N

N

On the Relevance of Mean Field to Continuum Damage
Mechanics
Stéphane Roux, Frangois Hild

» To cite this version:

Stéphane Roux, Francois Hild. On the Relevance of Mean Field to Continuum Damage Mechanics.
International Journal of Fracture, 2002, 116, pp.219-229. 10.1023/A:1020131031404 . hal-00002936

HAL Id: hal-00002936
https://hal.science/hal-00002936

Submitted on 24 Sep 2004

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00002936
https://hal.archives-ouvertes.fr

On the Relevance of Mean Field

to Continuum Damage Mechanics

Stéphane Roux(! and Francois Hild®
(1): Laboratoire “Surface du Verre et Interfaces”,
CNRS UMR 125 / Saint-Gobain,
39 Quai Lucien Lefranc,
F-93308 Aubervilliers Cedex, France.
(2): LMT-Cachan,
ENS de Cachan / CNRS UMR 8535 / Université Paris 6,

61 Avenue du Président Wilson,
F-94235 Cachan Cedex, France.

(Dated: September 24, 2004)

Abstract
Damage theory is, by its very essence, a mean-field theory. In this note, we argue that consider-
ing the effective interaction kernel between an additional micro-crack, and the effective equivalent
damaged matrix, the power-law decay of the influence function (or Green’s function) becomes more
and more long-ranged as the tangent modulus vanishes. Moreover, the reloaded region becomes
a narrower and narrower “cone”, so that the damage in this cone becomes closer and closer to
the so-called global load sharing rule used, for instance, to study a fiber bundle. This constitutes

a formal justification of the relevance of such a mean-field approach as the peak stress is approached.

Keywords: Continuum Damage Mechanics, Mode III crack, local load sharing, global load sharing,

mean field regime, far-field stress.



I. INTRODUCTION

Continuum Damage Mechanics (CDM) consists in modeling the gradual degradation
occurring in materials (e.g., cavity nucleation and growth, multiple cracking) within the
framework of Continuum Mechanics! and Continuum Thermodynamics?. Internal variables
are introduced and their mathematical nature depends on the degradation phenomenon
one wants to describe and the physical basis one is ready to consider. In many years,
an isotropic damage description was used® even though anisotropic descriptions are more
realistic when considering multiple (micro)cracking of quasi-brittle materials*®. Discrete
approaches can also be used? to study a set of cracks or voids. They explicitly account for
defect interactions, viz. shielding or amplification. This approach is more detailed than the
previous one but is also more limited since the number of discrete defects is still relatively
low compared to situations where the CDM framework is applicable. In the latter case,
the stress redistributions are dealt with through the constitutive equation itself. It can be
noted that if local stress amplifications were the controlling feature then the material would
essentially behave as an elastic-brittle medium.

What CDM usually describes is a progressive reduction in stiffness of a damaged

11013 Ag a volume element is unloaded, its behavior is purely elastic with a lower

materia
Young’s modulus or a higher compliance. In contrast, for an element whose stress state
leads to a damage change, a further increase in load will induce an incremental stress/strain
relation which will account for both the elastic loading and the incremental damage, so that
the tangent loading and unloading stiffnesses differ. As a result of this difference, we argue
in this note, that the influence function of given volume element will give rise to a stress re-
distribution kernel whose decay with distance is different from (i.e., slower than) the purely
elastic case. The exact form of this kernel will be derived in the simple case of a mode II1
loading, although a similar computation can be performed in other cases. Concerning the
consequences of this simple observation, we believe that it sheds some light on the relevance
of a mean-field approach to damage. The load redistribution from one volume element to
other ones is a basic process at play in the kinetics of damage. A transverse cut through
a specimen loaded in tension may then be modeled with the help of a line spring model

114716

for a homogeneous materia or by closely related descriptions for an interface between

17,18

two dissimilar media For this modelling to be meaningful, the boundary conditions



specifying the load or the displacement has to be modified as compared to the two well
studied limits, viz. the Mean Field (MF) or Global Load Sharing (GLS) hypothesis for
which each volume element will interact globally as a result of a homogenized effect of the
surrounding medium and the Local Load Sharing (LLS) hypothesis for which the immediate
neighborhood is relevant. If the medium were purely elastic then the description of the load
redistribution would make use of a standard Green’s function, which already is an inter-
mediate case between MF and LLS. For illustration purposes and to be more precise, we
refer here to simple fiber-bundle studies that give rise naturally to a damage behavior and
illustrate what we refer to as MF.

A fiber bundle model consists in studying the mechanical behavior of a one dimensional

1921 The stiffness of the fibers can be considered

array of parallel fibers loaded in tension
uniform, but their strength is randomly distributed. Depending on the precise rule of load
transfer upon fiber breakage, we can observe different responses. Two major limits have been
considered??: the GLS rule corresponds to the case of clamping the fibers between two rigid
crossheads. It follows that each unbroken fiber supports the same load and the load carried
by a breaking fiber is evenly redistributed on the surviving fibers. In our terminology,

23,24 Consequently, the

this is an MF regime. The resulting behavior is simple damage
perturbations are insensitive to the spatial correlations. A fiber will be subjected to a
load which is the total force exerted on one crosshead, divided by the number of fibers,
irrespective of their location. Exchanging two fibers (broken or intact) has no impact. This
is in contrast with the LLS rule where the load on a fiber is a function of its local environment.
LLS consists in transferring the load supported by a fiber that fails, to its nearest (right and
left) surviving fibers®® or fiber bundles?®. This is physically the limit of a very compliant
crosshead. The resulting mechanical behavior of the bundle consists in two stages. The first
one is a damage behavior where the weakest fibers fail. Then when a few neighboring fibers
have broken, so that the extension of this defect reaches a critical size, the load transferred
to the ends of this “crack” is so large that this crack propagates in an unstable manner
throughout the entire bundle. The behavior thus appears to be brittle.

Both of these limits are over-simplifications, and can hardly be interpreted as represen-
tative of the bulk of a two- or three-dimensional system. It can be noted that the ulti-
mate strength of some unidirectional fiber-reinforced composites can be modeled within this
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framewor . To progress toward a more realistic description of the mechanical coupling



of the fibers within the bundle, so that the correspondence with a two-dimensional system

d3233 replacing the two

appears more convincing, an intermediate case has been introduce
connecting crossheads by two semi-infinite elastic domains. The load transfer between the
surviving fibers is then computed by solving for the stress distribution within those domains.
Now depending on the relative stiffness of the fibers and the elastic properties of the semi-
infinite domains, we can observe either a non-linear (damage) behavior (compliant fibers) or
a damage-brittle transition (stiff fibers). In the first case, past a bifurcation point reached at
the peak stress for an infinite system, we can study the progressive localization of damage on
a smaller and smaller damaged region while the rest of the bundle is progressively unloaded.
However, damage is confined at the interface between the elastic domains, and thus this
model still cannot be argued to be representative of a homogeneously damaged medium.

Nevertheless we conclude that the precise way in which the load is transferred from one
fiber on to its surrounding has a drastic influence on the type of behavior. This load transfer
can be formulated by using a “Green’s function” type of formalism, i.e., by studying how
the breakage of a fiber supporting a unit force will load another fiber at a distance r by
a force ¢(r). The GLS rule corresponds to ¢(r) = constant for r # 0, and ¢(0) = —1
whereas the LLS rule is a very rapid decay ¢(r = 0) = =1, ¢(r = £1) = 1/2, and ¢(r) =0
for |[r| > 1. The coupling with an elastic block is characterized by a power-law decay
&(r) oc 1. The Green’s function ¢ can be characterized by the exponent 7 of the decay of
¢ with r, ¢(r) oc r=7. The three cases considered above are v = 0 (GLS), co (LLS) and 1
(Elastic block). Other functions ¢ have been considered by Wu and Leath3*.

The aim of this note is to show that when considering a two-dimensional system, as
damage progresses in a homogeneous manner, the effective “Green’s function” has a con-
tinuously evolving exponent <, varying from 1 in the initial stage (elastic regime) to 0 as
the peak stress is reached. Moreover the shape of the reloaded region is a “cone” (far from
the perturbation region) whose aperture angle vanishes as the peak stress is approached.
This gives some credit to the modelling of the final stage of damage using a one dimensional
description based on the fiber bundle model with the Global Load Sharing rule. As a result,
we conclude that the standard treatment which consists in focusing only on the far-field

stress induced by micro-cracking, is legitimate.



II. HOMOGENEOUS MODE III LOADING

We consider an infinite medium subjected to a uniform remote stress o,,. The problem
will be focused essentially on an anti-plane geometry, so that every field will be invariant
along the z-axis. We will consider below the perturbation in the stress field induced by the
presence of a crack (or a slightly more damaged zone). The crack will thus be assumed to
be invariant along the z-axis, and aligned in the (z, z)-plane. In this case, a pure mode III
condition is met.

In the absence of crack, the medium is subjected to a uniform stress and strain. By using
the anti-plane property, the problem reduces to the determination of a displacement field
aligned with the z-axis and independent of z, U, = w(x,y). The strains are characterized by
the displacement gradients 7,, = w s, vy, = wy. If the material behavior were elastic, the

following stress ¥ = (0, 0y,)" / displacement gradient I' = (7, 7,.)" relationship would

apply
S =Kl (1)
where K is the reduced stiffness tensor
10
K=p (2)
01

and p the shear modulus.

We consider now a damageable material. For any constitutive law, (provided the pre-
scribed stress can be sustained by the material) the homogeneous solution remains valid.
Because of the simplicity of the anti-plane geometry, we can easily deal with anisotropic
damage. Assuming now that the stress has been applied through a simple proportional
loading, the transverse stiffness K, remains unaffected by the loading, i.e. K,, = Ky = p,
whereas the longitudinal one, Ky, is reduced to K, = (1 — D)p upon unloading (i.e., if
0y, < 0) and to K; upon further loading (i.e., if 6,, > 0). The expression of the tangent
stiffness K can be extracted from the constitutive law if D(v,,) is specified, through

K= |(0=D) = 52 . @
This defines the incremental stiffness from a uniform stress state, > = %),
We assume the possible occurrence of a crack. As shown schematically in Fig. 1, we

imagine a crack centered at the origin, lying in the (z, z) plane, and which fulfills the anti-
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plane conditions. Therefore the crack is assumed to be infinite along the z-axis and of size
¢ along the z direction. The presence of the crack induces a modification of the stress field

Y which is now written

S(z,y) =20 + 30 (z,y) (4)

In the immediate vicinity of the crack, the singular mode III stress field can only be
determined if the entire constitutive law is specified. For example, HRR solutions can be
exhibited for a power-law hardening material. For an elastic-damaged material, solutions

can also be constructed in the vicinity of a crack tip33-37

. However, the far-field influence of
the crack assumes a much more general character since the additional contribution ¥ is
much smaller than the background (9. In this case, only the tangent stiffness is required
provided one focuses on distances to the origin, 7, much larger than the extent ¢ of the
crack itself, » > /. It can be noted that the considered defect may be of any nature
provided it softens a volume element lying at the origin. It could be a crack but also a more
damaged region. The extension ¢ is assumed to be small compared to the specimen size
L. Close to this defect, the stress field modification (from the uniformly damaged medium)
is certainly very sensitive to the nature of this defect (e.g., stress concentration or even
stress singularity). However past distances of the order of a few times ¢ (depending on the
precision required) all such defects will induce a similar perturbation in an infinite medium
as described below. In all cases, the stress modification will weaken in magnitude as the
distance to the defect increases, and it will spread over wider regions. If one were to consider
the effect of a boundary, although a complete computation should be performed, the small
amplitude of the stress modification and its wide spreading should not alter drastically the
solution proposed herein. Consequently, the solution is applicable only provided there is a
clear separation of length scales between the defect size and the system size L, £ < L.

In order to address this problem, without having to tackle the immediate vicinity of the
crack, we expand the far-field in contributions of multipoles of an equivalent force distribu-
tion within a domain which contains the crack. Since no external force is exerted on the
crack itself, the algebraic sum of all equivalent forces is zero (the monopole term vanishes).
Thus the leading non-vanishing contribution comes from a dipolar term. It can be expressed
physically as the effect of two opposite forces, of magnitude og(,g)ﬂ, applied on the two mouths
of the crack. In the following, we only consider this dominant contribution, since all higher

order terms (quadrupolar, ...) vanish with distance r more quickly than the dipole term.
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In the case of a virgin elastic material, the dipolar field can be conveniently expressed in

pw =R (é) (5)

where w( is the displacement field due to the presence of the crack and ¢ = z + iy = re®.

Thus the stress field () vanishes as 1/r2.

the complex plane as

Coming back to the original damage case, we have to distinguish between two domains,
D, and D; depending on whether the stress component 05? is positive (subscript [ for
“loading”) or negative (subscript u for “unloading”). At a large distance from the crack,
where the dipolar approximation is appropriate, there is no longer any length scale in the
problem, and thus the domains have to be invariant under a dilation with respect to the
origin. Thus they are cones (or sectors) in the plane as sketched in Fig. 2

In the sequel, we will mostly focus on the additional stress field ©(1), and its corresponding
displacement field w(?. Thus for simplicity of notations, we will drop the superscript (1).

The difficulty of the problem is that the boundaries of the domains are unknown, and

should be obtained self-consistently with the solution. In each domain, we have to solve the

following equilibrium equation

82wi 82wi
0z? * Kia—yz =" ®

Ko

where the index 7 is either u or [. The boundary between D, and D; is such that the stress

0y, is vanishing and the stress vector is continuous

8wi

5, =0 (7)
and
8wu 3wl _

where n, is the x-component of the normal to the boundary between the two domains.
Finally concerning the boundary conditions, the displacement field w; should vanish at
infinity and be singular at the origin. A dipolar field will naturally be selected if the proper
symmetries are imposed: w; symmetric under x — —x reversal, and antisymmetric with
respect to y — —y.

The absence of characteristic length scale (in the limit 7/¢ > 1) in this problem imposes

that the shape of the domains is a “cone”. The boundary has thus to be x = +ay where



a has to be determined (Fig. 2). Moreover, the displacement field admits a decoupled form
V = r~%p(#) in polar coordinates, for the same reason of absence of characteristic scale. This

singular form is classically encountered when analyzing scale-free problems in elasticity3®.

In each domain, ¢ = u or [, one may define a rescaled coordinate system3%* ¢! =
y/+/Ki/ Ky, and z; = z, such that the problem to solve is simply
V?2w; =0 9)

where V" is the Laplacian operator in the corresponding (z',%') space.
The above remarks together with symmetry considerations indicate that the potential

admits the simple form
pw, = R(A,z,")

: (10)
pwr = R(Ai(ze ) 72)
where A; are reals.
Returning to the original coordinates, and introducing the notations k; = K;/K, for
1 = u,l we have in domain D,,
pwy = Ay (y?/ky + 2°) 72 cos(aAtan(z v/ ku/y)) (11)
and similarly in domain D,
pw, = A (% ky + 22) =% sin(a(Atan(z/ ki y) — 7/2)) (12)

We now simply need to determine A,/A;, a and a.

The stress o,, in domain D, is

Oye = Ay by (Y2 ky + 22) 71702 (\/L]? cos(aAtan(z\/ku/y))

—r sin(aAtan(x\/E/y))) (13)

and similarly in domain D,

oy = /Ryl + )70 (o sinla(Atan(o /) /)

+z cos|a(Atan(z/ki /y) — 7T/2)]) (14)

Setting these quantities equal to 0 along the boundary = = ay, we get

aAtan(ay/k,) = Atan (ﬁ)

8



and for domain D,
a(Atan(av/k) — /2) = —Atan (m/kj) (16)

By introducing the notation v, = Atan(av/k,), and similarly ¢, = Atan(av/k,), we have

to solve for

Yu " 2(1+a)

(U = m (17)
tan(r/2(a+1)) _ [ka

tan(ar/2(a+1)) V&

The latter equation determines implicitly o from the ratio of secant to tangent stiffnesses,
and the former gives the geometry of the interface between the two domains. Explicitly, a
is obtained from the definition of either v, or vy, a = tan(vy)/Vku.

Finally, the continuity of 0., along r = ay imposes
Ay (k) @FI/2 cos® T (1h,) = — Ay (k) @FD/2 cos®H (1) (18)

so that the ratio A,/A; can be determined. Any of the two amplitudes A, or A; is a simple
scale factor that depends on the exact crack geometry and constitutive equations in the
immediate vicinity of the crack. The order of magnitude of A; can easily be obtained from
the integral of the stress transferred across the y = 0 plane, which should balance 01(,2)6. We

deduce
OZS(;)EH—Q

avk

With this last equation, all the quantities of interest are now determined. Figure 3 shows the

A~ (19)

change of the exponent « with the ratio k;/k,. There are two interesting limits to consider.
When k;/k, ~ 1, the exponent a ~ 1 and the elastic case is recovered. This case will be
referred to as early damage regime. Conversely, when k;/k, = 0, the exponent « vanishes.

This case will be referred to as peak stress regime.

A. Early damage regime

The first regime corresponds to the initial stage of damage. The contrast between k, and
k; is small. By using the above equations, and introducing the notation k;/k, = 1 — €, we

can obtain the following behavior for the solution

9



a=1-°5
™
4 8
(20)
™
ho=7 -2
a = (kybky)™/*

In particular, the exponent « is close to one as expected from the elastic case.

B. Peak stress regime

The other limit corresponds to the point where one approaches the peak of the stress-
strain relationship. There, the tangent loading modulus vanishes (i.e., k; — 0), and we can

expand the above relations to extract
9 [\ VA
. k| 4
=5 (i)

a = (kyk;)~*

and

The important feature is that the exponent « tends to 0. This means in practice that
as the peak stress is approached, the effective interaction Green’s function (decaying as the
distance raised to the power —a) becomes longer and longer ranged. It approaches the
Global Load Sharing rule used in the fiber bundle model. It is also noteworthy that the

loaded zone becomes a thinner and thinner “cone” along the z-axis, whose aperture angle
is (kyky)'*.

III. DISCUSSION AND CONCLUSION

The above discussion shows that the load transfer which arises from the opening of a

new crack in mode III, has a long range part which evolves continuously as the tangent
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loading stiffness decreases. In particular at the onset of localization, the perturbation field
due to the presence of the crack gives rise to a non-vanishing displacement in a direction
aligned with the crack. Along this direction, we recover a condition similar to the global
load sharing case.

However, we would like to point out that although the previous calculation appears as
similar to a Green function, it is not the case, in the sense that the loading/unloading
conditions prevent the construction of admissible solutions from simple superposition. For
instance the case of two cracks in interaction is outside the scope of the present analysis.
This strong non-linearity is certainly inherent to the damage behavior. Nevertheless, the
validity of the present result concerning the far field is not confined to the case of a crack.
It is also applicable to any increase of damage in a limited region of space.

Furthermore, in the framework of homogenization, provided there exists a scale above
which no spatial correlations are relevant, one may homogenize (and use a mean-field the-
ory) the elastic properties. Below this scale, even when all moduli are positive definite, such
a procedure is not appropriate. The key feature in a damage theory is the fact that one
does not control directly the spatial correlations in cracks. Moreover, as they are produced
through elastic interactions which are long-range fields, the emergence of long-range (infi-
nite) correlations may be feared. This may be at play in particular at the transition to a
bifurcation such as strain or damage localization, and hence, even just prior to localization,
the applicability of a mean-field procedure valid above a diverging length scale may be a
nice mathematical property, but it will have limited practical consequences.

Lastly, even though the computation has been performed in the framework of anti-plane
geometry, similar results should hold quite generally. A proper localization criterion which
would take into account this loading/unloading condition is however out of reach of the

present analysis.
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FIG. 1: An antiplane (mode III) loading condition is assumed (the displacement is everywhere
along z, and independent of z). In addition to a homogeneous loading (leading to the sheared
geometry shown with a dashed line), a crack centered along the z axis and parallel to the (z, z)

plane is considered. The perturbed stress field due to this crack is computed in the far-field limit.
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FIG. 2: Loading (shaded) and unloading domains in a far-field analysis. The crack is at the origin

aligned along the z axis.
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FIG. 3: Change of the exponent of the influence function with the ratio of tangent and secant

moduli. Note that the exponent o vanishes as the 1/4th power of the ratio k;/k,.
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