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Abstract: We give an alternative proof of the localization of Sinai’s random walk in random environment
under weaker hypothesis than the ones used by Sinai. Moreover we give estimates that are stronger than the
one of Sinai on the localization neighborhood and on the probability for the random walk to stay inside this
neighborhood.
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1 Introduction

Random Walks in Random Environment (R.W.R.E.) are basic processes in random media. The one dimensional
case with nearest neighbor jumps, introduced by Solomon [1975], was first studied by Kesten et al. [1975], Sinai
[1982], Golosov [1984], Golosov [1986] and Kesten [1986] all these works show the diversity of the possible
behaviors of such walks depending on hypothesis assumed for the environment. At the end of the eighties
Deheuvels and Rvsz [1986] and Révész [1989] give the first almost sure behavior of the R.W.R.E. in the recurrent
case. Then we have to wait until the middle of the nineties to see new results. An important part of these
new results concerns the problem of large deviations first studied by Greven and Hollander [1994] and then
by Zeitouni and Gantert [1998], Pisztora and Povel [1999], Zeitouni et al. [1999] and Comets et al. [2000] (see
Zeitouni [2001] for a review). In the same period using the stochastic calculus for the recurrent case Shi [1998],
Hu and Shi [1998a], Hu and Shi [1998b], Hu [2000a], Hu [2000b] and Hu and Shi [2000] follow the works of
Schumacher [1985] and Brox [1986] to give very precise results on the random walk and its local time (see Shi
[2001] for an introduction). Moreover recent results on the problem of aging are given in Dembo et al. [2001],
on the moderate deviations in Comets and Popov [2003] for the recurrent case, and on the local time in Gantert
and Shi [2002] for the transient case. In parallel to all these results a continuous time model has been studied,
see for example Schumacher [1985] and Brox [1986], the works of Tanaka [1994], Mathieu [1995], Tanaka [1997],
Tanaka and Kawazu [1997], Mathieu [1998] and Taleb [2001].

Since the beginning of the eighties the delicate case of R.W.R.E. in dimension larger than 2 has been
studied a lot, see for example Kalikow [1981], Anshelevich et al. [1982], Durrett [1986], Bouchaud et al. [1987],
and Bricmont and Kupiainen [1991]. For recent reviews (before 2002) on this topics see the papers of Sznitman
[1999] and Zeitouni [2001]. See also Sznitman [2003], Varadhan [2003], Rassoul-Agha [2003] and Comets and
Zeitouni [2004].

∗Centre de Physique Thorique, C.N.R.S. UMR 6207, Universit Aix-Marseille I, II, Universit du Sud-Toulon-Var, F.R.U.M.A.M.
(Marseille, France) and Centro de Modelamiento Mathematico C.N.R.S. U.M.R 2071, Universidad de Chile (Santiago, Chile).

MSC 2000 60G50.
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In this paper we are interested in Sinai’s walk i.e the one dimensional random walk in random environment
with three conditions on the random environment: two necessaries hypothesis to get a recurrent process (see
Solomon [1975]) which is not a simple random walk and an hypothesis of regularity which allows us to have a
good control on the fluctuations of the random environment.

The asymptotic behavior of such walk was discovered by Sinai [1982], he showed that this process is sub-
diffusive and that at time n it is localized in the neighborhood of a well defined point of the lattice. This
point of localization is a random variable depending only on the random environment and n, its explicit limit
distribution was given, independently, by Kesten [1986] and Golosov [1986].
Here we give an alternative proof of Sinai’s results under a weaker hypothesis. First we recall an elementary
method proving that for a given instant n Sinai’s walk is trapped in a basic valley denoted {M̃ ′

0, m̃0, M̃0}
depending only on n and on a realization of the environment. Then we give a proof of the localization, this
proof is based on an analysis of the return time to m̃0. We get a stronger result than Sinai : we find that a
size of the neighborhood of the localization depends on n like (log2 n)9/2(log n)3/2 instead of δ(log n)2 found
by Sinai. Moreover we compute the rates of the convergence of the probabilities (for the random walk and the
random environment). Our method is based on the classification of the valleys obtained by ordered refinement
of the basic valley {M̃ ′

0, m̃0, M̃0}. The properties of the valleys obtained by this operation are proved with some
details.

This paper is organized as follows. In section 2 we describe the model, we give some basic notions on the random
environment and present the main results. In section 3 we give the properties of the random environment needed
in section 4 to prove the main results. In the Appendix we make the proof of the properties of the random
environment.

2 Description of the model and main results

2.1 Sinai’s random walk definition

Let α ≡ (αi, i ∈ Z) be a sequence of i.i.d. random variables taking values in (0, 1) defined on the probability
space (Ω1,F1, Q), this sequence will be called random environment. A random walk in random environment
(denoted R.W.R.E.) (Xn, n ∈ N) is a sequence of random variable taking value in Z, defined on (Ω,F , P) such
that
• for every fixed environment α, (Xn, n ∈ N) is a Markov chain with the following transition probabilities, for
all i ∈ Z

P
α [Xn = i + 1|Xn−1 = i] = αi,(2.1)

P
α [Xn = i − 1|Xn−1 = i] = 1 − αi ≡ βi.

We denote by (Ω2,F2, P
α) the probability space associated to this Markov chain.

• Ω = Ω1 × Ω2, ∀A1 ∈ F1 and ∀A2 ∈ F2, P [A1 × A2] =
∫

A1
Q(dw1)

∫

A2
P

α(w1)(dw2).

The probability measure P
α [ .|X0 = a] will be denoted P

α
a [.], the expectation associated to P

α
a : E

α
a , and the

expectation associated to Q: EQ.

Now we introduce the hypothesis we use in all this work. Denoting (ǫi = log[(1 − αi)/αi], i ∈ Z), the two
following hypothesis are the necessaries hypothesis

EQ [ǫ0] = 0,(2.2)

EQ

[

ǫ20
]

≡ σ2 > 0.(2.3)

Solomon [1975] shows that under 2.2 the process (Xn, n ∈ N) is P almost surely null recurrent and 2.3 implies
that the model is not reduced to the simple random walk. In addition to 2.2 and 2.3 we will consider the
following hypothesis of regularity, there exists κ+ ∈ R

∗
+ such that for all κ ∈]0, κ+[

EQ [eκǫ0] < ∞ and EQ

[

e−κǫ0
]

< ∞.(2.4)
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We call Sinai’s random walk the random walk in random environment previously defined with the three hy-
pothesis 2.2, 2.3 and 2.4.
Notice that Y. Sinai used the stronger hypothesis :

α0 ≥ const > 0, 1 − α0 ≥ const > 0.(2.5)

The random potential and the valleys

Definition 2.1. The random potential (Sk, k ∈ R) associated to the random environment α is defined by

Sk =

{ ∑

1≤i≤k ǫi, k = 1, 2, · · · ,
∑

k≤i≤−1 ǫi, k = −1,−2, · · · ,

for the other k ∈ RrZ, (Sk, k) is defined by linear interpolation, and S0 = 0. We denote (Sn
t , t ∈ R) the

normalized potential associated to (Sk, k ∈ Z)

Sn
k =

Sk

log n
, k ∈ Z.(2.6)

Definition 2.2. We will say that the triplet {M̃ ′, m̃, M̃ ′′} is a valley if

Sn
M̃ ′ = max

M̃ ′≤t≤m̃
Sn

t ,(2.7)

Sn
M̃ ′′ = max

m̃≤t≤M̃ ′′

Sn
t ,(2.8)

Sn
m̃ = min

M̃ ′≤t≤M̃ ′′

Sn
t .(2.9)

If m̃ is not unique, we choose the one with the smallest absolute value.

Definition 2.3. We will call depth of the valley {M̃ ′, m̃, M̃ ′′} and we will denote d([M̃ ′, M̃ ′′]) the quantity

min(Sn
M̃ ′ − Sn

m̃, Sn
M̃ ′′ − Sn

m̃).(2.10)

Now we define the operation of refinement.

Definition 2.4. Let {M̃ ′, m̃, M̃ ′′} be a valley. Let M̃1 and m̃1 be such that m̃ ≤ M̃1 < m̃1 ≤ M̃ ′′ and

Sn
M̃1

− Sn
m̃1

= max
m̃≤t′≤t′′≤M̃ ′′

(Sn
t′ − Sn

t′′).(2.11)

We say that the couple (M̃1, m̃1) is obtained by a right refinement of {M̃ ′, m̃, M̃ ′′}. If the couple (m̃1, M̃1) is
not unique, we will take the ones such that m̃1 and M̃1 have the smallest absolute value. In a similar way we
define the left refinement operation.

In all this work, we denote logp with p ≥ 2 the p iterated logarithm and we assume that n is large enough such
that logp n is positive. Let γ > 0 a free parameter, denoting γ(n) = (γ log2 n)(log n)−1 we define what we will
call a valley containing 0 and of depth larger than 1 + γ(n).

Definition 2.5. For γ > 0 and n > 3, we say that a valley {M̃ ′, m̃, M̃ ′′} contains 0 and is of depth larger than
1 + γ(n) if and only if

1. 0 ∈ [M̃ ′, M̃ ′′],

2. d
(

{M̃ ′, M̃ ′′}
)

≥ 1 + γ(n) ,

3. if m̃ < 0, Sn
M̃ ′′

− maxm̃≤t≤0 (Sn
t ) ≥ γ(n) ,

if m̃ > 0, Sn
M̃ ′

− max0≤t≤m̃ (Sn
t ) ≥ γ(n) .
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The basic valley {M̃ ′
0, m̃0, M̃0}

We recall the notion of basic valley, introduced by Y. Sinai and denoted here {M̃ ′
0, m̃0, M̃0}. The definition we

give is inspired by the work of Kesten [1986]. First let {M̃ ′, m̃0, M̃
′′} be the smallest valley that contains 0 and

of depth larger than 1+γ(n). Here smallest means that if we construct, with the operation of refinement, other
valleys in {M̃ ′, m̃0, M̃

′′} such valleys will not satisfy one of the properties of Definition 2.5. M̃ ′
0 and M̃0 are

defined from m̃0 in the following way
if m̃0 > 0

M̃ ′
0 = sup

{

l ∈ Z−, l < m̃0, Sn
l − Sn

m̃0
≥ 1 + γ(n), Sn

l − max
0≤k≤m̃0

Sn
k ≥ γ(n)

}

,(2.12)

M̃0 = inf
{

l ∈ Z+, l > m̃0, Sn
l − Sn

m̃0
≥ 1 + γ(n)

}

.(2.13)

If m̃0 < 0

M̃ ′
0 = sup

{

l ∈ Z−, l < m̃0, Sn
l − Sn

m̃0
≥ 1 + γ(n)

}

,(2.14)

M̃0 = inf

{

l ∈ Z+, l > m̃0, Sn
l − Sn

m̃0
≥ 1 + γ(n), Sn

l − max
m̃0≤k≤0

Sn
k ≥ γ(n)

}

.(2.15)

If m̃0 = 0

M̃ ′
0 = sup

{

l ∈ Z−, l < 0, Sn
l − Sn

m̃0
≥ 1 + γ(n)

}

,(2.16)

M̃0 = inf
{

l ∈ Z+, l > 0, Sn
l − Sn

m̃0
≥ 1 + γ(n)

}

.(2.17)

One can ask himself if the basic valley exists, in the Appendix A we prove the following lemma :

Lemma 2.6. Assume 2.2, 2.3 and 2.4, for all γ > 0 there exists n0 ≡ n0(γ, σ, E[|ǫ0|3]) such that for all n > n0

Q
[

{M̃ ′
0, m̃0, M̃0} 6= ∅

]

≥ 1 − (6γ log2 n)(log n)−1.(2.18)

Remark 2.7. In all this paper we use the same notation n0 for an integer that could change from line to line.
Moreover in the rest of the paper we do not always make explicit the dependance on γ of all those n0 even if
Lemma 2.6 is constantly used.

2.2 Main results : localization phenomena

The following result shows that Sinai’s random walk is sub-diffusive :

Proposition 2.8. There exists a strictly positive numerical constant h > 0, such that if 2.2 and 2.3 hold and
for all κ ∈]0, κ+[ 2.4 hold, for all γ > 2 there exists n0 ≡ n0(γ) such that for all n > n0, there exists Gn ⊂ Ω1

with Q [Gn] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

and

sup
α∈Gn

{

P
α
0

[

n
⋃

m=0

{

Xm /∈
[

M̃ ′
0, M̃0

]}

]}

≤ 2 log2 n

σ2(log n)γ−2
,(2.19)

moreover

sup
α∈Gn

{

P
α
0

[

n
⋃

m=0

{

Xm /∈
[

−(σ−1 log n)2 log2 n, (σ−1 log n)2 log2 n
]}

]}

≤ 2 log2 n

σ2(log n)γ−2
.(2.20)

Remark 2.9. A weaker form of this result can be found in the paper of Sinai [1982] (Lemma 3 page 261).
The set Gn is called set of ”good” environments. We will define it precisely in section 3. This set is defined by
collecting all the properties on the environment we need to prove our results.
2.19 shows that Sinai’s walk is trapped in the basic valley {M̃ ′

0, m̃0, M̃0} which is random, depending only on
the random media and on n. More precisely, using 2.20, with an overwhelming probability {M̃ ′

0, m̃0, M̃0} is
within an interval centered at the origin and of size 2(σ−1 log n)2 log2 n. In all this work h is a strictly positive
numerical constant that can grow from line to line if needed.
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The following remarkable result was proved by Sinai [1982]

Theorem 2.10. Assume 2.2, 2.3 and 2.5, for all ǫ > 0 and all δ > 0 there exists n0 ≡ n0(ǫ, δ) such that for
all n > n0, there exists Cn ⊂ Ω1 with Q [Cn] ≥ 1 − ǫ and

lim
n→+∞

sup
α∈Gn

P
α
0

[∣

∣

∣

∣

Xn

log2 n
− m0

∣

∣

∣

∣

> δ

]

= 0,(2.21)

m0 = m̃0(log n)−2.

In this paper we improve Sinai’s result in the following way, for all κ ∈]0, κ+[ we denote γ0 = 12
κ + 21

2 ,

Theorem 2.11. There exists a strictly positive numerical constant h > 0, such that if 2.2 and 2.3 hold and for
all κ ∈]0, κ+[ 2.4 hold, for all γ > γ0 there exists n0 ≡ n0(γ) such that for all n > n0, there exists Gn ⊂ Ω1

with Q [Gn] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

and

sup
α∈Gn

{

P
α
0

[∣

∣

∣

∣

Xn

log2 n
− m0

∣

∣

∣

∣

> Gγ
(log2 n)9/2

(log n)1/2

]}

≤ 4(log2 n)9/2

σ10(γ log n)γ−γ0
,(2.22)

m0 = m̃0(log n)−2 and G = (1600)2.

Remark 2.12. This result shows that, for a given instant n sufficiently large, with a Q probability tending
to one, Xn belongs to a neighborhood of the point m̃0 with a P

α probability tending to one. The size of this
neighborhood is of order (log n)3/2(log2 n)9/2 that is negligible comparing to the typical range of Sinai’s walk of
order (log n)2. Moreover an estimate on the rates of the convergence of these probabilities are given but we did
not try any attempts to optimize these rates. However if we look for an annealed result, that means a result in
P probability, we get

P

[∣

∣

∣

∣

Xn

log2 n
− m0

∣

∣

∣

∣

> Gγ
(log2 n)9/2

(log n)1/2

]

≤ 2h

(

log3 n

log2 n

)1/2

(2.23)

and the rate in (log3 n)(log2 n)−1 cannot be improved to something like (log n)−a with a > 0 without changing
the size of the localization neighborhood.
We recall that the explicit limit distribution of m0 was given independently by Kesten [1986] and Golosov [1986].

2.3 Ideas of the proofs

In this section we describe in detail the structure of the paper and give the main ideas of the proofs of Propositions
2.8 and Theorem 2.11. For these proofs we need both arguments on the random environment and arguments
on the random walk.
Because of the technical aspect of the arguments on the environment, we summarize the needed results on the
environment in section 3 and we have put the proofs of these results in the Appendix at the end of the paper.
So assuming the results of section 3, the proofs of the main results are limited to the arguments for the walk
given in section 4.

Results on the random environment (section 3) First we describe the ordered chopping in valleys. According
to this construction, based on the refinement operation, we get a set of valleys with the two following main
properties : 1. the valleys of this set are ordered (in the sense of the depth) 2. the depth of these valleys
decrease when they get close to m̃0. This construction is one of the important point to get estimations more
precise than Sinai’s ones, for the environment, and therefore for the walk. We have collected all the needed
properties of the valleys in a definition (Definition 3.4). All the environments that satisfy this definition are
called good environment and we get the set of good environment (called Gn, n is the time). The longest part
of this work will be to prove that Q[Gn] satisfies the mentioned estimate, this is the purpose of the Appendix.

Arguments for the walk (section 4)

5



First we recall basic results on birth and death processes used all over the different proofs. We will always
assume that the random environments belong to the set of good environments.

The proof of Proposition 2.8 is based on a basic argument: with an overwhelming probability, first the walk
reach the bottom of the basic valley m̃0 and then prefer returning n times to this point instead of climbing until
the top of the valley (i.e reaching one of the points M̃ ′

0 or M̃0). Moreover, according to one of the properties
of the good environments, the size of the basic valley max{|M̃ ′

0|, |M̃0|} ≤ (σ−1 log n)2 log2 n. So we get the
Proposition. We will see that to get this result we have used very few properties of the good environments.

The proof of Theorem 2.11 is based on the two following facts : Fact 1 With an overwhelming probability,
the last return to m̃0 before the instant n, occurs at an instant larger than n − qn. qn is a function of n given
by log qn ≈ ((log n)3/2(log2 n)7/2)1/2. Fact 2 We use the same argument of the proof of Proposition 2.8. With
an overwhelming probability, starting from m̃0 with an amount of time n − (n − qn) = qn the walk is trapped
in a valley of size of order (log qn)2 log2 qn ≈ (log n)3/2(log2 n)9/2. This gives the Theorem.
The hardest part is to prove Fact 1, for this we use both an analysis of the return time to m̃0 (section 4.3) and
the ordered chopping in valleys. The main idea is to prove that for each scale of time larger than qn, the walk
will return to m̃0 with an overwhelming probability. These scales of time are chosen as function of the depth
of the ordered valleys, i.e for each scale of time corresponds a valleys. What we prove is that for each scale of
time the walk can’t be trapped in the corresponding valley. Indeed, starting from m̃0, if the walk has enough
time to reach the bottom of a valley it has enough time to escape from it and therefore to return to m̃0.

Arguments for the random environment (Appendix) While the proof of the results for the random environment
are technical we give some details. This provide completeness to the present paper and shows the difficulties to
work with the hypothesis 2.4.

3 Good properties of a random environment

In this section we present different notions for the environment that are used to prove the main results. We give
a method to classify some valleys obtained from {M̃ ′

0, m̃0, M̃0} by the operation of refinement. To do this we
need some basic result on {M̃ ′

0, m̃0, M̃0}. Then we define the set of the ”good” environments, this set contains
all the environments that satisfy the needed properties to prove the main results.

3.1 Ordered chopping in valleys

Proposition 3.1. There exists h > 0 such that if 2.2, 2.3 and 2.4 hold, for all γ > 0 there exists n0 ≡ n0 (γ)
such that for all n > n0, we have

Q
[

M̃0 ≤ (σ−1 log n)2 log2 n
]

≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

,(3.1)

Q
[

M̃ ′
0 ≥ −(σ−1 log n)2 log2 n

]

≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

.(3.2)

Before making a classification of the valleys we need to introduce the following notations, let γ > 0 and n > 3

bn = [(γ)1/2(log n log2 n)3/2],(3.3)

kn = ((σ−1 log n)2 log2 n)(bn)−1,(3.4)

where [a] is the integer part of a ∈ R. Using 3.3 and 3.4 we construct a deterministic chopping of the interval
(−(σ−1 log n)2 log2 n, (σ−1 log n)2 log2 n) into pieces of length bn. Moreover we define :

ln = Dσ2 log kn, D = 1000.(3.5)

We make the following construction, let us take {M̃ ′
0, m̃0, M̃0} as the initial valley (see Section 2.1). Let us

denote M′
0 = {M̃ ′

0, m̃0} and M0 = {m̃0, M̃0}.
First we consider the first right refinement of the valley {M̃ ′

0, m̃0, M̃0} we denote {M̃1, m̃1} the couple of
maximizer and minimizer obtained after this refinement, let us add this points to the set M0 to get M0 =
{m̃0, M̃1, m̃1, M̃0}. Now we consider the first refinement of {m̃0, M̃1}, we get the couple {M̃2, m̃2} that we add
to the set M0 and so on until we obtain the points {M̃r, m̃r} such that M̃r−1 − m̃0 ≥ lnbn and M̃r − m̃0 ≤
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lnbn. From this construction (see Figure 1) we obtain a set of maximizer and minimizer (on the right of m̃0)

M0 ≡
{

m̃0, M̃r, m̃r, · · · , M̃1, m̃1, M̃0

}

.

In the same way we construct the set M′
0 by making equivalent refinement on the left of the valley {M̃ ′

0, m̃0, M̃0}.
We make a first refinement that gives the points {m̃′

1, M̃
′
1}, then we refine {M̃ ′

1, m̃0} and so on until we ob-
tain {m̃′

r′ , M̃ ′
r′} such that m̃0 − M̃ ′

r′−1 ≥ bnln and m̃0 − M̃ ′
r′ ≤ bnln (we denote M′

0 this set of maximizer
and minimizer on the left of m̃0). Finally we get a set of maximizer and minimizer M ≡ M′

0 ∪ M0 =
{M̃ ′

0, m̃
′
1, M̃

′
1, · · · , M̃ ′

r′ , m̃0, M̃r, · · · , M̃1, m̃1, M̃0}.

We will use the following notations,

If 0 ≤ i, j ≤ r If 0 ≤ i, j ≤ r′

δi,j = Sn
M̃i

− Sn
m̃j

, δ′i,j = Sn
M̃ ′

i

− Sn
m̃′

j
,

ηi,j = Sn
M̃i

− Sn
M̃j

, η′
i,j = Sn

M̃ ′
i

− Sn
M̃ ′

j

,

µi,j = Sn
m̃i

− Sn
m̃j

. µ′
i,j = Sn

m̃′
i
− Sn

m̃′
j
.

(3.6)

The beauty of the refinement is that we get immediately the following relations between the random variables
defined in 3.6

δ0,0 > δ1,1 > · · · > δr,r ≥ 0,(3.7)

δ1,0 > δ2,1 > · · · > δr,0 ≥ 0,(3.8)

in the same way

δ′0,0 > δ′1,1 > · · · > δ′r,r ≥ 0,(3.9)

δ′1,0 > δ′2,0 > · · · > δ′r′,0 ≥ 0,(3.10)

and

∀i, 0 ≤ i ≤ r − 1, ηi,i+1 ≥ 0,(3.11)

∀i, 0 ≤ i ≤ r′ − 1, η′
i,i+1 ≥ 0.(3.12)

We remark that the construction we made is possible if and only if m̃0 − M̃ ′
0 ≥ bnln and M̃0 − m̃0 ≥ lnbn, but

this is true with probability very near one, indeed the following lemma will be proved in the Appendix A :

Lemma 3.2. There exists h > 0 such that if 2.2, 2.3 and 2.4 hold, for all γ > 0 there exists n0 ≡ n0 (γ) such
that for all n > n0, we have

Q
[

M̃0 − m̃0 ≥ (log n)2(65σ2 log2 n)−1
]

≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

(3.13)

Q
[

m̃0 − M̃ ′
0 ≥ (log n)2(65σ2 log2 n)−1

]

≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

.(3.14)

3.2 Definition of the set of good environments

Before defining a good environment, we introduce the following random variables, let γ > 0 and n > 3,

M̃< = sup
{

m ∈ Z, m < m̃0, Sn
m − Sn

m̃0
≥ (log(qn(log n)γ)) (log n)−1

}

,(3.15)

M̃> = inf
{

m ∈ Z, m > m̃0, Sn
m − Sn

m̃0
≥ (log(qn(log n)γ)) (log n)−1

}

,

where qn = exp
{

(

(200σ)2γ(log2 n)7/2(log n)3/2
)1/2

}

.

Remark 3.3. Proposition 2.8 shows that for the scale of time n, Sinai’s walk is trapped in the basic valley
{M̃ ′

0, m̃0, M̃0}. In the same way we will prove that starting from m̃0 with a scale of time qn, Sinai’s walk is
trapped in the valley {M̃<, m̃0, M̃>}. This argument will be used in the proof of Theorem 2.11.
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Now we can define what we call a good environment

Definition 3.4. Let n > 3, κ ∈]0, k+[, γ > 0 and ω ∈ Ω1, we will say that α ≡ α(ω) is a good environment if
the sequence (αi, i ∈ Z) ≡ (αi(ω), i ∈ Z) satisfies the properties 3.16 to 3.36

• The valley {M̃ ′
0, m̃0, M̃0} exists :(3.16)

0 ∈ [M̃ ′
0, M̃0],(3.17)

δ0,0 ≥ 1 + γ(n), δ′0,0 ≥ 1 + γ(n),(3.18)

If m̃0 > 0, SM̃ ′
0
− max

0≤m≤m̃0

(Sn
m) ≥ γ(n),(3.19)

if m̃0 < 0, SM̃0
− max

m̃0≤m≤0
(Sn

m) ≥ γ(n).(3.20)

• max
M̃ ′

0≤l≤M̃0

(

(αl)
−1
)

≤ (log n)
6
κ ,(3.21)

max
M̃ ′

0≤l≤M̃0

(

(βl)
−1
)

≤ (log n)
6
κ .(3.22)

• M̃0 ≤ (σ−1 log n)2 log2 n,−M̃ ′
0 ≤ (σ−1 log n)2 log2 n.(3.23)

• M̃< ≥ m̃0 − Ln, M̃> ≤ m̃0 + Ln.(3.24)

• r ≤ 2(log n)1/2(γ log2 n)−1/2,(3.25)

r′ ≤ 2(log n)1/2(γ log2 n)−1/2.(3.26)

• For all 0 ≤ i ≤ r − 1

ηi,i+1 ≥ γ(n),(3.27)

δi+1,i+1 ≥ γ(n),(3.28)

µi+1,0 ≥ γ(n).(3.29)

• For all 0 ≤ i ≤ r′ − 1

η′
i,i+1 ≥ γ(n),(3.30)

δ′i+1,i+1 ≥ γ(n),(3.31)

µ′
i+1,0 ≥ γ(n).(3.32)

• δ1,1 ≤ 1 − γ(n),(3.33)

δ′1,1 ≤ 1 − γ(n).(3.34)

• δr,r ≤ (log qn)(log n)−1,(3.35)

δ′r′,r′ ≤ (log qn)(log n)−1.(3.36)

where Ln =
(

8 log[(log n)γqn]σ−1
)2

log2 n and recalling that qn = exp
{

(

(200σ)2γ(log2 n)7/2(log n)3/2
)1/2

}

, δ.,.,

δ′.,., η.,., η′
.,., µ.,. and µ′

.,. are given by 3.6 and γ(n) = (γ log2 n)(log n)−1.

We define the set of good environments Gn as

Gn = {ω ∈ Ω1, α(ω) is a ”good” environment } .(3.37)

Remark 3.5. We remark that a good environment α is such that the different random variables M̃0, M̃
′
0, m̃0,

r, r′, δ.,., δ
′
.,., µ.,. and µ′

.,. that depends on α satisfy some properties in relation to deterministic parameters like
n, γ, σ and κ.
The properties 3.16-3.20 concern the existence of the basic valley {M̃ ′

0, m̃0, M̃0} with his main properties.
The properties 3.21 and 3.22 are technical properties due to the hypothesis 2.4. There is no equivalent properties
in Sinai’s paper because the stronger hypothesis 2.5 is used.
3.23 (respectively 3.24) give an upper bound of the distance between M̃ ′

0 and M̃0 (respectively M̃< and M̃>)
and the origin (respectively to the random point m̃0).
The properties from 3.25 to 3.36 concern the properties of the valleys obtained by the ordered chopping of
{M̃ ′

0, m̃0, M̃0} effectuated in the previous paragraph. We remark that 3.25 and 3.26 give a deterministic upper
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bound for the number of right (respectively left) refinement performed in the ordered chopping in valleys, these
upper bounds depend on n. This n dependance that does not appear in Sinai’s work comes from the fact that
we perform a chopping in valleys in such a way that the successive valleys are nested and contain m̃0. This is
a basic ingredient to get a result stronger than Sinai’s one for the random walk itself.

Proposition 3.6. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 hold, for all γ > 0,
there exists n0 ≡ n0(κ, γ) such that for all n > n0

Q [Gn] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

.(3.38)

Proof.
The proof of this proposition is done in the Appendix A. In fact n0 ≡ n0(κ, γ, σ, E

[

|ǫ0|3
]

, E
[

ǫ40
]

, C), where C =

EQ [eκǫ0 ]∨EQ [e−κǫ0 ] but for simplicity we do not always make explicit the dependance on σ, κ, E
[

|ǫ0|3
]

, E
[

ǫ40
]

and C of n0. �

4 Proof of the main results (Proposition 2.8 and Theorem 2.11)

4.1 Basic results for birth and death processes

For completeness we recall some results of Chung [1967] on inhomogeneous discrete time birth and death
processes, we will always assume that α is fixed (denoted α ∈ Ω1 in this work).
Let x, a and b in Z, a 6= b, suppose X0 = a, denote

T a
b =

{

inf{k ∈ N
∗, Xk = b},

+∞, if such a k not exists.
(4.1)

Assume a < x < b, the two following lemmata can be found in Chung [1967] (pages 73-76), their proof follow
from the method of difference equations.

Lemma 4.1. For all α ∈ Ω1, we have

P
α
x [T x

a > T x
b ] =

∑x−1
i=a+1 exp

(

log n
(

Sn
i − Sn

a

))

+ 1
∑b−1

i=a+1 exp
(

log n
(

Sn
i − Sn

a

))

+ 1
,(4.2)

P
α
x [T x

a < T x
b ] =

∑b−1
i=x+1 exp

(

log n
(

Sn
i − Sn

b

))

+ 1
∑b−1

i=a+1 exp
(

log n
(

Sn
i − Sn

b

))

+ 1
.(4.3)

Let us denote T x
a ∧ T x

b the minimum between T x
a and T x

b .

Lemma 4.2. For all α ∈ Ω1, we have

E
α
a+1

[

T a+1
a ∧ T a+1

b

]

=

∑b−1
l=a+1

∑b−1
j=l

1
αl

Fn(j, l)
∑b−1

j=a+1 Fn(j, a) + 1
,(4.4)

E
α
x [T x

a ∧ T x
b ] = E

α
a+1

[

T a+1
a ∧ T a+1

b

]



1 +
x−1
∑

j=a+1

Fn(j, a)



−
x−1
∑

l=a+1

x−1
∑

j=l

1

αl
Fn(j, l),(4.5)

where Fn(j, l) = exp
(

log n
(

Sn
j − Sn

l

))

.

4.2 Proof of the sub-diffusive behavior (Proposition 2.8 )

Ideas of the proof First we prove that starting from 0 the probability to hit m̃0 before one of the points
M̃ ′

0−1 or M̃0 +1 goes to 1 (lemma 4.3) and starting from m̃0 the probability of staying in the interval [M̃ ′
0, M̃0]

in a time n goes to 1 when n goes to infinity (lemma 4.5).
In this section we will always assume that m0 < 0, (computations are the same for the other case).
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Lemma 4.3. There exists h > 0 such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 2 there

exists n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

and for all α ∈ Gn

P
α
0

[

T 0̃
m̃0

≥ T 0̃
M̃0+1

]

≤ σ−2(log2 n)(log n)−γ+2 + (n(log n)γ)−1.(4.6)

Proof.
Assume γ > 2, using lemma 4.1 we easily get that

P
α
0

[

T 0̃
m̃0

≥ T 0̃
M̃0+1

]

≤ |m̃0| max
m̃0+1≤i≤−1

(

exp
(

− log n
(

Sn
M̃0

− Sn
i

)

))

+ 1

Using 3.20 and 3.23, we get 4.6 �

Remark 4.4. By hypothesis M̃ ′
0 < m̃0 < 0 therefore P

α
[

T 0̃
m̃0

> T 0̃
M̃ ′

0−1

]

= 0.

Lemma 4.5. There exists h > 0 such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 2 there

exists n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

such that for all α ∈ Gn we have

P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
> n

]

≥ 1 − (log n)−γ ,(4.7)

moreover

P
α
m̃0

[

T m̃0

−[(σ−1 log n)2 log2 n]−1 ∧ T m̃0

[(σ−1 log n)2 log2 n]+1 > n
]

≥ 1 − (log n)−γ .(4.8)

Proof.
For all i ≥ 2, define

T x→x
i =

{

inf{k > Ti−1, Xt = x},
+∞, if such k does not exist.

(4.9)

T x→x
1 ≡ T x→x =

{

inf{k ∈ N
∗, Xk = x with X0 = x},

+∞, if such k does not exist.
(4.10)

We denote τ1 = T x→x
1 and τi = T x→x

i −T x→x
i−1 , for all i ≥ 2. Let n ≥ 1, remark that T m̃0→m̃0

n ≡∑n
i=1 τm̃0→m̃0

i >
n so

P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
> n

]

= P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
> n,

n
∑

i=1

τm̃0→m̃0

i > n

]

(4.11)

≥ P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
>

n
∑

i=1

τm̃0→m̃0

i

]

(4.12)

By the strong Markov property the random variables (τi, 1 ≤ i ≤ n) are i.i.d therefore

P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
>

n
∑

i=1

τm̃0→m̃0

i

]

=
(

P
α
[

T m̃0→m̃0 ≤ T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1

])n

.(4.13)

Moreover it is easy to check that

P
α
m̃0

[

T m̃0→m̃0 ≤ T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1

]

= αm̃0P
α
m̃0+1

[

T m̃0+1

M̃0+1
≤ T m̃0+1

m̃0

]

+ βm̃0P
α
m̃0−1

[

T m̃0−1

M̃ ′
0−1

≤ T m̃0−1
m̃0

]

.(4.14)

Using 4.2 and 3.18 we get that there exists n0 ≡ n0(κ, γ) such that for all n > n0 and all α ∈ Gn,

P
α
m̃0+1

[

T m̃0+1

M̃0+1
< T m̃0+1

m̃0

]

≤ n−(1+γ(n)), in the same way P
α
m̃0−1

[

T m̃0−1

M̃ ′
0−1

< T m̃0−1
m̃0

]

≤ n−(1+γ(n)). Using this

and 4.14, we get for n > n0 and all α ∈ Gn

P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
< T m̃0→m̃0

]

≤ n−1−γ(n).(4.15)
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Replacing 4.15 in 4.13 and using 4.12 and the fact (1− x)
n ≥ 1 − nx, for all 0 ≤ x ≤ 1 and all n ≥ 1 we get

4.7. For 4.8 we use 4.7 and 3.23. �

Proof (of Proposition 2.8).
By the strong Markov property and remark 4.4 we get that

P
α
0

[

n
⋂

k=0

{

Xm ∈
[

M̃ ′
0, M̃0

]}

]

≥ P
α
m̃0

[

T m̃0

M̃ ′
0−1

∧ T m̃0

M̃0+1
> n

]

− P
α
0

[

T 0̃
m̃0

> T 0̃
M̃0+1

]

,(4.16)

Using Lemmata 4.3 and 4.5, we get 2.19. We get 2.20 using 2.19 and 3.23. �

The next lemma will be used for the proof of Theorem 2.11.

Lemma 4.6. There exists h > 0, such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 2 there

exists n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

and for all α ∈ Gn we have

P
α
m̃0

[

T m̃0

m̃0−Ln
∧ T m̃0

m̃0+Ln
> qn

]

≥ 1 − (log n)−γ ,(4.17)

where Ln and qn are given at the end of Definition 3.4.

Proof.
Using what we did to prove Lemma 4.5 replacing M̃0 by M̃> and M̃ ′

0 by M̃< (see 3.15 for the definitions of M̃>

and M̃>), we easily get this lemma. �

4.3 Analysis of the return time T
m̃0→m̃0

It is easy to check that E
α
m̃0

[

T m̃0→m̃0
]

= ∞ Q.a.s, however we will need an upper bound for the probability

P
α
m̃0

[

T m̃0→m̃0 > k
]

with k > 0. We denote a ∨ b = max(a, b).

Lemma 4.7. For all α ∈ Ω1 and all n > 1, we have for all i, 0 ≤ i ≤ r

E
α
m̃0+1

[

(

T m̃0+1
m̃0

∧ T m̃0+1

M̃i+1

)2
]

≤ Din
(δi+1,i+1−ηi,i+1)∨0,(4.18)

with Di ≡ Di(α, n) = |M̃i − m̃0|5
(

maxm̃0≤l≤M̃i

(

1
αl

))2

, and for all i, 0 ≤ i ≤ r′

E
α
m̃0−1

[

(

T m̃0−1
m̃0

∧ T m̃0−1

M̃ ′
i−1

)2
]

≤ D′
in

(δ′
i+1,i+1−η′

i,i+1)∨0,(4.19)

with D′
i ≡ D′

i(α, n) = |M̃ ′
i − m̃0|5

(

maxM̃ ′
i≤l≤m̃0

(

1
βl

))2

. See 3.6 for the definitions of η′
i,i+1, δ′i+1,i+1, ηi,i+1

and δi+1,i+1, recalling that r and r′ are (respectively) the number of right (respectively left) refinement (see
section 3.1).

Proof.
We only prove 4.18 ( the proof of 4.19 is identical). It is easy to check, with the method of difference equations,

E
α
m̃0

[

(

T m̃0

m̃0+1 ∧ T m̃0

M̃i+1

)2
]

=

∑M̃i

l=m̃0+1

∑l
j=m̃0+1

2ul−1
αl

Fn(j, l)
∑M̃i

j=m̃0+1 Fn(j, m̃0) + 1
,(4.20)

with

ul = E
α
l

[

T l
m̃0

∧ T l
M̃i+1

]

,(4.21)

ul is given by 4.5 and Fn(., .) at the end of Lemma 4.2. First we give an upper bound of 4.21. Denoting

Ci ≡ Ci(α, n) = maxm̃0≤l≤M̃i

(

1
αl

)

(M̃i − m̃0)
2 it is easy to check that ul ≤ Ci

(

1 +
∑l−1

j=m̃0+1 Fn(j, m̃0)
)

. We

have

M̃i
∑

l=m̃0+1

l
∑

j=m̃0+1

2ul − 1

αl
Fn(j, l) ≤ 2Ci

M̃i
∑

l=m̃0+1

l
∑

j=m̃0+1

(

1 +
l−1
∑

i=m̃0+1

Fn(i, m̃0)

)

(αl)
−1Fn(j, l).(4.22)
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Now let us consider the first refinement of {m̃0, M̃i}, denote m̃i+1 the minimizer obtained and M̃i+1 the
maximizer, it is easy to check (see Figure 2) that

M̃i
∑

l=m̃0+1

l
∑

j=m̃0+1

(

1 +
∑l−1

i=m̃0+1 Fn(i, m̃0)
)

αl
Fn(j, l) ≤ |M̃i − m̃0|3

2
max

m̃0≤l≤M̃i

(

1

αl

)

n(δi,0)∨(δi+1,0+δi+1,i+1),(4.23)

where δ.,. is given in 3.6. Using 4.22 and 4.23 we get

M̃i
∑

l=m̃0+1

l
∑

j=m̃0+1

2ul − 1

αl
Fn(j, l) ≤ Di × n(δi,0)∨(δi+1,0+δi+1,i+1),(4.24)

where Di ≡ Di(α, n) = |M̃i − m̃0|5
(

maxm̃0≤l≤M̃i

(

1
αl

))2

.

Moreover it is easy to check that
∑M̃i

j=m̃0+1 Fn(j, m̃0) ≥ nδi,0 , replacing this and 4.24 in 4.20 and noticing that
δi+1,0 − δi,0 = −ηi,i+1 we get 4.18. �

Proposition 4.8. For all α ∈ Ω1, n > 1 and q > 0 we have, for all i, 0 ≤ i ≤ r

P
α
m̃0+1

[

T m̃0+1
m̃0

> q
]

≤ (Din
(δi+1,i+1−ηi,i+1)∨0)q−2 + n−δi,0 ,(4.25)

with Di = |M̃i − m̃0|5
(

maxm̃0≤l≤M̃i

(

1
αl

))2

, and for all i, 0 ≤ i ≤ r′

P
α
m̃0−1

[

T m̃0−1
m̃0

> q
]

≤ (D′
in

(δ′
i+1,i+1−η′

i,i+1)∨0)q−2 + n−δ′
i,0 .(4.26)

with D′
i = |M̃ ′

i − m̃0|5
(

maxM̃ ′
i≤l≤m̃0

(

1
βl

))2

. See 3.6 for the definitions of η′
i,i+1, δ′i+1,i+1, ηi,i+1 and δi+1,i+1,

recalling that r and r′ are (respectively) the number of right (respectively left) refinement (see section 3.1).

Remark 4.9. 4.25 does not imply that P
α
m̃0+1

[

T m̃0+1
m̃0

> q
]

is sumable on q, indeed on the right hand side of

4.25, ”n−δi,0” does not depend on q.

Proof (of Proposition 4.8).
Let us estimate P

α
m̃0+1

[

T m̃0+1
m̃0

> q
]

, let 0 ≤ i ≤ r, we have

P
α
m̃0

[

T m̃0+1
m̃0

> q
]

≤ P
α
m̃0+1

[

T m̃0+1
m̃0

∧ T m̃0+1

M̃i+1
> q
]

+ P
α
m̃0+1

[

T m̃0+1
m̃0

> T m̃0+1

M̃i+1

]

.(4.27)

Using 4.3 and recalling that δi,0 = Sn
M̃i

− Sn
m̃0

we get P
α
m̃0+1

[

T m̃0+1
m̃0

> T m̃0+1

M̃i+1

]

≤ n−δi,0 . Moreover, by Markov

inequality we have P
α
m̃0+1

[

T m̃0+1
m̃0

∧ T m̃0+1

M̃i+1
> q
]

≤
(

E
α
m̃0+1

[

(

T m̃0+1
m̃0

∧ T m̃0+1

M̃i+1

)2
])

q−2 To end the proof we

use 4.18 (similar computations give 4.26). �

4.4 Proof of Theorem 2.11

The sketch of the proof is the following we prove (with a probability very near one) that (Xk)1≤k≤n hit m̃0 in
a time smaller than n. Then we show that it does not exist an instant 1 ≤ k ≤ n − qn (q(n) is given at the
end of Definition 3.4) such that the R.W.R.E. will not return to m̃0 (Proposition 4.10). Finally we prove that
starting from m̃0, in a time smaller than n − (n − qn) = qn the R.W.R.E. can not escape from a region which
size is of order (log qn)2 (Proposition 4.14) .

First we introduce the next event, let n > 1 and 1 ≤ q ≤ n

Aq =
⋃

n−q≤k≤n

{Xk = m̃0} .(4.28)
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Let δq > 0, we have

P
α
0

[∣

∣

∣

∣

Xn

(log n)2
− m0

∣

∣

∣

∣

> δq

]

≤ P
α
0

[∣

∣

∣

∣

Xn

(log n)2
− m0

∣

∣

∣

∣

> δq, Aq

]

+ P
α
0

[

Ac
q

]

.(4.29)

Now we estimate each probability of the right hand side of 4.29 in Propositions 4.10 and 4.14.

Proposition 4.10. There exists h > 0 such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all
γ > 12/κ + 21/2 there exists n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥
1 − h ((log3 n)/(log2 n))

1/2
and for all α ∈ Gn

P
α
0

[

Ac
qn

]

≤ 2(log2 n)9/2

(γ)1/2(log n)γ−(12/κ+21/2)
+ O

(

(log2)
2

(log n)γ−(6/κ+4)

)

,(4.30)

qn is given at the end of Definition 3.4.

Proof.
First we remark that for all n > 1 and all 1 ≤ q ≤ n

P
α
0

[

Ac
q

]

≤ P
α
0

[

T 0
m̃0

> n
]

+ P
α
0

[

Ac
q, T 0

m̃0
≤ n

]

.(4.31)

We estimate each term of the right hand side of 4.31, the first one in Lemma 4.11 and the second in Lemma
4.12

Lemma 4.11. There exists h > 0 such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 6
κ +4,

there exists n′
1 ≡ n′

1(κ, γ) such that for all n > n′
1 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1−h ((log3 n)/(log2 n))1/2

and for all α ∈ Gn, we have

P
α
0

[

T 0
m̃0

> n
]

≤ 5(log2 n)2

σ4(log n)γ−( 6
κ +4)

.(4.32)

Proof.
Let us consider the valley {M̃ ′

0, m̃0, M̃0}, we assume m̃0 > 0 (computations are similar if m̃0 ≤ 0). We have

P
α
0

[

T 0
m̃0

> n
]

≤ P
α
0

[

T 0
m̃0

∧ T 0
M̃ ′

0−1
> n

]

+ P
α
0

[

T 0
M̃ ′

0−1
< T 0

m̃0

]

.(4.33)

For the second probability on the right hand side of 4.33 we have already see (lemme 4.3) that for all γ > 2
there exists n1 ≡ n1(κ, γ) such that for all n > n1 and all α ∈ Gn

P
α
0

[

T 0
M̃ ′

0−1
< T 0

m̃0

]

≤ σ−2 log2 n(log n)−γ+2.(4.34)

For the first probability on the right hand side of 4.33 we have by the Markov inequality

P
α
0

[

T 0
m̃0

∧ T 0
M̃ ′

0−1
> n

]

≤ E0

[

T 0
m̃0

∧ T 0
M̃ ′

0−1

]

n−1.(4.35)

To compute the mean in 4.35 we use lemma 4.5, it is easy to check that :

E
α
0

[

T 0
M̃ ′

0−1
∧ T 0

m̃0

]

≤
m̃0−1
∑

l=M̃ ′
0

m̃0−1
∑

j=l

1

αl
Fn(j, l)(4.36)

where Fn(j, l) = exp
(

log n(Sn
l − Sn

j )
)

. Let us consider the first refinement of {M̃ ′
0, m̃0}, it gives the point M̃ ′

1

(for the maximizer) and m̃′
1 (for the minimizer), so we get

m̃0−1
∑

l=M̃ ′
0

m̃0−1
∑

j=l

1

αl
Fn(j, l) ≤ C0n

δ′
1,1 ,(4.37)
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where δ′1,1 ≡ Sn
M̃ ′

1

− Sn
m̃′

1
and C0 ≡ C0(α, n) = (M̃ ′

0 − m̃0)
2 maxM̃ ′

0≤l≤m̃0

(

1
αl

)

. Using 4.37, 4.36 and 4.35 we get

P
α
0

[

T 0
m̃0

∧ T 0
M̃ ′

0−1
> n

]

≤ (C0n
δ′
1,1)n−1.(4.38)

Using formulas 3.21, 3.23 and 3.34 we get that for all γ > 6
κ +4, there exists n2 ≡ n2(γ) such that for all n > n2

and α ∈ Gn

P
α
0

[

T 0
m̃0

∧ T 0
M̃ ′

0
> n

]

≤ (2 log2 n)2

σ4(log n)γ−( 6
κ +4)

.(4.39)

We get 4.32 using 4.33, 4.34 and 4.39 and taking n′
1 = n1 ∨ n2. �

Lemma 4.12. There exists h > 0, such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all
γ > 12/κ + 21/2 there exists n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥
1 − h

(

(log3 n)(log2 n)−1
)1/2

and for all α ∈ Gn

P
α
0

[

Ac
qn

, T 0
m̃0

≤ n
]

≤ 3(log2 n)9/2

σ10(γ)1/2(log n)γ−( 12
κ + 21

2 )
+ O

(

1

(log n)γ−1/2(log2 n)1/2

)

(4.40)

qn is given at the end of definition 3.4.

Proof.
We recall that for all 1 ≤ q ≤ n we have denoted Ac

q =
⋂

n−q≤k≤n {Xk 6= m̃0}. Denoting

Āc
q =

⋃

1≤p≤n−q−1

{

{Xp = m̃0}
n
⋂

m=p+1

{ Xm 6= m̃0}
}

,(4.41)

we remark that
{

Ac
q, T

0
m̃0

≤ n
}

⊂ Āc
q. Therefore we only have to give an upper bound of P

α
0

[

Āc
q

]

, by the Markov
property we have

P
α
0

[

Āc
q

]

=
∑

1≤p≤n−q−1

P
α
m̃0

[

n−p
⋂

m=1

{ Xm 6= m̃0}
]

P
α
0 [Xp = m̃0] .(4.42)

Using the change k = n − p, we get

P
α
0

[

Āc
q

]

≤
∑

q+1≤k≤n−1

P
α
m̃0

[

k
⋂

m=1

{ Xm 6= m̃0}
]

≡
∑

q+1≤k≤n−1

P
α
m̃0

[

T m̃0→m̃0 > k
]

.(4.43)

Remark 4.13. We recall that R.W.R.E. is null recurrent P.a.s, so for the moment, we can’t say anything on
∑

q+1≤k≤n−1 P
α
m̃0

[

T m̃0→m̃0 > k
]

.

First let us decompose the sum in 4.43
∑

q+1≤k≤n−1

P
α
m̃0

[

T m̃0→m̃0 > k
]

=
∑

q≤k≤n−2

αm̃0P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

(4.44)

+
∑

q≤k≤n−2

βm̃0P
α
m̃0−1

[

T m̃0−1
m̃0

> k
]

.(4.45)

Let us give an upper bound to the sum on the right hand side of 4.44. We want to find q as small as possible
but such that this sum goes to 0. For this we use step by step the inequality 4.25 to P

α
m̃0+1

[

T m̃0+1
m̃0

> k
]

: we
have

∑

[nδr,r ]+1≤k≤n−2

P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

=

n−2
∑

k=[nδ1,1 ]+1

P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

(4.46)

+

r−1
∑

i=1

[nδi,i ]
∑

k=[nδi+1,i+1 ]+1

P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

.(4.47)
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For the sum on the right hand side of 4.46, by inequality 4.25 (taking i = 0) we have

n−2
∑

k=[nδ1,1 ]+1

P
α
m̃0

[

T m̃0+1
m̃0

> k
]

≤ n − nδ1,1

nδ0,0
+

n
∑

k=[nδ1,1 ]+1

D0n
(δ1,1−η0,1)∨0

k2
(4.48)

≤ n

nδ0,0
+

D0

nδ1,1∧η0,1
,(4.49)

where D0 = |M̃0 − m̃0|5
(

maxm̃0≤l≤M̃0

(

1
αl

))2

. For the other terms (1 ≤ i ≤ r − 1) of the sum in 4.47, using

the inequality 4.25 we have

[nδi,i ]
∑

k=[nδi+1,i+1 ]+1

P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

≤ nδi,i − nδi+1,i+1

nδi,0
+

[nδi,i ]
∑

k=[nδi+1,i+1 ]+1

Di(n
(δi+1,i+1−ηi,i+1)∨0

k2
(4.50)

≤ 1

nµi,0
+

Di

nδi+1,i+1∧ηi,i+1
,(4.51)

where we have used that δi,0 − δi,i = µi,0 and Di = |M̃i − m̃0|5
(

maxm̃0≤l≤M̃i

(

1
αl

))2

. So, for the sum 4.47 we

get from 4.51 that

r−1
∑

i=1

[nδi,i ]
∑

k=[nδi+1,i+1 ]+1

P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

≤
r−1
∑

i=1

1

nµi,0
+

r−1
∑

i=1

Di

nδi+1,i+1∧ηi,i+1
(4.52)

≤ r − 1

nmin1≤i≤r−1(µi,0)
+

(r − 1)D0

nmin1≤i≤r−1(δi+1,i+1∧ηi,i+1)
,(4.53)

and we have used that Di is decreasing in i. Collecting the terms 4.53 and 4.49 we get

∑

[nδr,r ]+1≤k≤n−2

αm̃0P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

≤ n

nδ0,0
+

r − 1

nmin1≤i≤r−1(µi,0)
+

rD0

nmin0≤i≤r−1(δi+1,i+1∧ηi,i+1)
.(4.54)

Now using the good properties 3.18, 3.21, 3.27, 3.28, 3.29, 3.23 and 3.25 we easily get that for all γ > 12
κ + 21

2 ,
there exist n1 such that for all n > n1, α ∈ Gn,

∑

[nδr,r ]+1≤k≤n−2

αm̃0P
α
m̃0+1

[

T m̃0+1
m̃0

> k − 1
]

≤ 3(γ log2 n)9/2

σ10(γ)1/2(log n)γ−( 12
κ + 21

2 )
.(4.55)

Finally, using 3.35 and therefore choosing q = [qn], where qn is given at the end of Definition 3.4, we get that
for all γ > 12

κ + 21
2 , n > n1 and α ∈ Gn

∑

q=[qn]≤k≤n−2

αm̃0P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

≤
∑

q=[nδr,r ]+1≤k≤n−2

αm̃0P
α
m̃0+1

[

T m̃0+1
m̃0

> k
]

(4.56)

≤ 3(log2 n)9/2

σ10(γ)1/2(log n)γ−( 12
κ + 21

2 )
(4.57)

Making similar computation for the sum on the right hand side of 4.45 one get the same upper bound with
q = [qn]. Using these estimates, 4.45, 4.44, 4.43 and the fact

{

Ac
q, T

0
m̃0

≤ n
}

⊂ Āc
q we get the lemma taking

q = [qn] and n′′
1 = n1. �

We get Proposition 4.10 collecting the results of Lemmata 4.11, 4.12, using 4.31 and taking n′
0 = n′

1 ∨ n′′
1 and

q = [qn]. �

Proposition 4.14. There exists h > 0, such that if 2.2 and 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for
all γ > 0 there exists n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 −
h
(

(log3 n)(log2 n)−1
)1/2

and for all α ∈ Gn
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P
α
0

[∣

∣

∣

∣

Xn

(log n)2
− m0

∣

∣

∣

∣

> δqn , Aqn

]

≤ 1

(log n)γ
,(4.58)

δqn = Ln(log n)−2, qn and Ln are given at the of definition 3.4.

Proof.
Let us introduce the following stopping time Tm̃0(q) = inf {l ≥ n − q, Xl = m̃0}. We remark that Aq ⇔ n−q ≤
Tm̃0(q) ≤ n. Taking q = [qn], by the strong Markov property we have

P
α
0

[∣

∣

∣

∣

Xn

(log n)2
− m0

∣

∣

∣

∣

> δqn , A[qn]

]

=

n
∑

l=n−[qn]

P
α
m̃0

[∣

∣

∣

∣

Xn−l

(log n)2
− m0

∣

∣

∣

∣

> δqn

]

P
α
0 [Tm̃0(qn) = l] .(4.59)

Therefore we get

P
α
0

[∣

∣

∣

∣

Xn

(log n)2
− m0

∣

∣

∣

∣

> δqn , A[qn]

]

≤
qn
∑

l=0

P
α
m̃0

[

T m̃0

m̃0+Ln
∧ T m̃0

m̃0−Ln
< qn − l

]

P
α
0 [Tm̃0(qn) = l](4.60)

≤ P
α
m̃0

[

T m̃0

m̃0+Ln
∧ T m̃0

m̃0−Ln
< qn

]

,(4.61)

Using Lemma 4.6 we get 4.58. �

Now we end the proof of theorem 2.11
Assume 2.2, 2.3 hold, let κ ∈]0, κ+[ such that 2.4 hold, let us denote γ0 = 12

κ + 21
2 , let γ > γ0. Taking q = [qn]

and δq = Ln(log n)−2 in 4.29 we obtain from Propositions 4.10 and 4.14 that there exists n1 ≡ n1(κ, γ) such
that for all n > n1 and all α ∈ Gn

P
α
0

[∣

∣

∣

∣

Xn

(log n)2
− m0

∣

∣

∣

∣

> δqn

]

≤ 3(log2 n)9/2

σ10(γ)1/2(log n)γ−γ0
+ O

(

1

(log n)γ−(6/κ+4)

)

,(4.62)

Moreover we remark that one can find n2 > n1 such that for all n > n2 we have δqn ≡ Ln(log n)−2 ≤
γ(1600)2(log2 n)9/2(log n)−1/2. �

APPENDIX

A Proof of the good properties for the environment (Proposition 3.6)

In all this section we will use standard facts on sums of i.i.d. random variables, these results are summarized
in the Section B of this appendix.

Elementary results on the basic valley {M̃ ′
0, m̃0, M̃0}

We introduce the following stopping times, for a > 0,

U+
a ≡ U+

a (Sn
j , j ∈ N) =

{

inf{m ∈ N
∗, Sn

m ≥ a},
+∞, if such a m does not exist.

(A.1)

U−
a ≡ U−

a (Sn
j , j ∈ N) =

{

inf{m ∈ N
∗, Sn

m ≤ −a},
+∞, if such a m does not exist.

(A.2)

Proof of lemma 2.6 To prove this lemma it is enough to prove that the valley {U−
1+γ(n), m̃, U+

1+γ(n)} satisfies

the three properties of Definition 2.5 with a probability very near 1. Let κ ∈]0, κ+[, and γ > 0. By definition of
U−

1+γ(n) and U+
1+γ(n), {U

−
1+γ(n), m̃, U+

1+γ(n)} satisfies the two first properties of Definition 2.5. We are left with

the third property. Assume m̃ > 0, we remark that Sn
U−

1+γ(n)

− max0≤t≤m (Sn
t ) ≤ γ(n) ⇒ max0≤t≤m (Sn

t ) ≥ 1

moreover max0≤t≤m̃ (Sn
t ) ≤ 1 + γ(n) . Therefore

Q

[

Sn
U−

1+γ(n)

− max
0≤t≤m

(Sn
t ) ≤ γ(n)

]

≤ Q

[

1 ≤ max
0≤t≤m̃

(Sn
t ) ≤ 1 + γ(n)

]

.(A.3)
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Using B.32 and Lemma B.4, it is easy to prove that there exists n1 ≡ n1(γ, σ, E
[

|ǫ0|3
]

) such that for all n > n1

Q [Sn
m̃ ≤ −γ(n)] ≥ 1 − log2 n

log n

(

γ + O
(

1

log2 n

))

.(A.4)

Let us denote A = {1 ≤ max0≤t≤m̃ (Sn
t ) ≤ 1 + γ(n), Sn

m̃ ≤ −γ(n)}, by A.3 and A.4 we have

Q

[

Sn
U−

1+γ(n)

− max
0≤t≤m

(Sn
t ) ≤ γ(n)

]

≤ Q [A] +
log2 n

log n

(

γ + O
(

1

log2 n

))

.(A.5)

Let us define

Wγ(n) =

{

inf{m ∈ N
∗, Sn

m ∈ [1, 1 + γ(n)]} ,
+∞, if such m does not exist.

(A.6)

Denote A′ =
⋃

j>Wγ(n)

{

Sn
j ≤ −γ(n),

⋂j
k=Wγ(n)+1 {Sn

k < 1 + γ(n)}
}

, we have A ⊂ A′ so Q [A] ≤ Q [A′].

Making a partition on the values of Wγ(n), using that {Wγ(n) = r} ⇒ {Sn
r ∈ [1, 1 + γ(n)]} and the strong

Markov property we get

Q [A′] ≤ sup
1−γ(n)≤x≤1

(

Q
[

U−
γ(n)+x < U+

1+γ(n)−x

])

+∞
∑

r=0

∫ 1+γ(n)

1

Q
[

Wγ(n) = r, Sn
r ∈ dx

]

(A.7)

≤ Q
[

U−
1 < U+

2γ(n)

]

.(A.8)

Using lemma B.4, we get that there exists n2 ≡ n2(σ, E[|ǫ0|3]) such that for all n > n2

Q
[

U−
1 < U+

2γ(n)

]

≤ 2 log2 n

log n

(

γ + O

(

1

log2 n

))

.(A.9)

Collecting what we did above and taking n0 = n1 ∨ n2 we get the lemma. �

Proof of proposition 3.1,
Let us prove 3.1, noticing that M̃0 ≤ U+

1+γ(n), and using remark B.32, for all G > 0 we get

Q
[

M̃0 > (σ−1 log n)2 log2 n
]

≤ Q
[

U+
1+γ(n) ∧ U−

G > (σ−1 log n)2
]

+ Q
[

U+
1 ≥ U−

G

]

.(A.10)

Taking G =
(

2 log2 n
h2
1 log3 n

)1/2

with h1 > 0 and using B.18, we get that there exists n1 ≡ n1(h1, σ, EQ

[

|ǫ0|3
]

) such

that for all n > n1

Q
[

U+
1+γ(n) ∧ U−

G > E(log n)2
]

≤ 2q
h1
16 log3 n
1 ,(A.11)

where q1 < 0.7. Choosing correctly the numerical constant h1 we get for all n > n1:

Q
[

U+
1+γ(n) ∧ U−

G > (σ−1 log n)2 log2 n
]

≤ 1

log2 n
.(A.12)

Taking D = log n in B.19 we get for all n > n1

Q
[

U+
1+γ(n) ≥ U−

G

]

≤ 1

G
+ O

(

(log2 n)3/2

log n

)

.(A.13)

Using A.10, A.12, A.13 and the expression of G we get 3.1, the proof of 3.2 is similar. �

We recall that for all κ ∈]0, κ+[, C ≡ C(κ) = EQ [eκǫ0 ] ∨ EQ [e−κǫ0] < +∞.

Proof of lemma 3.2. Denote

A0 =
{

M̃0 ≥ (σ−1 log n)2 log2 n, M̃ ′
0 ≤ −(σ−1 log n)2 log2 n

}

.(A.14)
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Let un =
[

((log n)2)(65σ2(log2 n))−1
]

+1 and vn a sequence such that un × vn = [(σ−1 log n)2 log2 n]+ 1. Using

3.1 we know that there exists n′
0 ≡ n′

0

(

ǫ, σ, EQ

[

|ǫ0|3
])

such that for all n > n′
0

Q
[

M̃0 − m̃0 ≤ un

]

≤ Q
[

M̃0 − m̃0 ≤ un, A0

]

+ h

(

log3 n

log2 n

)1/2

.(A.15)

We recall that, in all this work, h is a strictly positive numerical constant that can grow from line to line if
needed. Let us denote Bn,σ = {−[(σ−1 log n)2 log2 n] − 1, [(σ−1 log n)2 log2 n], · · · , [(σ−1 log n)2 log2 n] + 1}, by
definition SM̃0

− Sm̃0 ≥ log n, so

Q
[

M̃0 − m̃0 ≤ un, A0

]

≤ Q

[

max
m∈Bn,σ

max
m≤l≤m+un

max
m≤j≤m+un

(|Sl − Sj|) ≥ log n

]

.(A.16)

Making similar computations to the ones did in the proof of B.4 we get that there exists n1 ≡ n1(σ, C, κ) such
that for all n > n1,

Q

[

max
m∈Bn,σ

max
m≤l≤m+un

max
m≤j≤m+un

(|Sl − Sj |) ≥ log n

]

≤ 4 log2 n

σ2(log n)1/33
,(A.17)

using A.15, A.16, A.15 and taking n0 = n′
0 ∨ n1 we get 3.13. Similar computations give 3.14. �

The following result is essential to the proof of the other good properties.

Minimal distance between the two points of one refinement (property 3.25)

Lemma A.1. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 0 there
exists n0 ≡ n0(σ, κ, E

[

|ǫ0|3
]

, C, γ) such that for all n > n0

Q





r′

⋃

i=1

{

M̃ ′
i − m̃′

i ≤ bn

}



 ≤ h

(

log3 n

log2 n

)1/2

+ O
(

log2 n

(log n)1/33

)

,(A.18)

Q

[

r
⋃

i=1

{

M̃i − m̃i ≤ bn

}

]

≤ h

(

log3 n

log2 n

)1/2

+ O
(

log2 n

(log n)1/33

)

.(A.19)

bn is given in 3.3, M̃ ′
. , m̃′

. M̃. and m̃. have been defined Section 3.1.

Remark A.2. This lemma shows that the distance between two points obtained by the operation of refinement
is larger than bn.

Proof.
Let κ ∈]0, κ+[ and γ > 0. Recalling 3.4 and 3.5, let us denote

A1 =

r′

⋃

i=1

{

M̃ ′
i − m̃′

i ≤ bn

}

(A.20)

A2 =

[kn]+1
⋃

l=−[kn]−1

[kn]+1
⋃

j=l+[ln]

{

max
(l+1)bn≤w<z≤jbn

(Sz − Sw) ≤ max
lbn≤m≤(j+1)bn

max
m≤u<v≤m+bn

(Sv − Su)

}

.(A.21)

Denoting C1 =
⋂r′

j=0

⋃[kn]+1
l=−[kn]−1

{

M̃ ′
j ∈ [lbn, (l + 1)bn]

}

and D1 =
⋃r′

i=1

⋃[kn]+1
l=−[kn]−1

{

M̃ ′
i − m̃′

i ≤ bn, M̃ ′
i−1 ∈

[lbn, (l + 1)bn]
}

, it is clear that {A1, C1} ⊂ {D1}. Now denoting C2 =
⋂r′−1

i=0

{

M̃ ′
i ≤ m̃0 − lnbn

}

and D2 =
⋃r′

i=1

⋃[kn]+1
l=−[kn]−1

{

M̃ ′
i − m̃′

i ≤ bn, M̃ ′
i−1 ∈ [lbn, (l + 1)bn], M̃ ′

i−1 ≤ m̃0 − lnbn

}

, we easily get that {D1, C2} ⊂

D2. Finally denoting C3 =
⋃[kn]+1

l=−[kn]−1 {m̃0 ∈ [lbn, (l + 1)bn]}, D3 =
⋃r′

i=1

⋃[kn]+1
l=−[kn]−1

⋃[kn]+1
j=l+[ln]

{

M̃ ′
i − m̃′

i ≤ bn,
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M̃ ′
i−1 ∈ [lbn, (l + 1)bn], m̃0 ∈ [bnj, bn(j + 1)]

}

and noticing that
{

M̃ ′
i−1 ≤ m̃0 − lnbn, M̃ ′

i−1 ∈ [lbn, (l + 1)bn]
}

⊂
{m̃0 ≥ lbn + lnbn}, we get that {D2, C3} ⊂ D3. Moreover if we make a refinement of {M̃i−1, m̃0}, we get the
points M̃ ′

i and m̃′
i such that SM̃ ′

i
− Sm̃′

i
= maxM̃ ′

i−1≤w<z≤m̃0
(Sz − Sw), so D3 ⊂ A2. Therefore we have :

Q[A1] ≤ Q[A2] + Q[Cc
1 ] + Q[Cc

2 ] + Q[Cc
3 ](A.22)

It is easy to see that {Cc
1 ⊂ Ac

0}, {Cc
1 ⊂ Ac

0} and Cc
2 ⊂ {m̃0−M̃ ′

0 ≥ (log n)2(65σ2 log2 n)−1} so using Proposition
3.23 and Lemma 3.2 we have some upper bounds for the three last probabilities of A.22.
Now let us give an upper bound for Q[A2], first we introduce the following event, let s > 0

A3 = max
−([kn]+1)bn≤m≤([kn]+1)bn

max
m≤l≤m+bn

max
m≤j≤m+bn

(|Sl − Sj |) ≤ gn,(A.23)

where gn = ((1 + s)32σ2bn log kn)1/2, we have

Q [A2] ≤ Q [A2, A3] + Q [Ac
3] .(A.24)

Applying inequality B.4, (taking [L] + 1 = ([kn] + 1)bn and log K = log(kn)) we get that there exists n1 ≡
n1(σ, s, κ, E

[

|ǫ0|3, C
]

) such that for all n > n1

Q [Ac
3] ≤

4bn

k
s
2
n

.(A.25)

We are left to estimate Q [A2, A3], we have

Q [A2, A3] ≤
[kn]+1
∑

i=−[kn]−1

Q





[kn]+1
⋃

j=i+[ln]

{

max
(i+1)bn≤w<z≤jbn

(Sz − Sw) ≤ gn

}



 .(A.26)

We remark that the event {maxibn≤w<z≤jbn (Sz − Sw) ≤ gn} is decreasing in j, so

Q [A2, A3] ≤
[kn]+1
∑

i=−[kn]−1

Q

[

max
(i+1)bn≤w<z≤(i+[ln])bn

(Sz − Sw) ≤ gn

]

.(A.27)

Denoting (an, n ∈ N
∗) and (dn, n ∈ N

∗) two strictly positive increasing sequence such that [ln] = dn × an we
get by independence

Q [A2, A3] = 2([kn] + 1) (Q [Sanbn ≤ gn])
[dn]−1

.(A.28)

Now applying the Berry-Essen theorem to Q [Sanbn ≤ gn] and choosing dn = −2 (log(kn+2))

(log(
∫ +∞
1

e−x2/(2π)1/2))
, we obtain

that there exists n2 ≡ n2(σ, EQ[|ǫ0|3]) such that for all n > n2

Q [A2, A3] ≤ 2

kn
.(A.29)

Finally, taking s = 4 and using A.24, A.25 and A.29 we get that there exists n3 ≡ n3(σ, κ, EQ

[

|ǫ0|3
]

, C, γ) ≥
n1 ∨ n2 such that for all n > n3

Q [A2] = O
(

log2 n

log n

)1/2

(A.30)

Collecting A.22 and A.30 we get A.18. Similar computations give A.19.
�
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Corollary A.3. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 0
there exists n0 ≡ n0(σ, E

[

|ǫ0|3
]

, C, γ) such that for all n > n0

Q [r′ ≤ 2kn + 1] ≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

log2 n

(log n)1/33

)

,(A.31)

Q [r ≤ 2kn + 1] ≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

log2 n

(log n)1/33

)

.(A.32)

r and r′ have been defined section 3.1 and kn is given in 3.4.

Proof.
This corollary is an easy consequence of lemma A.1, the proof is omitted. �

Minimal distance between two maximums (properties 3.27 and 3.30)

Proposition A.4. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, there exists
n0 ≡ n0(σ, κ, E

[

|ǫ0|3
]

, E
[

ǫ40
]

, C, γ) such that for all n > n0

Q

[

r−1
⋂

i=0

{ηi,i+1 ≥ γ(n)}
]

≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.33)

Q





r′−1
⋂

i=0

{

η′
i,i+1 ≥ γ(n)

}



 ≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.34)

where γ(n) is given a the end of Definition 3.4, η.,. and η′
.,. are given in 3.6.

Proof.
Let us prove A.34
To prove this proposition we will use the lemma A.1. Let n > 3, and γ > 0, we recall the following notations
bn =

[

(γ)1/2(log n log2 n)3/2
]

+ 1, kn = ((σ−1 log n)2 log2 n)/bn. Let us denote

A =

r′

⋂

i=0

{

−(σ−1 log n)2 log2 n ≤ M̃ ′
i ≤ (σ−1 log n)2 log2 n

}

,(A.35)

A1 =
r′

⋃

i=1

[kn]+1
⋃

j=−[kn]−1

{m′
i ∈ [bnj, bn(j + 1)], M ′

i ∈ [bnj, bn(j + 1)]} ,(A.36)

A2 =
r′

⋃

i=1

[kn]+1
⋃

j=−[kn]−1

{

M ′
i ∈ [bnj, bn(j + 1)], M ′

i+1 ∈ [bnj, bn(j + 1)]
}

,(A.37)

A3 =

r′−1
⋃

i=0

{

0 ≤ η′
i,i+1 ≤ γ(n)

}

.(A.38)

We have Q[A3] ≤ Q[A3, A
c
1, A] + Q[A1] + Q[Ac], moreover A ⊂ A0 (see A.14) and A1 ⊂

⋃r′

i=1

{

M̃ ′
i − m̃′

i ≤ bn

}

,

therefore using Lemma 3.23 and the inequality A.18 we get that there exists h > 0 and n1 such that for
all n > n1, Q[A3] ≤ Q[A3, A

c
1, A] + h((log2 n)/(log n))1/2. Let us denote Li,j(n) = maxbni≤k≤bn(i+1) (Sn

k ) −
maxbnj≤l≤bn(j+1) (Sn

l ), define

A4 =

[kn]+1
⋃

i=−[kn]−1

[kn]+1
⋃

j=i+1

{0 ≤ Li,j(n) ≤ γ(n)} ,(A.39)

by definition of the refinements we have M̃ ′
i < M̃ ′

i+1 and SM̃ ′
i

> SM̃ ′
i+1

, ∀i 0 ≤ i ≤ r′−1, therefore {A3, Ac
2, A} ⊂

A4 then Q [A3, Ac
2, A] ≤ Q [A4]. Finally, we get that for all n > n3

Q[A3] ≤ Q[A4] + h((log2 n)/(log n))1/2(A.40)

20



Denoting

A5 =

[kn]+1
⋃

i=−[kn]−1

[kn]+1
⋃

j=i+2

{0 ≤ Li,j(n) ≤ γ(n)} ,(A.41)

A6 =

[kn]+1
⋃

i=−[kn]−1

{0 ≤ Li,i+1(n) ≤ γ(n)} .(A.42)

we have that

Q [A4] = Q [A5] + Q [A6] .(A.43)

Now we estimate the two probability Q [A5] and Q [A6] in (respectively) lemma A.5 and A.6. For the proof of
these lemmata we have used the paper in preparation of Cassandro et al. [2004+].

Lemma A.5. Assume 2.2, 2.3 and 2.4, for all γ > 0 there exists n′
0 ≡ n′

0

(

σ, γ, E
[

ǫ40
])

such that for all n > n′
0

Q [A5] ≤ 10
( π

σ2

)1/2 γ log2 n

(bn)1/2
([kn] + 1)

3/2
(A.44)

where kn is given by 3.4, bn by 3.3.

Proof.
We have

Q [A5] ≤
[kn]+1
∑

i=−[kn]−1

[kn]+1
∑

j=i+2

Q [{0 ≤ Li,j(n) ≤ γ(n)}] .(A.45)

Now we give an upper bound for
∑[kn]+1

i=0

∑[kn]+1
j=i+2 Q [{0 ≤ Li,j(n) ≤ γ(n)}]. Denoting Zi+1,j(n) = −∑bnj

l=bn(i+1)+1 ǫl

and Y = −minibn≤k≤(i+1)bn

∑(i+1)bn

m=k ǫm−maxjbn+1≤k≤(j+1)bn

∑k
m=jbn+1 ǫm, it is easy to see that for all i ≥ 0,

Li,j(n) = (Zi+1,j(n) + Y )/(log n). Therefore we have

Q [0 ≤ Li,j(n) ≤ γ(n)] =

∫

R

Q [0 ≤ Zi+1,j(n) − y ≤ γ(n) log n, Y ∈ dy] .(A.46)

Zi+1,j(n) and Y are independent so
∫

R

Q [0 ≤ Zi+1,j(n) − y ≤ γ(n) log n, Y ∈ dy] ≤ sup
y

(Q [y ≤ Zi+1,j(n) ≤ γ(n) log n + y]) .(A.47)

To estimate this last term we use the following concentration inequality (see LeCam [1986] pages 401-413)

sup
y

(Q [y ≤ Zi+1,j(n) ≤ γ(n) log n + y]) ≤ 2(π)1/2

Z
,(A.48)

where Z2 ≡ Z2(γ(n)) =
∑bn(j−i−1)

l=1 E
[

1 ∧ H2
s

]

, Hs =
ǫs

l

γ(n) log n and ǫs
l = ǫl−ǫ′s, ǫ′l is independent and identically

distributed to ǫl. We have E
[

1 ∧ (Hs)
2
]

≥ (γ(n) log n)−2
E

[

(ǫs
l )

2
I1>Hs

]

. Noticing that E

[

(ǫs
l )

2
I1>Hs

]

=

E

[

(ǫs
l )

2
]

− E

[

(ǫs
l )

2
I1≤Hs

]

we get by Schwarz inequality and Markov inequality

E

[

(ǫs
l )

2
I1>Hs

]

≥ 2σ2 −
(

E

[

(ǫs
l )

4
]1/2

(2σ2)1/2

)

(γ log2 n)−1.(A.49)

We deduce that there exists n′
0 ≡ n′

0

(

σ, γ, E
[

ǫ40
])

such that for all n > n′
0, E

[

1 ∧ (Hs)
2
]

≥ 3σ2/(2(γ(n) log n)2),

therefore for all n > n′
0

Z ≥
√

3

2
σ2

√

bn(j − i − 1)

γ(n) log n
.(A.50)
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Inserting A.50 in A.48 and using A.47 and A.46 we obtain for all n > n′
0

Q [0 ≤ Li,j(n) ≤ γ(n)] ≤
(

8π

3σ2

)1/2
γ(n) log n

(bn)1/2 (j − i − 1)
1/2

.(A.51)

Therefore, using A.51 for all n > n′
0 we have

[kn]+1
∑

i=0

[kn]+1
∑

j=i+2

Q [{0 ≤ Li,j(n) ≤ γ(n)}] ≤ 5

2

( π

σ2

)1/2 γ log2 n

(bn)1/2
([kn] + 1)

3/2
(A.52)

Making similar computations for the case i < 0 we get a similar result, so we get lemma A.5. �

Constraint on kn and bn Now we can justify the choice for bn and kn, recalling that kn×bn = (σ−1 log n)2 log2 n
we want that

( π

σ2

)1/2 γ log2 n

(bn)1/2
([kn] + 1)

3/2
,(A.53)

be close to 0 but bn small. Using that bn =
[

(γ)1/2(log n log2 n)3/2
]

+1, we get that there exists h1 ≡ h1(σ, γ) > 0
and n2 such that for all n > n2,

10
( π

σ2

)1/2 γ log2 n

(bn)1/2
([kn] + 1)3/2 ≤ h1

(

1

log2 n

)1/2

.(A.54)

So using A.54 and lemma A.5, we get that there exists n′
1 ≡ n′

1(σ, γ, E[ǫ40]) ≥ n′
0 ∨ n2 such that for all n > n′

1

Q





[kn]+1
⋃

i=−[kn]−1

[kn]+1
⋃

j=i+2

{

max
bni≤k≤bn(i+1)

(Sn
k ) − max

bnj≤l≤bn(j+1)
(Sn

l ) ≤ γ(n)

}



 ≤ h1

(

1

log2 n

)1/2

.(A.55)

Now we prove the following lemma

Lemma A.6. Assume 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 0 there exists n′′
0 ≡ n′′

0 (σ, E
[

|ǫ0|3
]

,

E
[

ǫ40
]

, C, γ) such that for all n > n′′
0

Q [A6] ≤ (2[kn] + 3)(log2 n)5/2

(bn)1/2

(

2γ +

(

16π

3σ2

)

γ

σ(log2 n)3/2

)

.(A.56)

Proof.
We have

Q





[kn]+1
⋃

i=−[kn]−1

{0 ≤ Li,i+1(n) ≤ γ(n)}



 ≤
[kn]+1
∑

i=−[kn]−1

Q [0 ≤ Li,i+1(n) ≤ γ(n)] .(A.57)

Using the fact that we can write maxbn(i+1)≤l≤bn(i+2) (Sn
l ) = X + maxbn(i+1)+1≤l≤bn(i+2)

(

∑l
l=bn(i+1)

)

with

X ∈ σ
(

ǫ1, · · · , ǫbn(i+1)

)

and Y ≡ maxbni≤k≤bn(i+1) (Sn
k ) ∈ σ

(

ǫ1, · · · , ǫbn(i+1)

)

we easily get by independence
that

Q [0 ≤ Li,i+1(n) ≤ γ(n)] ≤ sup
x

(

Q

[

x ≤ max
1≤k≤bn

(Sn
k ) ≤ x + γ(n)

])

,(A.58)

replacing this in A.57, we get

Q





[kn]+1
⋃

i=−[kn]−1

{0 ≤ Li,i+1(n) ≤ γ(n)}



 ≤ (2[kn] + 3) sup
x

(

Q

[

x ≤ max
1≤k≤bn

(Sn
k ) ≤ x + γ(n)

])

.(A.59)
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To estimate supx (Q [x ≤ max1≤k≤bn (Sn
k ) ≤ x + γ(n)]) we remark that

Q

[

x ≤ max
1≤k≤bn

(Sn
k ) ≤ x + γ(n)

]

= Q
[

U+
x ≤ bn ≤ U+

x+γ(n)

]

(A.60)

= Q

[

U+
x ≤ bn

2
, U+

x+γ(n) ≥ bn

]

(A.61)

+ Q

[

bn

2
< U+

x ≤ bn ≤ U+
x+γ(n)

]

.(A.62)

We have to estimate the two probability in A.61 and A.62. We begin with A.62, we remark that

bn

2
< U+

x ≤ bn ≤ U+
x+γ(n) ⇒ x ≤ max

bn/2≤k≤bn

(Sn
k ) ≤ x + γ(n),(A.63)

from this we deduce by the concentration inequality (see equations A.48 to A.51) that there exists n3 ≡
n3(σ, E

[

ǫ40
]

) such that for all n > n3

Q

[

bn

2
< U+

x ≤ bn ≤ U+
x+γ(n)

]

≤ sup
y

(

Q
[

y ≤ Sn
bn/2 ≤ y + γ(n)

])

≤
(

16π

3σ2

)1/2
γ log2 n

(bn)1/2
.(A.64)

Now we estimate the probability in A.61, by the strong Markov property we have

Q

[

U+
x ≤ bn

2
, U+

x+γ(n) ≥ bn

]

=

bn/2
∑

l=0

∫ x+γ(n)

x

Q
[

U+
x = l, Sl ∈ dy

]

Q
[

U+
x+γ(n)−y ≥ bn − l

]

,(A.65)

moreover x − y ≤ 0, therefore Q
[

U+
x+γ(n)−y ≥ bn − l

]

≤ Q
[

U+
γ(n) ≥ bn − l

]

, so we get

Q

[

U+
x ≤ bn

2
, U+

x+γ(n) ≥ bn

]

≤ Q
[

U+
γ(n) ≥ bn/2

]

.(A.66)

To estimate this probability we use remark B.32 and lemma B.4 (taking c =
γ log2 n
log n , a = (bn)1/2

log n(log2 n)3/2 , L = bn/2

and D = log n), we get that there exists n4 such that for all n > n4

Q
[

U+
γ(n) ≥ bn/2

]

≤ 2γ(log2 n)5/2

(bn)1/2
.(A.67)

Inserting A.64 and A.67 in (respectively) A.61 and A.62 and using A.59 we get for all n > n4

Q





[kn]+1
⋃

i=−[kn]−1

{0 ≤ Li,i+1(n) ≤ γ(n)}



 ≤ (2[kn] + 3)(log2 n)5/2

(bn)1/2

(

2γ +

(

16π

3σ2

)

γ

σ(log2 n)3/2

)

,(A.68)

taking n′′
0 = n3 ∨ n4 we get Lemma A.6 . �

Recalling 3.3 and 3.4 we get from Lemma A.6, that for all κ ∈]0, κ+[, γ > 0 there exists n′′
1 ≡ n′′

1(σ, κ, E
[

|ǫ0|3
]

,

E
[

ǫ40
]

, C, γ) ≥ n′′
0 such that for all n > n′′

1

Q





[kn]+1
⋃

i=−[kn]−1

{0 ≤ Li,i+1(n) ≤ γ(n)}



 = O
(

(log2 n)1+3/4

(log n)1/4

)

.(A.69)

To end the proof of Proposition A.4, we collect A.69, A.55, A.43, and finally A.40, and we take n0 = n1∨n′
1∨n′′

1 .
We get A.33 with similar computations. �
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Distance minimal between the maximum and the minimum of one refinement (properties 3.28
and 3.31)

Proposition A.7. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 0
there exists n0 ≡ n0(σ, E

[

|ǫ0|3
]

, E
[

ǫ40
]

, C, γ) such that for all n > n0

Q

[

r−1
⋂

i=0

{δi+1,i+1 ≥ γ(n)}
]

≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.70)

Q





r′−1
⋂

i=0

{

δ′i+1,i+1 ≥ γ(n)
}



 ≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.71)

where γ(n) is given at the end of Definition 3.4, δ.,. and δ′.,. are given in 3.6.

Proof.
First we remark that by construction the event {δi+1,i+1 ≥ γ(n)} decrease in i, so Q

[

⋂r−1
i=0 {δi+1,i+1 ≥ γ(n)}

]

=

Q [δr,r ≥ γ(n)], then we use the same method used to prove Proposition A.4. �

Minimal distance between a minimum and Sm̃0 (properties 3.29 and 3.32)

Proposition A.8. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 0
there exists n0 ≡ n0(σ, E

[

|ǫ0|3
]

, E
[

ǫ40
]

, C, γ) such that for all n > n0

Q

[

r−1
⋂

i=0

{µi+1,0 ≥ γ(n)}
]

≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.72)

Q





r′−1
⋂

i=0

{

µ′
i+1,0 ≥ γ(n)

}



 ≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.73)

where γ(n) is given at the end of Definition 3.4, µ.,. and µ′
.,. are given in 3.6.

The proof of this proposition is similar to the proof of Proposition A.4 and is omitted.

Control of the first and the last refinement (properties 3.33, 3.34, 3.36 and 3.35)

Proposition A.9. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds , for all γ > 0
there exists n0 ≡ n0(σ, E

[

|ǫ0|3
]

, E
[

ǫ40
]

, C, γ) such that for all n > n0

Q [δ1,1 ≤ 1 − γ(n)] ≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.74)

Q
[

δ′1,1 ≤ 1 − γ(n)
]

≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

1

log2 n

)

,(A.75)

Q
[

δr,r ≤ (log(qn))(log n)−1
]

≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

(log2 n)11/2

(log n)1/66

)

,(A.76)

Q
[

δ′r′,r′ ≤ (log(qn))(log n)−1
]

≥ 1 − h

(

log3 n

log2 n

)1/2

−O
(

(log2 n)11/2

(log n)1/66

)

,(A.77)

where γ(n) and qn are given at the end of Definition 3.4.

Proof.
Let us prove A.74, by construction δ1,1 ≤ 1+γ(n). So we have to prove that the event −γ(n) ≤ δ1,1−1 ≤ γ(n)
has a probability very near 0, to do this make we make use similar computations used to prove Proposition A.4.
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A similar remark work for A.75.
Let us prove A.76, by construction we have

M̃ ′
0 ≤ M̃r ≤ M̃0,(A.78)

M̃r − m̃0 ≤ ln × bn.(A.79)

Using A.78 and proposition 3.1, we know that there exists n1 ≡ n1

(

σ, E
[

|ǫ0|3
])

such that for all n > n1

Q
[

−(σ−1 log n)2 log2 n ≤ M̃r ≤ (σ−1 log n)2 log2 n
]

≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

(A.80)

Let us make the following chopping
[

(σ−1 log n)2 log2 n + 1
]

= b′n×k′
n with b′n = [ln×bn]+1, we have δr,0 ≥ δr,r,

therefore, denoting L′(n) = max−b′n×k′
n≤m≤b′n×k′

n
maxm≤j≤m+b′n maxm≤l≤m+b′n

(∣

∣Sn
l − Sn

j

∣

∣

)

{

−(σ−1 log n)2 log2 n ≤ M̃r ≤ (σ−1 log n)2 log2 n

and m̃0 − M̃r ≤ ln × bn.

}

⇒ δr,r ≤ δr,0 ≤ L′(n).(A.81)

From this and A.80 we deduce that for all n > n1 we have

Q [δr,r ≤ L′(n)] ≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2

.(A.82)

Using B.4 (with K = k′
n, [L] + 1 = [(σ−1 log n)2 log2 n] + 1, B = b′n and s = 4) one can check that that there

exists n2 ≡ n2

(

σ, s, κ, E
[

|ǫ0|3
]

, C
)

such that for all n > n2

Q
[

L′(n) > ((1 + s)32σ2b′n log k′
n)1/2

]

= O
(

(log2 n)11/2

(log n)1/66

)

,(A.83)

Using A.82 and A.83 we get that for all n > n2

Q
[

δr,r(log n) ≤ (160σ2b′n log k′
n)1/2

]

≥ 1 − h
(

(log3 n)(log2 n)−1
)1/2 −O

(

(log2 n)11/2

(log n)1/66

)

.(A.84)

Moreover we remark that there exists n3 ≡ n3 (σ, s, κ) such that for all n > n3

160σ2b′n log k′
n ≤ (200σ)2(γ)1/2(log2 n)7/2(log n)3/2.(A.85)

We get A.76, taking n0 = n1 ∨ n2 ∨ n3. Similar computations give the result for δ′r′,r′ . �

Proof for the property 3.24

Lemma A.10. There exists h > 0 such that if 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds, for all γ > 0 there
exists n0 ≡ n0(γ, σ, E

[

|ǫ0|3
]

) such that for all n > n0

Q
[

M̃> ≥ m̃0 + Ln

]

≤ h

(

log3 n

log2 n

)1/2

,(A.86)

Q
[

M̃< ≤ m̃0 − Ln

]

≤ h

(

log3 n

log2 n

)1/2

,(A.87)

see 3.15 for the definitions of M̃< and M̃> and Definition 3.4 for Ln one.

Proof.
Denote f(n) = (log(qn(log n)γ))/(log n), where qn is given at the end od Definition 3.4, we have

Q
[

M̃> ≥ m̃0 + Ln

]

≡ Q
[

inf
{

m > m̃0, Sn
m − Sn

m̃0
≥ f(n)

}

≥ m̃0 + Ln

]

(A.88)

= Q
[

inf
{

m > m̃0, |Sn
m − Sn

m̃0
| ≥ f(n)

}

≥ m̃0 + Ln

]

,(A.89)
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because m̃0 is a minimizer of the valley {M̃ ′
0, m̃0, M̃0} and by definition M̃0 ≥ M>. Using Proposition 3.1, we

know that there exists n1 ≡ n1

(

σ, E
[

|ǫ0|3
])

such that for all n > n1

Q
[

−(σ−1 log n)2 log2 n ≤ m̃0 ≤ (σ−1 log n)2 log2 n
]

≥ 1 − h

(

log3 n

log2 n

)1/2

,(A.90)

so for all n > n1

Q
[

inf
{

m > m̃0, |Sn
m − Sn

m̃0
| ≥ f(n)

}

≥ m̃0 + Ln

]

(A.91)

≤
[(σ−1 log n)2 log2 n]+1

∑

k=−[(σ−1 log n)2 log2 n]−1

Q [inf {m > k, |Sn
m − Sn

k | ≥ f(n)} ≥ k + Ln] + h

(

log3 n

log2 n

)1/2

.(A.92)

We get that for all n > n1

Q
[

inf
{

m > m̃0, |Sn
m − Sn

m̃0
| ≥ f(n)

}

≥ m̃0 + Ln

]

≤ 2([(σ−1 log n)2 log2 n] + 1)Q
[

U−
f(n) ∧ U+

f(n) ≥ Ln

]

+ h

(

log3 n

log2 n

)1/2

.(A.93)

Applying inequality B.18 we get that there exists n2 ≡ n2

(

σ, E
[

|ǫ0|3
])

such that for all n > n2

Q
[

U−
f(n) ∧ U+

f(n) ≥ Ln

]

= O
(

1

log n

)

.(A.94)

Replacing this in A.93 and using A.89, we get A.86 taking n0 = n1 ∨ n2. The proof of A.87 is similar. �

Proof of Proposition 3.6

We only have to collect the results of the Lemmata 2.6, B.3 and A.10, of the Propositions 3.1, A.4, A.7, A.8
and A.9 and of the Corollary A.3.

B Standard results on sums of i.i.d. random variables

We recall that for all κ ∈]0, κ+[, C ≡ C(κ) = EQ [eκǫ0 ] ∨ EQ [e−κǫ0] < +∞.
In this section we recall some elementary results on sums of i.i.d. random variables satisfying the three hypothesis
2.2, 2.3 and 2.4. We will always work on the right of the origin, that means with (Sm, m ∈ N), by symmetry
we obtain the same results for m ∈ Z−.

The following lemma is an immediate consequence of Bernstein inequality (see Renyi [1970]).

Lemma B.1. Assume 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds. For all q > 0 and p > 0 such that
q < (σ2p) ∧

(

σ4p/(2C)
)

we have

Q [|Sp| > q] ≤ 2 exp

{

− q2

2σ2p

(

1 − 2qC

σ4p

)}

,(B.1)

For all p > 1, s > 0 and k > 1 such that log k < (1 + s)32σ2p, for all 0 ≤ j ≤ p we have

Q
[

|Sp − Sj | >
(

32(1 + s)σ2p log k
)1/2

]

≤ 2 exp

{

− log k +
(p − j) log k

(1 + s)64p
+

(p − j)(log k)3/2C

((1 + s)32σ2p)3/2

}

.(B.2)

The following lemma gives an upper bound to the largest fluctuation of the potential (Sr, r ∈ R) in a block of
length B of a given interval.
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Lemma B.2. Assume 2.2, 2.3 hold and for all κ ∈]0, κ+[ 2.4 holds. For all s > 0, all integers K > 1 and
B > 1 such that log K < σ2κ2B we have

Q

[

max
−K−1≤i≤K

max
iB≤j≤(i+1)B

max
iB≤l≤(i+1)B

(|Sl − Sj |) > ((1 + s)32σ2B log K)1/2

]

≤ 2K−(s−O((log K)/B)1/2) (1 + O (HK,B)) .(B.3)

where HK,B = K−(1−1/64−O((log K)/B)1/2). For all L > 1, K > 1, all integers B > 1 such that [L] + 1 = K × B
and all s > 0 such that log K < (1 + s)32σ2σ2κ2B, we have

Q

[

max
−[L]−1≤m≤[L]+1

max
m≤l≤m+B

max
m≤j≤m+B

(|Sl − Sj |) > ((1 + s)32σ2B log K)1/2

]

≤ 2(B + 1)K−(s−O((log K)/B)1/2) (1 + O (HK,B)) .(B.4)

Proof.
Let us prove B.3, let s > 0, K > 1 and B > 1 two positive integers, denoting q = ((1 + s)32σ2B log K)1/2.
Using the fact that (αi, i ∈ Z) are i.i.d. we get

Q

[

max
−K−1≤i≤K

max
−iB≤j≤(i+1)B

max
iB≤l≤(i+1)B

(|Sl − Sj |) > q

]

≤ 1 −
(

1 − Q

[

2 max
1≤j≤B

(|Sj |) > q

])2K+2

.(B.5)

By Ottaviani inequality (see for example Breiman [1968] page 45)

Q

[

2 max
1≤j≤B

(|Sj |) > q

]

≤ Q [|SB| > q/4]

1 − sup1≤j≤B (Q [|SB − Sj | > q/4])
.(B.6)

Using B.1, we have

Q [|SB| > q/4] ≤ 2 exp
{

− log K
(

1 + s −O ((log K)/B)
1/2
)}

.(B.7)

Similarly, using B.2, for all K > 1 such that log K < (1 + s)32σ2κ2B, we have

sup
0≤j≤B

Q [|SB − Sj | > q] ≤ 2K−(1−1/64−O((log K)/B)1/2).(B.8)

Therefore, inserting B.7 and B.8 in B.6 we get for all K > 1 such that log K < (1 + s)32σ2κ2B

Q

[

2 max
1≤j≤B

(|Sj |) > ((1 + s)32σ2B log K)1/2

]

≤ 2K−(1+s−O((log K)/B)1/2) (1 + O (HK,B)) .(B.9)

where HK,B = K−(1−1/64−O(log K/B)1/2). Inserting B.9 in B.5 and noticing that (1 − x)a ≥ 1 − ax for all
0 ≤ x ≤ 1 and a ≥ 1 we get B.3.
Now we prove B.4, let L > 1, B > 1 an integer and K > 1 such that [L] + 1 = K × B, we have [K] × B ≤
[L] + 1 ≤ ([K] + 1) × B, we remark that

max
−[L]−1≤m≤[L]+1

max
m≤l≤m+B

max
m≤j≤m+B

(|Sl − Sj |)(B.10)

≤ max
0≤q≤B

max
−[K]−1≤i≤[K]−1

max
iB+q≤l≤(i+1)B+q

max
iB+q≤j≤(i+1)B+q

(|Sl − Sj |) ,(B.11)

therefore we have

Q

[

max
−L≤m≤L

max
m≤l≤m+B

max
m≤j≤m+B

(|Sl − Sj |) > ((1 + s)32σ2B log K)1/2

]

(B.12)

≤ (B + 1) × Q

[

max
−[K]−1≤i≤[K]−1

max
iB≤l≤(i+1)B

max
iB≤j≤(i+1)B

(|Sl − Sj |) >

((1 + s)32σ2B log K)1/2
]

.(B.13)

Using B.3 we obtain B.4. �

27



Lemma B.3. Assume that for all κ ∈]0, k+[ 2.4 holds, for all integer L > 0 and all D > 0 we have

Q

[

max
−L≤i≤L

(βi/αi) ≤ D6/κ

]

≥ 1 − D−6(2L + 1)EQ [eκǫ0] ,(B.14)

Q

[

max
−L≤i≤L

(αi/βi) ≤ D6/κ

]

≥ 1 − D−6(2L + 1)EQ

[

e−κǫ0
]

,(B.15)

moreover if D > 21+κ/6

Q

[

max
−L≤i≤L

(1/αi) ≤ D6/κ

]

≥ 1 − D−62κ(2L + 1)EQ [eκǫ0 ] ,(B.16)

Q

[

max
−L≤i≤L

(1/βi) ≤ D6/κ

]

≥ 1 − D−62κ(2L + 1)EQ

[

e−κǫ0
]

.(B.17)

Proof.
This lemma is a simple consequence of the fact that the random variables (αi, i ∈ Z) are i.i.d. �

Recalling A.1 and A.2, we have :

Lemma B.4. Assume 2.2, 2.3, and 2.4. Let κ ∈]0, k+[, a > 0, c > 0 and let us denote d = a ∨ c. There exists

n0 ≡ n0

(

σ, E
[

|ǫ0|3
])

such that for all n > n0, L > (2(d log n))2

σ2 + 1 and D > 1 we have

Q
[

U−
a ∧ U+

c > L
]

≤ 2q
Lσ2

(2(d log n))2+σ2

1 ,(B.18)

Q
[

U−
a < U+

c

]

≤ 1

c + a

(

c +
Hd

log n

)

,(B.19)

Q
[

U−
a > U+

c

]

≤ 1

c + a

(

a +
Hd

log n

)

.(B.20)

where q1 = 0.7 +
3,75EQ[|ǫ0|3]
(d log n)σ2 < 1 and Hd = (q

1
2

Lσ2

(2(d log n))2+σ2

1 )/(1 − q1) + (6 log D)/κ + (L3/2(C)1/2σ)/D3.

Proof.
We have

Q
[

U−
a ∧ U+

c > L
]

≤ Q
[

U−
d ∧ U+

d > L
]

= Q

[

max
0≤l≤L

|Sl| < (d log n)

]

.(B.21)

Let b =
[

(2(d log n))2

σ2

]

+ 1, for all L > b there exists k ≡ k(b, L) such that k × b ≤ L ≤ b × (k + 1), let us denote

[k] the integer part of k, we easily get that

Q
[

U−
a ∧ U+

c > L
]

≤
(

Q

[∣

∣

∣

∣

Sb

σb1/2

∣

∣

∣

∣

<
2(d log n)

σb1/2

])[k]

.(B.22)

Now we use the Berry-Essen theorem (see Chow and Teicher [1997] page 299), we get

Q

[∣

∣

∣

∣

Sb

σb1/2

∣

∣

∣

∣

<
2(d log n)

σb1/2

]

≤ 2

∫ 1

0

e−x2

√
2π

dx +
3, 75EQ

[

|ǫ0|3
]

(d log n)σ2
.(B.23)

Moreover 2
∫ 1

0
e−x2

√
2π

dx < 0.7, therefore, using B.22 and B.23 we get B.18.

To prove B.19 we use Wald’s identity (see Neveu [1972]) for the martingale (Sn
t , t ∈ R) and the regular stopping

time U = U−
a ∧ U+

c . Using that EQ [Sn
U ] = 0 and EQ

[(

Sn
U−

a
+ a
)

IU−
a <U+

c

]

≤ 0 we get that

Q
[

U−
a < U+

c

]

≤ c

c + a
+

1

c + a
EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a

]

.(B.24)
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We have

EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a

]

= EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a ,U≥[L]+1

]

+ EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a ,U<[L]+1

]

.(B.25)

For the second term on the right hand side of B.25, noticing that (Sn
i − c)IU+

c ≤U−
a ,U=i ≤ ǫi

log n IU+
c ≤U−

a ,U=i we
have

EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a ,U<[L]+1

]

≤ 1

log n

[L]
∑

i=1

EQ

[

(ǫi)IU+
c ≤U−

a ,U=i

]

.(B.26)

For all D > 1, we have

1

log n

[L]
∑

i=1

EQ

[

(ǫi)IU+
c ≤U−

a ,U=i

]

=
1

log n

[L]
∑

i=1

EQ

[

(ǫi)IU+
c ≤U−

a ,U=i,max1≤j≤[L](ǫj)≤ 6
κ log D

]

(B.27)

+
1

log n

[L]
∑

i=1

EQ

[

(ǫi)IU+
c ≤U−

a ,U=i,max1≤j≤[L](ǫj)>
6
κ log D

]

(B.28)

≤ 6 logD

κ log n
+

σ[L]

log n

(

Q

[

max
1≤j≤[L]

(ǫj) >
6

κ
log D

])1/2

,(B.29)

where we have used that for the sum in the right hand side of B.27 the ǫi are bounded by 6
κ log D and for the

sum B.28 the Cauchy-Schwarz inequality. To end we use B.14, for all D > 21+κ/6

EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a ,U<[L]+1

]

≤ 6 logD

κ log n
+

σ([L])3/2

(

EQ

[

e
κ log

(

β0
α0

)
])1/2

D3 log n
.(B.30)

For the first term of the right hand side of B.25, using Cauchy-Schwarz inequality we get

EQ

[

(Sn
U+

c
− c)IU+

c ≤U−
a ,U≥[L]+1

]

≤ σ

log n

∞
∑

i=[L]+1

(Q [U ≥ i])
1/2

,(B.31)

then, to estimate, Q [U ≥ i] we use B.18. Collecting what we did above we get B.19. �

We use the following notation Q[.|S0 = y] = Qy[.] (Q[.|S0 = 0] ≡ Q0[.] = Q[.]).

Remark B.5. • For all a > 0, b > 0 and l > 0 we have

Q
[

U+
c > l

]

≤ Q
[

U+
c ∧ U−

a > l
]

+ Q
[

U+
c > U−

a

]

.(B.32)
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