consequently R is a noncoherent ring with Krull dimension 0 . But, for every $n \in \mathbb{N}, R_{\bar{M}_{n}} \simeq D / a b_{n} D$. Thus R is locally coherent.

Remark 2.9. Let S be the ring defined in Proposition 1.1. We suppose that $D=\mathbb{Z}_{p}$ (where p is a prime integer) the ring of p-adic numbers and $I=\mathbb{N}^{*}$. We consider $A=\bigoplus_{n \in \mathbb{N}^{*}} D p^{n} \mathbf{e}_{n}$ and $R=S / A$. Then R is isomorphic to the example of 9 , p. 344]. This ring is a Kaplansky ring which is self $f p$-injective, but not locally self $f p$ - injective.

The following proposition will be used to compute the λ-dimension of semi-local arithmetic rings and fractionnally self injective rings.
Proposition 2.10. Let R be a valuation ring, M its maximal ideal, Z the subset of zero divisors of R. Then the following statements are true.
(1) M is a flat module if and only if $(0: r)$ is not finitely generated for every $r \in Z \backslash 0$.
(2) Let r and s in R such that $r s \neq 0$. Then:
i) $(0: r s)=((0: r): s)$ and $(0: r)=s(0: r s)$.
ii) If $(0: r) \neq 0,(0: r)$ is finitely generated if and only if $(0: r s)$ is also.

Proof.

(1) Suppose that M is a flat module. Let $r \in Z \backslash 0$ and $s \in(0: r)$. Let $\varphi: \operatorname{Rr} \otimes M \rightarrow M$ be the homomorphism induced by the inclusion map $R r \rightarrow R$. Then $\varphi(r \otimes s)=0$. From [13, proposition 13 p.42] we deduce that there exist $t \in(0: r)$ and $m \in M$ such that $s=t m$. Consequently $R s \varsubsetneqq(0: r)$.

Conversely let $s \in M$ and $r \in R$ such that $\varphi(r \otimes s)=r s=0$. If $r \notin Z$ then $s=0$ and $r \otimes s=0$. If $r \in Z \backslash 0$, since $(0: r)$ is not finitely generated, then there exist $t \in(0: r)$ and $m \in M$ such that $s=t m$. Hence $r \otimes s=r t \otimes m=0$.
(2) i) It is easy to get the first equality and the inclusion $s(0: r s) \subseteq(0: r)$. Now, if $t \in(0: r)$, then $t \in R s$ since $r s \neq 0$. We deduce that there exists $c \in R$ such that $t=c s$ and it is obvious that $c \in(0: r s)$. Then ii) is a consequence of i).

Theorem 2.11. Let R be a valuation ring, M its maximal ideal and Z the subset of its zero divisors. Then the following statements are true.
(1) If $Z=0$ then R is coherent.
(2) If $Z \neq 0$ and $Z \neq M$, then $\lambda-\operatorname{dim}(R)=2$.
(3) If $Z \neq 0$ and $Z=M$, then $\lambda-\operatorname{dim}(R) \leq 2$.
(4) If R is a domain or a noncoherent ring then M is a flat ideal and for any R-module E with $\lambda_{R}(E)=\infty$, flat-dim $(E) \leq 1$.

Proof.

(1) It is obvious.
(2) We have $M=\cup_{r \in M \backslash Z} R r$. Since M is a direct limit of free modules, M is flat. Let E be a module such that $\lambda_{R}(E) \geq 2$. Then we may assume that $E=R / r R$, where $r \in R$. Since M is flat, we deduce from Proposition 2.10
 $\lambda_{R}(R / r R) \geq 3$ and $\lambda-\operatorname{dim}(R)=2$.
(3) Since $Z=M, R$ is self $f p$-injective by [9, Theorem 2.8]. By Theorem 2.4, $\lambda-\operatorname{dim}(R) \leq 2$.
(4) It remains to examine the case $Z=M$. Let $r \in R$ such that $\lambda_{R}(R / r R)=$ ∞. If R is not coherent, then for every $s \in M \backslash 0,(0: s)$ is not finitely generated by Proposition 2.10(2). We deduce that M is flat and that $r=0$ or r is a unit. Hence $R / r R$ is a free module.
Corollary 2.12. Let R be a semi-local arithmetic ring. Then λ - $\operatorname{dim}(R) \leq 2$ and R is coherent if and only if R is locally coherent.

Proof. Since $\operatorname{MaxSpec}(R)$ is finite, $S=\Pi_{M \in \operatorname{MaxSpec}(R)} R_{M}$ is a faithfully flat R-module. We deduce that
$\lambda-\operatorname{dim} R \leq \lambda-\operatorname{dim} S=\sup \left\{\lambda-\operatorname{dim} R_{M} \mid M \in \operatorname{MaxSpec}(R)\right\}$.
Corollary 2.13. Let R be an arithmetic ring. We suppose that R_{M} is a domain or a noncoherent ring for every $M \in \operatorname{MaxSpec}(R)$. Then λ - $\operatorname{dim}(R) \leq 2$.

Proof. Let E be an R-module with $\lambda_{R}(E) \geq 2$. From Theorem 2.11, we deduce that flat-dimE $E_{M} \leq 1$ for every $M \in \operatorname{MaxSpec}(R)$. Hence flat-dimE ≤ 1. We consider the following finite 2-presentation of E :

$$
L_{2} \xrightarrow{u_{2}} L_{1} \xrightarrow{u_{1}} L_{0} \xrightarrow{p} E \rightarrow 0
$$

Then $\operatorname{ker}(p)$ is a finitely presented flat R-module. We deduce successively that $\operatorname{ker}(p), \operatorname{ker}\left(u_{1}\right)$ and $\operatorname{ker}\left(u_{2}\right)$ are finitely generated projective R-modules. Hence $\lambda_{R}(E) \geq 3$.
Corollary 2.14. Let R be a valuation ring and A a nonzero proper ideal of R. Then the following statements are true.
(1) If A is prime then R / A is coherent.
(2) If A is finitely generated, then R / A is coherent and self fp-injective.
(3) If A is not prime and not finitely generated then $\lambda-\operatorname{dim}(R / A)=2$.

Proof.

(1) It is obvious.
(2) We have $A=R a$ for some $a \in R$. If $r \notin R a$, then there exists $s \notin R a$ such that $a=r s$. Clearly $R s \subseteq(R a: r)$. Let $c \in(R a: r)$. If $c r=0$ then $c \in R s$ since $r s \neq 0$. If $c r \neq 0$, then there exists $d \in R$ such that $c r=d a=d s r$. Hence $r(c-d s)=0$. If $d s=v c$ for some $v \in R$, we get that $r c(1-v)=0$. Since $r c \neq 0, v$ is a unit and we obtain that $c \in R s$, and $(R a: r)=R s$.
(3) Since A is not prime, there exist s and $r \in R \backslash A$, such that $s r \in A$. Hence $A \varsubsetneqq(A: r)$ and we prove easily that $(A: r)$ and $(A: r) / A$ are not finitely generated.

Proposition 2.15. Let R be an arithmetic ring and A a finitely generated proper ideal of R such that $(0: A) \subseteq J(R)$, the Jacobson radical of R. Then R / A is a coherent and self fp-injective ring.

Proof. Then, for every maximal ideal M of $R, A R_{M}$ is a nonzero finitely generated ideal of R_{M}. By Corollary 2.14, $R_{M} / A R_{M}$ is self $f p$-injective. We deduce that R / A is self $f p$-injective.

Since in every arithmetic ring the intersection of two finitely generated ideals is a finitely generated ideal, 14, Corollary 1.11], it is sufficient to prove that $(A: b)$ is finitely generated for every $b \in R \backslash A$. Let M be a maximal ideal of R. Then there exists $a \in A$ such that $A R_{M}=a R_{M}$. Since A is finitely generated, there exists $t \in R \backslash M$ such that $A R_{t}=a R_{t}$. Now, if $b \in a R_{M}$, then $b=\frac{c}{s} a$ for some $c \in R$ and $s \in R \backslash M$, and we get the equality $t^{\prime} s b=t^{\prime} c a$ for some $t^{\prime} \in R \backslash M$. We deduce that $t^{\prime} s \in(A: b)$, and $\left(A R_{t t^{\prime} s}: R_{t t^{\prime} s} b\right)=t^{\prime} s R_{t t^{\prime} s}$. If $b \notin a R_{M}$ then there exist $c \in R$ and $s \notin M$ such that $a=\frac{c}{s} b$. As in the proof of Corollary 2.14, $\left(R_{M} a:_{R_{M}} b\right)=R_{M} c$. For some $t^{\prime} \in R \backslash M$ we have $t^{\prime} s a=t^{\prime} c b$. We deduce that $t^{\prime} c \in(A: b)$ and
$\left(A R_{t t^{\prime} s}:_{R_{t t^{\prime} s}} b\right)=t^{\prime} c R_{t t^{\prime} s}$. Hence, for every $M \in \operatorname{MaxSpec}(R)$, we may assume that there exist $t_{M} \in R \backslash M$ and $c_{M} \in(A: b)$ such that $\left(A R_{t_{M}}:_{R_{t_{M}}} b\right)=c_{M} R_{t_{M}}$. A finite number of open subsets $D\left(t_{M}\right)$ cover $\operatorname{MaxSpec}(R)$. Let $D\left(t_{1}\right), \ldots, D\left(t_{n}\right)$ be these open subsets and $c_{1}, \ldots, c_{n} \in(A: b)$ such that $\left(A R_{t_{k}}: R_{t_{k}} b\right)=c_{k} R_{t_{k}}$, for every $k, 1 \leq k \leq n$. Then we get that $\left\{c_{k} \mid 1 \leq k \leq n\right\}$ generates $(A: b)$.

Remark 2.16. Let S be the ring defined in Proposition 1.1. We assume that D has a nonzero and nonmaximal prime ideal J. Let $B=\sum_{i \in I} J \mathbf{e}_{i}, R^{\prime}=R / B$, $a \in N \backslash J, b \in J \backslash 0, a^{\prime}=a \mathbf{1}+B$ and $b^{\prime}=b \mathbf{1}+B$. Then, if R is the ring of the example 2.2, we have $R=R^{\prime} / a^{\prime} b^{\prime} R^{\prime}$. Since $\lambda-\operatorname{dim}(R)=3, R$ is not coherent and not self $f p$-injective. Consequently the assumption $(0: A) \subseteq J(R)$ cannot be omitted in the Proposition 2.15.

Following Vámos [1], we say that R is a torch ring if the following conditions are satisfied :
(1) R is an arithmetical ring with at least two maximal ideals.
(2) R has a unique minimal prime ideal P which is a nonzero uniserial module.

We follow T.S. Shores and R. Wiegand [14, by defining a canonical form for an R-module E to be a decomposition $E \simeq R / I_{1} \oplus R / I_{2} \oplus \cdots \oplus R / I_{n}$, where $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \neq R$, and by calling a ring R a $C F$-ring if every direct sum of finitely many cyclic modules has a canonical form.
Theorem 2.17. Let R be CF-ring. Then the following statements are true.
(1) $\lambda-\operatorname{dim}(R) \leq 2$.
(2) R is coherent if and only if R is locally coherent.

Proof. In [14, Theorem 3.12] it is proved that every CF-ring is arithmetic and a finite product of indecomposable CF-rings. If R is indecomposable then R is either
a domain (1), or a semi-local ring (2), or a torch ring (3). In the case (1) R is coherent, and the theorem is a consequence of Corollary 2.12 in the case (2). We may assume that R is a torch ring. Then, there is only one maximal ideal M such that $P_{M} \neq\{0\}$, and we have $P^{2}=0$. For every maximal ideal $N \neq M, R_{N}$ is a domain. Consequently, if R_{M} is not coherent we deduce from Corollary 2.13 that $\lambda-\operatorname{dim} R=2$. Now we assume that R_{M} is coherent. As in the previous proposition it is sufficient to prove that $(0: r)$ is finitely generated for any $r \in R$. Then we have $\left(0:_{R_{M}} r\right)=s R_{M}$ for some $s \in R$. Since the canonical homomorphism $R \rightarrow R_{M}$ is monic, $r s=0$.

If $r \notin P$, then $s \in P$. For every maximal ideal N of $R, N \neq M$, we have $r R_{N} \neq 0$ and $s R_{N}=0$. Consequently $(0: r)_{N}=0=s R_{N}$. We deduce that $(0: r)=R s$.

If $r \in P$, then $s \notin P$ since $P^{2}=0$. Since R satisfies the condition iii) of 14 , Theorem 3.10], $V(s)$ is a finite subset of $\operatorname{MaxSpec}(R)$. We denote $V(s)=\left\{M, N_{k} \mid\right.$ $1 \leq k \leq n\}$. Since $r R_{N_{k}}=0$ then there exists $s_{k} \notin N_{k}$ such that $s_{k} r=0$, for every $k, 1 \leq k \leq n$. Let A be the ideal of R generated by $\left\{s, s_{k} \mid 1 \leq k \leq n\right\}$. Then for every maximal ideal $N \neq M$ we have $A_{N}=R_{N}=\left(0:_{R_{N}} r\right)=(0: r)_{N}$. Hence we get that $A=(0: r)$.

In [1] Vámos proved that every fractionnally self-injective ring (FSI-ring) is a CF-ring. Consequently the following corollary holds.
Corollary 2.18. Let R be a fractionnally self-injective ring. Then the following statements are true.
(1) $\lambda-\operatorname{dim}(R) \leq 2$.
(2) R is coherent if and only if R is locally coherent.

3. Fractionnally self $f p$-InJective Rings

First we give a generalization of results obtained in in on fractionnally selfinjective rings.

Theorem 3.1. Let R be a fractionnally self $f p$-injective ring. Then the following statements are true.
(1) R is an arithmetic ring.
(2) For every proper ideal A of $R, \operatorname{MinSpec}(R / A)$ is a compact space. Moreover if A is semi-prime then R / A is semihereditary.

Proof.

(1) It is the main result of (Theorem 1).
(2) $\operatorname{MinSpec}(R / A)$ is homeomorphic to $\operatorname{MinSpec}(R / \operatorname{rad} A)$. We may assume that A is semi-prime. Then $g l-w-\operatorname{dim}(R / A) \leq 1$. By Theorem 2.5, $Q(R / A)$ is a Von Neumann regular ring. We deduce that R / A is semi-hereditary from 15, Theorem 5] and that $\operatorname{MinSpec}(R / A)$ is compact from 16, Proposition 10].
Remark 3.2. If R is the ring of our example 2.3, then it is isomorphic to the ring of [12, Proposition 4] which is not fractionnally self $f p$-injective.

Now we give a positive answer to a question proposed by M. Henriksen, 17 . p. 1382]. The following theorem is a generalization of [6. Theorem 2.4] and [17, Corollary 1.3].

Theorem 3.3. Every Bézout ring R with compact minimal prime spectrum is Hermite.

Proof Let a and b be in R. We may assume that $a \neq 0$ and $b \neq 0$. Then there exist $a^{\prime}, b^{\prime}, d, m$ and n in R such that $a=d a^{\prime}, b=d b^{\prime}$ and $m a+n b=d$. We denote $c=m a^{\prime}+n b^{\prime}$, and N the nilradical of R. We have $(1-c) d=0$. Since $d \neq 0$ it follows that $c \notin N$.

First we suppose that $(N: c)=N$. Let $a^{\prime \prime}, b^{\prime \prime}, d^{\prime}, m^{\prime}$ and n^{\prime} be in R such that $a^{\prime}=d^{\prime} a^{\prime \prime}, b^{\prime}=d^{\prime} b^{\prime \prime}$ and $m^{\prime} a^{\prime}+n^{\prime} b^{\prime}=d^{\prime}$. Then $c \in R d^{\prime}$ and consequently $\left(N: d^{\prime}\right)=N$. Since $\left(1-m^{\prime} a^{\prime \prime}-n^{\prime} b^{\prime \prime}\right) d^{\prime}=0,1-m^{\prime} a^{\prime \prime}-n^{\prime} b^{\prime \prime} \in N$. Hence $m^{\prime} a^{\prime \prime}+n^{\prime} b^{\prime \prime}$ is a unit and the following equalities hold : $a=a^{\prime \prime} d^{\prime} d, b=b^{\prime \prime} d^{\prime} d$ and $R a^{\prime \prime}+R b^{\prime \prime}=R$.

Now we suppose that $(N: c) \neq N$. Since $\operatorname{MinSpec}(R)$ is compact $R^{\prime}=R / N$ is a semi-hereditary ring. Denote $\bar{r}=r+N$ for any $r \in R$. Then there exists an idempotent \bar{e} of R^{\prime} such that $(0: \bar{c})=R^{\prime}(\overline{1}-\bar{e})$. Since idempotents can be lifted modulo N, we may assume that $e=e^{2}$. We deduce that $(N: c)=R(1-e)+N$, and $(1-e) c \in N$. Let $P \in D(1-e)$. Thus $c \in P$ and $(1-c) \notin P$. Consequently $D(1-e) \subseteq D(1-c)$, and since $(1-e)$ is an idempotent, $(1-e) \in R(1-c)$. But $(1-c) d=0$ and therefore $(1-e) d=0$ and $e d=d$. As in the proof of [6, Theorem 2.4] we denote $a_{1}=a^{\prime} e, b_{1}=b^{\prime} e+(1-e), m_{1}=m e$ and $n_{1}=n e+(1-e)$. Then we get $a=a_{1} d, b=b_{1} d$ and $m_{1} a+n_{1} b=d$. Let $c_{1}=m_{1} a_{1}+n_{1} b_{1}=c e+(1-e)$ and $r \in\left(N: c_{1}\right)$. We get that $r(1-e) \in N$ and rec $\in N$. Hence $r e \in(N: c)=$ $R(1-e)+N$. Consequently $r e \in N$ and $\left(N: c_{1}\right)=N$. From the previous part of the proof we deduce that R is Hermite.

Corollary 3.4. Let R be a Bézout ring of Krull dimension at most one.
If MinSpec (R) is compact then R is a Kaplansky ring.
Proof. Let N be the nilradical of R. By 18, Corollary p.213], R / N is a Kaplansky ring. From the previous theorem and [19, Theorem 3], the result follows.

Theorem 3.5. Let R be a fractionnally self fp-injective ring. If R is a Bézout ring then R is a Kaplansky ring.

Proof.. By Theorem 3.1 and Theorem $3.3 R$ is Hermite. Hence by [8, Theorem 6], it is sufficient to prove that for all $a, b, c \in R$ such that $R a+R b+R c=R$ there exist p and $q \in R$ such that $R p a+R(p b+q c)=R$. We put

$$
A=\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) .
$$

By using the same terminology as in [6] let E be an R-module named by A. It is easy to check that E is an $R / R a c$-module. Let $J=\operatorname{rad}(\operatorname{Rac})$. It follows that $\bar{R}=R / J$ is semihereditary by Theorem 3.1. Thus $\bar{E}=E / J E$ is named by

$$
\bar{A}=\left(\begin{array}{ll}
\bar{a} & \overline{0} \\
\bar{b} & \bar{c}
\end{array}\right) .
$$

Since \bar{R} is Hermite and $\bar{a} \cdot \bar{c}=\overline{0}$ we show, as in the proof of 18, the Proposition], that there exist two invertible matrices P and Q and a diagonal matrix D with entries in \bar{R} such that $P \bar{A} Q=D$. We put

$$
D=\left(\begin{array}{ll}
\bar{s} & \overline{0} \\
\overline{0} & \bar{t}
\end{array}\right) .
$$

By [6, Theorem 3.1] we may assume that \bar{s} divides \bar{t}. The equality $P^{-1} D Q^{-1}=\bar{A}$ implies that $\bar{a}, \bar{b}, \bar{c} \in \bar{R} \bar{s}$. It follows that \bar{s} is a unit. Hence \bar{E} is a cyclic \bar{R}-module. By Nakayama Lemma it follows that E is cyclic over $R / R a c$. Hence E is cyclic over R too. Now we do as at the end of the proof of $[6$, Theorem 3.8] to conclude.

By 12. Theorem 6] every arithmetic ring of Krull dimension zero is fractionnally self $f p$-injective. By Theorem 3.5 every Bézout ring of Krull dimension zero is Kaplansky. However it is possible to prove a more general result.

Theorem 3.6. Let R be an arithmetic ring of Krull dimension 0 . Then R is a Kaplansky ring and an adequate ring.

Proof First we prove that R is Hermite. Let a and b be in R. We denote $U=\left\{M \in \operatorname{Spec}(R) \mid a R_{M} \subseteq b R_{M}\right\}$ and $F=\left\{M \in \operatorname{Spec}(R) \mid a R_{M} \nsubseteq b R_{M}\right\}$. Recall that $\operatorname{Spec}(R)$ is a (totally disconnected) Haussdorf compact space, where $D(A)$ is open and closed, for every finitely generated ideal A of R. Let $M \in U$. Then there exist $c \in R$ and $t \in R \backslash M$ such that $\frac{a}{1}=\frac{c b}{t}$. We deduce that there exists $s \in R \backslash M$ such that $s(t a-c b)=0$. Hence, for every $Q \in D(s t), R_{Q} a \subseteq R_{Q} b$. Consequently U is open and F is closed. Now, let $M \in F$. Then $b R_{M} \subset a R_{M}$ and there exists $t \in R \backslash M$ such that $b R_{Q} \subseteq a R_{Q}$, for every $Q \in D(t)$. If we denote $W_{M}=D(t)$, then $F \subseteq \cup_{M \in F} W_{M}$. Since F is compact, F is contained in a finite union W of these open and closed subsets of $\operatorname{Spec}(R)$. Consequently, there exists an idempotent e of R such that $F \subseteq W=D(e)$ and $D(1-e) \subseteq U$. Since $R_{M} b \subseteq R_{M} a$ for every $M \in D(e)$, there exists $r \in R$ such that $b e=r a e$. There also exists $s \in R$ such that $a(1-e)=s b(1-e)$. Now if we take $d=a e+b(1-e), a^{\prime}=s(1-e)+e$, $b^{\prime}=(1-e)+r e$, then $a=d a^{\prime}, b=d b^{\prime}$ and $e a^{\prime}+(1-e) b^{\prime}=1$.

Now we prove that R is adequate. Let a and b be in $R, a \neq 0$. There exists an idempotent e in R such that $D(b)=D(e)$. If we take $r=(1-e)+a e$ and $s=a(1-e)+e$, then $a=r s$ and $R r+R b=R$. Let s^{\prime} be a nonunit in R that divides s. Then $V\left(s^{\prime}\right) \subseteq V(b)$. Hence $R b+R s^{\prime} \neq R$. From [8, Theorem 8] we deduce that R is a Kaplansky ring.

The following proposition gives an answer to a question of [6, p.233].
Proposition 3.7. Let R be an arithmetic ring and $J(R)$ its Jacobson radical. Then the following conditions are equivalent:
(1) R has a unique minimal prime ideal
(2) For every $d \notin J(R),(0: d) \subseteq J(R)$

Proof. The implication $1 \Rightarrow 2$ is easy.
$2 \Rightarrow 1$. Suppose there are at least two minimal prime ideals I and J. Let $a \in I \backslash J$ and P a maximal ideal containing I. Then $I R_{P}$ is the nilradical of R_{P}. It follows that there exist $s \in R \backslash P$ and a positive integer n such that $s a^{n}=0$. Then $s \in J \backslash I$. Let Q be a maximal ideal containing J. There also exist $t \in R \backslash Q$ and a positive integer m such that $t s^{m}=0$. Since $t \notin J(R), s^{m} \in(0: t) \subseteq J(R)$. But $s \notin P$ implies that $s^{m} \notin J(R)$. Hence we get a contradiction.

References

[1] Vámos, P. The decomposition of finitely generated modules and fractionnally self-injective rings. J. London Math. Soc. 16(2), 1977, 209-220.
[2] Vasconcelos, W.V. The rings of dimension two. Lecture Notes in pure and applied Mathematics 22, Marcel Dekker, 1976.
[3] Gillman, L.; Henriksen, M. Rings of continuous functions in which every finitely ideal is principal. Trans. Amer. Math. Soc. 82, 1956, 366-391.
[4] Carbonne, P. Anneaux de Bézout, Hermite, Kaplansky "universels". Canad. Math. Bull., 30(4), 1987, 461-470.
[5] Kaplansky, I. Elementary divisors and modules. Trans. Amer. Math. Soc. 66, 1949, 464-491.
[6] Larsen, M.D.; Lewis, W.J.; Shores, T.S. Elementary divisor rings and finitely presented modules. Trans. Amer. Math. Soc. 187, 1974, 231-248.
[7] Warfield, R.B. Decomposibility of finitely presented modules. Proc. Amer. Math. Soc. 25, 1970, 167-172.
[8] Gillman, L.; Henriksen, M. Some remarks about elementary divisor rings. Trans. Amer. Math. Soc. 82, 1956, 362-365.
[9] Couchot, F. Exemples d'anneaux auto $f p$-injectifs. Communications in algebra. 10(4), 1982, 339-360.
[10] Roos, J.E. Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos. Commutative algebra, Symp. Durham 1981. Lond. Math. Soc. Lect. Notes Ser 72, 1982, 243-250.
[11] Anh, P. N. Morita duality for commutative rings. Communications in algebra. 18(6), 1990, 1781-1788.
[12] Facchini, A.; Faith, C. FP-injective quotient rings and elementary divisor rings. Commutative ring theory. Proceedings of the 2ndinternational conference, Fès, Morocco, June 5-10,1995. Lecture Notes in Pure and applied mathematics, 185, P.J Cahen 1997, 293-302, Marcel Dekker, New York.
[13] Bourbaki, N. Algèbre commutative. chapitre 1. Hermann, Paris, 1961.
[14] Shores, T.S.; Wiegand, R. Rings whose finitely generated modules are direct sums of cyclics. J. of Algebra, 32,1974, 152-172.
[15] Endo, S. Semi-hereditary rings. J. Math. Soc. Japan, t13, 1961, 109-119.
[16] Quentel, Y. Sur la compacité du spectre minimal d'un anneau. Bull. Soc. Math. France, 99, 1971, 265-272.
[17] Shores, T.S.; Wiegand, R. Some criteria for Hermite rings and elementary divisor rings. Canad. J. Math., XXVI, 6, 1974, 1380-1383.
[18] Shores, T.S. Modules over semihereditary Bezout rings. Proc. Amer. Math. Soc., 46, 1974, 211-213.
[19] Henriksen, M. Some remarks about elementary divisor rings, II. Michigan Math. J., 3, 195556, 159-163.

