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Understanding the dynamics of segregation bands

of simulated granular material in a rotating drum
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PACS. 45.70.Mg – Granular flow: mixing, segregation and stratification.
PACS. 83.10.Mj – Molecular dynamics in rheology.

Abstract. – Axial segregation of a binary mixture of grains in a rotating drum is studied
using Molecular Dynamics (MD) simulations. A force scheme leading to a constant restitution
coefficient is used and shows that axial segregation is possible between two species of grains
made of identical material differing by size. Oscillatory motion of bands is investigated and the
influence of the frictional properties elucidated. The mechanism of bands merging is explained
using direct imaging of individual grains.

Introduction. – Among the many puzzling phenomena exhibited by granular media, axial
segregation [1] aka. banding is one of the least understood. Due to the fundamental interest
as well as the numerous industrial applications [2], a great deal of both experimental [3–7] and
theoretical [7–10] work has been devoted to the topic, but full understanding is still lacking.
Molecular Dynamics simulation provides new insights in the understanding of the phenomenon
since it allows one to vary all parameters and measure any physical property. The only large
scale numerical study of axial segregation [11] reports remarkable results but interactions
between grains are derived from the Lennard-Jones potential, which is not well-suited for
granular material. Our simulation uses a modified spring-dashpot force scheme leading to a
restitution coefficient independent of the species of grains colliding. Here we show that axial
segregation is possible between two species of grains made of identical material differing by
size. We observe that a difference in the frictional properties of the two species of grain is
not necessary to the onset of banding but does triggers oscillatory instabilities. Finally, the
mechanism of bands merging is elucidated using direct imaging of individual grains. We also
propose under which conditions coarsening may stop or slow significantly.

Simulation Methods. – This letter presents results based on the Molecular Dynamics
method (MD), a.k.a. Discrete Elements Method (DEM). This method deals with soft (but
stiff) frictional spheres colliding with one another. Although not flawless, this method has
been widely used in the past two decades and has proven to be very reliable. The drum is
partially filled with a mixture of small and large beads (with respective radius RS = 2.4 mm
and RL = 2RS). The total volumes of small and large grains are equal. The number of grains
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varies from 5 × 104 to 5 × 105. The length of the drum, l, varies from 200 RS (≃ 50 cm) to
1000 RS (≃ 250 cm) and its radius is set to 40 RS ≃ 10 cm. The density is the same for both
kinds of beads: ρ = 0.6 g/cm3. The rotation speed is set to 0.5 rot.s−1.

The force scheme used is a dashpot-spring model for the normal force, Fn
ij , and a regularized

Coulomb solid friction law for the tangential force [12], F t
ij : Fn

ij = kn
ijδij − γn

ij δ̇ij , F
t
ij =

min(µijF
n
ij , γ

tvs
ij) where δij is the virtual overlap between the two particles in contact defined

by: δij = Ri + Rj − rij . The force acts whenever δij is positive and its frictional component
is oriented in the opposite direction of the sliding velocity. kn

ij is a spring constant, γn
ij a

viscosity coefficient producing inelasticity, µij a friction coefficient, γt a regularization viscous
parameter and vs

ij is the sliding velocity of the contact. If kn
ij and γn

ij are constant, the
restitution coefficient, e, depends on the species of the grains colliding. In order to keep
e constant the values of kn

ij and γn
ij are normalized using the effective radius Reff defined

by 1/Reff = 1/Ri + 1/Rj: kn
ij = kn

0 R0/Reff and γn
ij = γn

0 R2
eff/R2

0. The particle/wall
collisions are treated in the same fashion as particle/particle collisions, but with one particle
having infinite mass and radius. The friction coefficient µαβ can take five different values
corresponding to collisions between the small grains, the large ones, and the wall (α, β ∈
[S, L, W ]). The following values are used: R0 = 4 mm, kn

0 = 400 N.m−1, γn
0 = 0.012 kg.s−1

(leading to e ≃ 0.9), γt = 6 kg.s−1 and 0.1 < µαβ < 1.
The equations of motion are integrated using the Verlet method using a time step dt =

1/30 ∆t, where ∆t is the duration of a collision (∆t ≈ 10( − 3)s). The simulations are
typically run for 107 time steps, corresponding to a few hundred rotations. The drum is filled
by randomly pouring grains from above all the way along the drum axis, z. Rotation of the
drum is started after the grains have settled. The drum is always less than half-filled (filling
fraction between 20% and 50%) in order to speed up the dynamics.

Axial Segregation. – Prior to discussing any results on axial segregation, let us mention
that radial segregation [13] is observed throughout the length of the drum after only a few
rotations. This type of segregation is of great importance for axial segregation since the latter
can be seen as a fluctuation of the inner core, made of small grains in most cases. Some
previous experimental work [4,5] showed that the inner core is still present in the final steady
state as some others [14,15] showed that the core disappears meaning that the bands are pure.
Both situations were observed in our simulation, depending on the size of the drum, the filling
fraction and the material properties.

Fig. 1 – (in color online) a) Space-time plot for run A showing regions of high small-bead concentration.
b) Snapshots of the drum during the coarsening of run A.
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A wide range of parameters (drum length, radius, filling fraction, friction coefficients etc)
was investigated and showed that our results are robust with respect to these parameters. In
this letter, our goal is not to present a catalog of runs but to discuss the main features of the
dynamics of axial segregation. Therefore, we would like to present only a limited number of
runs which are in our opinion representative of many others.

The first run we would like to discuss consists of roughly 50,000 grains, with drum length,
l=160 cm (run A). All the friction coefficients used for this run are equal (µαβ = 0.5). This
means that the two species of grains made of identical material differ by size and not by
frictional properties nor restitution coefficient. Figure 1a is a space-time diagram showing
the evolution of this system. The drum is virtually divided in thin cylindrical slices per-
pendicular to the rotation axis, each one corresponding to one pixel on fig. 1a. The pixel is
black if the concentration in small beads is higher than its average value (i.e. #beads in slice
> NS/#slices). The space-time plot shows a rich dynamics with bands appearing shortly
after the rotation starts, with bands disappearing and merging with one another. The system
seemingly reaches a steady state consisting of bands somewhat regularly spaced. The simula-
tion was run for much longer than shown on fig. 1a and no evolution was observed. However,
it is well-known that coarsening can take place over several thousands of drum rotations. Let
us mention here that the dynamics changes drastically when the seed of the random function
is changed. The evolution shows the same features (banding, merging...) but can lead to a
different meta-stable state. Figure 1b shows snapshots of the drum at different times during
the coarsening. The birth and merging of bands can be clearly seen. The last snapshot corre-
sponds to the final steady state and shows 5 bands of large grains (L-bands), and 4 of small
grains (S-bands). A plot of the concentration in small beads shows that in this final state,
the bands are pure, i.e. the radial core has disappeared. Let us mention that the bands next
to the walls are always S-bands in our simulations.

The first conclusion that can be drawn is that segregation by size only (with constant
density ρ) is possible. Since the micromechanical properties of grains may depend on their
size, it is very difficult to experimentally study segregation by size only. As discussed below, a
difference in frictional (or collisional) properties can affect the dynamics of segregation. Yet,
our simulations show that such a difference is not necessary for axial segregation.

Let us now define a segregation function with the aim of quantifying the degree of axial
segregation, regardless of the radial segregation. Our definition is similar to that of [16] :

∆seg(t) =
1

l

∫ l

0

| cs(z, t) − cs |

cs

dz

where cs(z, t) is the local concentration in small beads along the axis (i.e. the number of
small beads per unit of length), and cs ≡ Ns/l the average value of cs(z, t). When the
two types of grains are mixed together, the concentration of small beads is uniform in the
z direction, meaning that ∆seg(t) = 0, whereas if the grains are segregated in any number
of pure bands (i.e. no radial core), ∆seg(t) = 1. Figure 2 is a plot of ∆seg(t). The degree
of segregation increases steadily until it reaches a plateau when two L-bands merge into one
(i.e. disappearance of one S-band). The transition between the growth and the plateau is
very sharp, meaning that the dynamics freezes. This shows that if further coarsening exists,
it must occur on a much longer time-scale.

Oscillations. – In this section we will discuss the sideways oscillatory motion of bands
described several times in the literature( [3,6] with binary mixtures, [5] with ternary mixtures)
but never explained. Such oscillations are observed in a wide range of drum lengths and radii
but a drum shorter than that of run A is used here with the aim of saving computation
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Fig. 2 – Degree of segregation, ∆seg , vs. time, for run A.

time. Another advantage of a shorter drum is that there are fewer bands interacting with one
another, making it easier to study their dynamics. The results presented here remain valid
for longer drums. Two runs are presented in this section: run B and C. Both systems consist
of 13,000 grains in a drum whose length is l = 40 cm. In run B, all friction coefficients are
identical (µαβ = 0.6) whereas in run C they differ (µSS = 0.3, µLL = 0.6, µSW = µLW =
0.5 and µSL = (µSS + µLL)/2).

Figure 1a is a binary space-time plot: black and white represent regions of high small-bead
and large-bead concentration respectively. To allow for a finer study of the dynamics one can
plot the space-time evolution of the concentration cs(z, t) itself (using a gray scale). Figure 3
shows the space-time plots of runs B and C. The dynamics of the two runs are similar although
not identical. They both start with the birth of 3 L-bands and 2 S-bands. After a transient,
the 2 S-bands merge into one, leading to 2 L-bands and 1 S-band. We would like to emphasize
that except for the friction coefficients, the parameters of runs B and C are identical in every
point, including the random seed. This explains why they exhibit the same general features.

Fig. 3 – Space-time plot of cs(z, t) for runs B(left) and C(right).

However, there exists a striking difference between the two runs: the space-time plot of run
B seems to be smoother than that of run C. The fluctuations visible on run C are not noise
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but correspond to actual oscillations of the bands. This can be confirmed by performing a
2D-Fourier transform of fig. 3: there exists a neat peak for run C and none for run B. We
find the position of a L-band to oscillate as the width remains constant, whereas the position
of a S-band remains constant as its width oscillates (as described in [5]). Moreover, two
neighboring bands of a kind (i.e. separated by a band of the other kind) are out of phase
(see fig. 4b). The absence of oscillations in run B shows that the oscillatory motion originates
from the difference of frictional properties between species: when µαβ is independent of the
species, the oscillations disappear.
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Fig. 4 – a) Segregation function ∆seg vs. time for runs B and C. b) Partial segregation functions
∆seg

left and ∆seg

right vs. time for run C.

Figure 4a is a plot of the segregation function for runs B and C. It shows a two-step
dynamics: after a rapid increase the function reaches a first plateau which is succeeded by
a second plateau due to the merging event. Moreover, the oscillations mentioned above are
clearly visible. In order to study the oscillations of only one S-band at a time, one can define
a partial segregation function ∆seg

left(t) using the same definition as ∆seg(t) but integrating

from 0 to only l/2 (∆seg
right(t) being the integral on the [l/2, l] interval). Figure 4b presents the

evolution of ∆seg
left(t) and ∆seg

right(t) for run C prior merging and shows very clear oscillations.
The inset is a closer view of these functions just before the merging of the two S-bands. One
can see that the oscillations of the two S-bands are out of phase, which as been observed
experimentally [5].

Merging. – In this last section we would like to discuss the mechanisms of merging.
When a band disappears, what becomes of its grains ? Are they distributed to the neighboring
bands or do they merge with only one of their neighbors ? The simulation is a powerful tool
to address these questions. Indeed, most experiments focus only on the free surface of the
media, which is not satisfactory. It is experimentally possible (but difficult) to measure the
subsurface concentrations using MRI [4] or optical techniques [6]. It is however impossible to
identify the original location of a grain (i.e. no particle tracking is possible). For the same
reason, the space-time plots are of little help in understanding the mechanisms of merging.
Moreover, the apparent mass (or width) of a band on a space-time plot is not a reliable source
of information. For instance, the mass of the final S-band on fig. 3 (for both runs B and C)
seems to be much larger than the total mass of the bands it originates from, which is absurd.
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Fig. 5 – (in color online) a) Snapshots of the large beads in run C. The color of each grain is chosen
according to the position at t=40 rot. b) Schematic cross sections showing a typical merging event.

Figure 5a presents three snapshots of run C, before, during and after merging (respectively
t = 40, 75 and 110 rotations). For clarity, the small grains are not shown on these snapshots,
but would fill in the voids left by the L-bands. Note that radial segregation still exists at time
t = 40 rot. (see fig. 3), i.e. a core of small beads runs through the middle L-band. The color
of each grain is chosen according to its position at time t = 40 rot. (yellow for the left band,
blue for the middle one and gray for the right one). The origin of each grain is then visible
throughout the duration of the run. The composition of the two final L-bands is surprising.
The left L-band in the final state is made of almost exclusively yellow beads whereas the right
L-band is a well-mixed combination of blue and gray beads. More than 99% of the middle
(blue) particles choose the right side. Conversely, less than 1% of the yellow particles are
dragged to the right. The initial middle and right L-bands merge together as the left one is
completely ignored.

This tendency for a L-band to merge with only one of its neighbors holds in longer systems
(such as run A). In run C, there exist only 2 S-bands before merging. Therefore, the outcome
of the merging for those is clear: the 2 bands must mix. Using longer drums (as in run
A), we found that during a merging event, a S-band splits and feeds both the left and right
neighboring S-bands. This is of course possible only if the S-band is not located next to a
wall (like for run C). To summarize, a merging event consists of the loss of one band of each
kind, but with two distinct mechanisms. Two neighboring L-bands collapse, ignoring all the
others as one S-band splits and feeds its neighbors on both sides.

Figure 5b is a schematic view of a typical merging event, showing a cross section of the
granular media. In the initial state (i), there are 3 S-bands connected through a radial core.
As the middle S-band shrinks its grains are shared between the two other S-bands (ii). ¿From
the large particles standpoint, this means that the two central L-bands merge together (iii).
The left and right S-bands form insurmountable obstacles for the large grains. The evolution
can either stop in the state (iv), where radial segregation still exists or continue and lead to
a state where radial segregation has disappeared. Let us mention that as suggested by recent
experiments [17], the radial core could possibly reform but this was never the case in our
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simulations. In run A, the death of the radial core coincides with the sudden arrest of the
evolution (fig. 2). This suggests that the exchanges between S-bands are possible only if the
latter are connected through a radial core. Whenever this communication line is broken, the
S-bands cannot interact and the evolution stops.

Conclusion. – In this letter granular axial segregation is numerically studied using 3D
molecular dynamics simulations. We show that this type of segregation can occur in a mixture
of two species of grains differing by size only (i.e. equal densities, frictional properties, Young
modulus etc). Although a difference in frictional properties between the two species is not
necessary to observe axial segregation, it leads to the onset of oscillations in the band position
or width. This suggests that the oscillations observed in experiments may originate from
a difference in the frictional properties between species of grains. The mechanisms of band
merging are elucidated by tracking the positions of individual grains during a merging event.
They consists of two complementary events. On one hand, the disappearance of one S-band :
its grains are shared between the two neighboring S-bands through the radial core, on the other
hand, the collapse of two L-bands : the two L-bands surrounding the decaying S-band mix
together and are oblivious to the other L-bands. Finally, we introduce a segregation function
that measures the degree of axial segregation in the medium. This function is a powerful tool
to study the dynamics of banding. It allows for precise measurement of the period of band
oscillations and shows that the coarsening process can stop or slow dramatically when the
radial core breaks.
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