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Abstract. The treatment of fields as operator valued distributions (OPVD)
is recalled with the emphasis on the importance of causality following the
work of Epstein and Glaser. Gauge invariant theories demand the extension
of the usual translation operation on OPVD, thereby leading to a generalized
QED formulation. At D=2 the solvability of the Schwinger model is totally
preserved. At D=4 the paracompactness property of the Euclidean manifold
permits using test functions which are decomposition of unity and thereby
provides a natural justification and extension of the non perturbative heat
kernel method (Fujikawa) for abelian anomalies. On the Minkowski manifold
the specific role of causality in the restauration of gauge invariance (and mass
generation for QED2) is examplified in a simple way.

1 Introduction

The identification of fields as operator-valued distributions (OPVD) is almost as
old as Quantum Field Theory (QFT) itself. To cite only two early basic texts
among many just recall Bogoliubov-Shirkov’s [1] and Schweber’s [2] monographs.
Bogoliubov and Shirkov were original in that their construction of the S-matrix
involves test-functions in the range (0, 1) but differrent from zero only in a certain
finite space-time region. The condition of causality applied to the supports of the
test functions induces essential relations between the S-matrix amplitudes. This
approach was later pursued and developped by Epstein and Glaser [3] leading to
a well recognized causal pertubation theory which is ”free of mathematically un-
defined quantities but hides the multiplicative structure of renormalization” [4].
Apparently for most of QFT practitioners this was a fatal disease and Epstein
and Glaser’s work is scarcely referenced and almost fell into oblivion, save for
the important contributions of Scharf [5]. The situation is different in the world
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of mathematicians dedicated to the construction of a rigorous and mathemati-
cally well defined QFT. In this respect the necessary steps involve the extension
of singular distributions to the whole space-time manifold. An often reported
conjecture made by A. Connes and independently by R. Estrada [6] states that
”Hadamard’s finite part theory is in principle enough to deal with QFT diver-
gences”. Clearly, for outsiders, the statement called for some clarifications. They
came only recently [7]. It appears that a rigorous way to get an extension of a
singular distribution is a weighted Taylor series surgery, that is to throw away an
appropriate jet of the test function at the singularity. Transposed to Fourier space
the procedure amounts to a substraction method which includes BPHZ renor-
malization [1, 8] as a special case. In Minkowskian metric this is equivalent to the
implementation of causality while in the Euclidean counterpart it is a symmetry
preserving prescription for substractions. The OPVD approach we implemented
in the Euclidean LCQ study of the critical properties of φ4

1+1-theory [9] is in the
line of Epstein and Glaser [3]. However it has the important additional feature
that the paracompactness of the Euclidean manifold allows using any partition
of unity as C∞ test functions with compact support in Fourier space. Thereby
any UV- divergences in Fourier space integrations are properly regulated. It is
our aim here to develop the treatment of Fermi-fields as OPVD in a gauge field
environment, sketched at the LC03 Durham meeting [10].

2 Fermi-field as OPVD: problems with gauge invariant translation.
Lessons from Schwinger’s QED2.

Let ψ(x) be the Dirac massive free field, then (i 6∂ − m)ψ(x) = 0. ψ(x) is an
OPVD which defines a functional Φ(ρ) with respect to a test function :
Φ(ρ) ≡< ψ, ρ >=

∫
d(D)yψ(y)ρ(y). Φ(ρ) is an operator-valued functional with

the possible interpretation of a more general functional Φ(x, ρ) evaluated at
x = 0. Indeed the translated functional is a well defined object [11] such that
TxΦ(ρ) =< Txψ, ρ >=< ψ, T−xρ >=

∫
d(D)yψ(y)ρ(x− y). Due to the properties

of ρ, Ψ(x) ≡ TxΦ(ρ) obeys also Dirac’s equation and is taken as the physical
field which is now and most importantly an analytic function of the x-variable
[11]. The possible singular behaviour of the original field ψ(x) is now transferred
to the class of test functions necessary to define a bona-fide tempered extension
of the original OPVD on the whole space-time manifold [3, 5, 7]. For QED the
fermionic field obeys (i 6∂− e 6A−m)ψ(x) = 0, and it is clear that the translation
in ψ(x) must be done in a way compatible with gauge transformations. The
immediate candidate would be the well known Dirac string from x to y. But now
Ψ(x) depends on the path γ(s) from x to y and does not obey exactly QED’s
equation. It induces an alteration of the path integral formulation. Moreover for
QED2 Ψ(x) does not exhibit the bosonization features of the known solution.
However, following Dirac’s early analysis [12], the most general writing for Ψ(x)
is

Ψ(x) =

∫
d(D)yρ(y − x) exp[ie

∫
d(D)z lC µ(x, y, z)Aµ(z)]ψ(y). (1)
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Ψ(x) transforms as the original ψ(x) under a gauge transformation provided that

∂µ
z lC µ(x, y, z) = δ(z − x) − δ(z − y). (2)

There lC µ may have a matrix structure. To clarify the importance of this fact con-
sider again QED2. In this case the basic matrices are I, γµ, γ5. The contributions
due to (I±γ5) can be eliminated in the Lorentz gauge, for then one may look for
lC µ under the form ∂

µ
zC →

∫
d(D)z(∂µ

zC)Aµ = −
∫
d(D)zC(∂µ

zAµ) = 0. Hence
the relevant term involves only γµ and lC µ(x, y, z) = C(x, y, z)γµ. But at D = 2
the longitudinal part of Aµ(z) can be gauged away, only the transverse part mat-
ters and one has then

∫
d(2)zC(x, y, z)γµAµ(z) =

∫
d(2)zC(x, y, z)γµǫµν∂

ν
zφ(z) =

−γ5

∫
d(2)zC(x, y, z)γν∂

ν
zφ(z) = γ5

∫
d(2)z(∂ν

zC(x, y, z)γν)φ(z) = γ5[φ(x)−φ(y)],
where Eq.(2) and the linearity of C(x, y, z) in γ matrices has been used.
Ψ(x) writes now Ψ(x) = exp[ieγ5φ(x)]

∫
d(2)yρ(y − x) exp[−ieγ5φ(y)]ψ(y) =

exp[ieγ5φ(x)]χ(x). This is just the bosonization ansatz of the conventional the-
ory and it is checked that Ψ(x) still obeys (i 6∂ − e 6A)Ψ(x) = 0, giving the usual
anomaly and mass generation (cf below). At D = 4 lC µ(x, y, z) can be a (4⊗ 4)
matrix built from I, γµ, γ5, γ5γ

µ, σµν . As for D = 2 contributions from I, γ5 can
be disregarded. Clearly we don’t want lC µ to mix the chiralities of the original
ψ(y) while preserving its equation of motion and gauge transformation property.
This imposes a unique writing for Ψ(x) as

Ψ(x) =

∫
d(4)yρ(y − x)[H+(x, y) +H−(x, y)] (3)

with

H±(x, y) =
1

2
exp[i

e

2

∫
d(4)zC(x, y, z)γµ(1 ± γ5)Aµ(z)](1 ± γ5)ψ(y). (4)

The solution of Eq.(2) is now path independant and gives C(x, y, z) =

−i
∫

d(4)k
(2π)4

γ.k
k2 [exp(ik(z − x)) − exp(ik(z − y))], which cannot be gauged away

[10]. It is verified that Ψ(x) obeys the classical QED original equation 1 thereby
permitting a path integral formulation in terms of this ”smeared” field. The
question of charged particles and asymptotic states in gauge theories [13] is now
to be adressed with respect to this field.

3 Anomalies: Fujikawa’s method revisited

Using the properties of γ-matrices the right- and left-handed components can be
recombined. With the variable change y = x+ ǫ ánd C(x, y, z) = c(z − x)
− c(z − y) = ǫ.∂zc(z − x) + O(ǫ2), Ψ(x) reads now

Ψ(x) =

∫
d(D)p

(2π)D

∫
d(D)ǫρ(ǫ) exp[iǫ.(p + e

∫
d(D)z∂zc(z − x) 6A(z))] exp[ip.x]ψ̃(p).

1The necessary commutations result from [γµ(1 ± γ5), γ
ν(1 ± γ5)] = 0, ∀(µ, ν). Whereas for

m > 0 the distinction between right and left-handed fermions is only technical, for m = 0 the
chirality will remain a conserved quantum number.
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Here the neglected terms are of order O(R2), where R is the ”small” radius of the
ball, support of the test function ρ(ǫ). Due to rotational symmetry its Fourier
transform depends on q2 only and since ρ̃(q2) = ρ̃((γ.q)2) it gives 2 Ψ(x) =∫

d(D)p
(2π)D ρ̃((6p + e 6A(x))2) exp[ip.x]ψ̃(p) + O(R2) =

∫
d(D)p
(2π)D ρ̃(− 6D2

x) exp[ip.x]ψ̃(p) +

O(R2).Since the value of the mass is inessential in the sequel m = 0 will be taken.
In the path integral formalism the measure is now expressed in terms of the reg-

ularized complete set of eigenfunctions {Ξn} of the hermitian operator 6D, since
Ξn(x) and the unregularized ξn(x) obey the same eigenvalue equation 6Dξn(x) =
λξn(x) by construction. Hence Ψ(x) =

∑
n anΞn(x), Ψ(x) =

∑
n bnΞn(x) and

DΨ(x)DΨ(x) =
∏

m,n damdbn. The analysis follows as usual [14], save for the

fact that the quantity B(x) =
∑

nΞ
+
n (x)γ5Ξn(x) =

∫
d(4)p
(2π)4

tr{γ5 exp[−ik.x]

ρ̃2(−6D2
x) exp[ik.x]} is now finite due to the presence of test functions. The

paracompactness property of the Euclidean manifold implies that ρ̃(p2) can
be taken as a decomposition of unity which introduces a scale (related to
the inverse radius R of the ball, support of test function in configuration

space) and in fact ρ̃(p2) → ρ̃( p2

Λ2 ) [9, 10]. In the limit Λ → ∞ B(x) reduces

to B(x) = e2

8 tr[γ5(σ
µνFµν)2]

∫
d4y

(2π)4
d2

d2(y2)
[ρ̃2(y2)] = e2

16π2

∗
Fµν(x)Fµν(x), since

ρ̃2(0) = 1 (decomposition of unity). At D = 2 only the term in tr[γ5σ
µνFµν ]

survives giving also the known result.

4 Causality and gauge invariance in QED2

Whatever the importance of the non-perturbative anomaly test, it is well known
that any type of regularisation in Fourier space via damping functions at large
momenta violates pertubatively gauge invariance and Ward identities. This can
be avoided if causality is implemented from the start in the construction of
the S-matrix as advocated by Epstein and Glaser [3] and Scharf [5]. This line of
thought leads to use propagators with truly causal supports satisfaying dispersion
relations being tantamount to substractions dictated by analyticity. It guarantees
finite results and gauge invariance. Moreover it is conceptually important to
realize that the well established BPHZ renormalization scheme [1, 8] turns out
to be a special case of the Epstein-Glaser prescription [7]. For the special case of
QED2 (Schwinger model) the essential quantity is the causal polarization tensor
whose form is [5, 15]

Πµν(k) =

∫
d2x exp[ik.x]{Tr[γµS

(+)(x)γνS
(−)(−x)] − (µ↔ ν, x↔ −x)}

= e2[P̂µν(k) − (µ ↔ ν, k ↔ −k)], (5)

S(±)(±x) are related to the usual Feynman propagator SF (±x) corrected respec-

tively by advanced and retarded pieces
∫

d2p
(2π)2

(6p+m) exp[−ip.x]
(p2−m2∓ip0ǫ)

to give propagators

with truly causal supports. They write explicitely

S(±)(±x) = ±i

∫
d2p

(2π)2
2πδ(p2 −m2)Θ(p0)(± 6p+m) exp[−ip.x] (6)

2ρ̃(− 6D2
x) cannot be pulled out of the integral since ψ̃(p) is a distribution.
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With these expressions for S(±)(±x) and after tracing over the γ matrices P̂µν(k)
becomes

P̂µν(k) = −2

∫
d2pδ(p2 −m2)δ(k2 − 2k.p)Θ(p0)Θ(k0 − p0)

[pµkν + pνkµ − 2pµpν −
k2

2
gµν ]. (7)

The integral over p is finite and kµP̂µν(k) = 0. It is important to note the role
of the δ functions in getting this result. They are specific to the form of the
propagators S(±)(±x). Hence Πµν(k) = e2(gµν −

kµkν

k2 )k2d̂(k) with

d̂(k) = lim
m2→0

4m2

k4

1√
1 − 4m2

k2

Θ(k2 − 4m2)sign(k0) = 2δ(k2)sign(k0). (8)

Causality imposes redefining k2d̂(k) through a one-time substracted dispersion
relation

k2d̂(k) → r̂(k) =
i

2π

∫ ∞

−∞

dt
d̂(tk)(tk)2

(t− iǫ)(1 − t+ iǫ)

=
im2

π

[ 1

m2
+

2

k2

1√
1 − 4m2

k2

log
[
√

1 − 4m2

k2 + 1
√

1 − 4m2

k2 − 1

]]
. (9)

Here k2 > 4m2, k0 > 0. The first term in 1
m2 comes from the substraction itself.

Hence limm2→0 r̂(k) = i
π
, giving Πµν(k) = ie

2

π
(gµν −

kµkν

k2 ), ie the right boson
mass. In the process it is essential to identify properly the singular order of the
propagator to determine the substaction needed in the dispersion relation since
it determines completly the limit m2 → 0. If not, then UV divergences and
violation of gauge invariance will show up.

5 Conclusion

The necessity of formulating Quantum Field Theory in the continuum requires
treating fields as OPVD with specific test functions. Thereby a non-standard
regularization scheme is obtained which is in the line of the Epstein and Glaser
extension of singular distributions. For abelian gauge theories the usual transla-
tion operation on distributions has been modified following Dirac’s early analysis
of the possible phase factor leading to the proper gauge transformation of the ini-
tial Fermi field itself. The procedure meets the necessary requirements of leaving
the solution of the Schwinger model unaltered and yet still permits a path integral
formulation in terms of the smeared field. It provides naturally an interpretation
of Fujikawa’s analysis of the abelian anomaly. Finally recognizing the filiation of
our approach with Epstein and Glaser’s treatment indicates the essential role of
causality in restoring gauge invariance which is otherwise violated by any regular-
isation with UV damping test functions only. This opens up the very interesting
perspective of building up a gauge invariant LC-quantization framework free of
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divergences by construction from the outset. Only finite renormalization will oc-
cur in connection with the intrinsic scale present in the decomposition of unity in
Fourier space or in the parametrization of Epstein and Glaser’s weight function
w(x), w(0) = 1 in configuration space.
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