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Olivier ARNOULD�, François HILD

LMT-Cachan, ENS Cachan / CNRS-UMR 8535 / Université Paris VI
61 avenue du Président Wilson, F-94235 Cachan Cedex, France

Abstract

Electron probe (X-ray) microanalysis (EPMA) is nowadays a classical and well-established
method for qualitative and (semi)quantitative evaluation of the elemental composition of
the (near)surface of a sample on the micrometre scale. This technique can be used to
determine concentration profiles due to (inter)diffusion in materials at submicrometre res-
olution if physical and geometrical effects that occur during the measurement process are
accounted for. Standard phenomena are usually corrected by commercial softwares for a
homogeneous elemental composition in the analyzed area. However, in the case of a diffu-
sion process on a small scale, the composition is no longer homogeneous and the effect of
the hemispherical volume of the X-ray emission on the spatial resolution of the concentra-
tion profiles, and consequently on the diffusion coefficients, has to be considered. A radial
X-ray distribution associated with the classical depth distribution, φ�z�, allows for the defi-
nition of a 2D X-ray emission function for medium to heavy materials. This enables one to
study the effect of some geometrical parameters on the measured concentration profile and
to propose a method of reconstructing the real weight fraction profile from the measured
profile of the X-ray intensities by using regularized deconvolution algorithms.

Keywords: EPMA, concentration profiles, average effect, geometrical effects, regularized de-
convolution.

1 Introduction: physical effects during measurements of con-
centration profiles

The evaluation of diffusion coefficients may require high spatial resolution. One of the easiest
and most reliable techniques is the Electron Probe MicroAnalysis (EPMA). It consists in mea-
suring the relative intensities of the X-ray wavelengths (WDS), or energies (EDS), emitted by
a sample impacted by an electron beam.1 It allows for the identification and quantification of
elemental compositions if a variety of interactions between electrons, X-rays and atoms are ac-
counted for. The main factors are now well-understood and readily corrected by ZAF or φ�ρz�
methods for a uniform concentration in the area probed by the electrons and X-ray diffusion in
the sample.2
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For heterogeneous chemical compounds, i.e., when a phase boundary is present within
the volume affected by the electrons or the emitted X-rays, specific phenomena occur. They
are summarized in Fig. 1 in which a 1D varying concentration between two pure elements, say
A and B with ZB � ZA, along Y only is considered. The concentration gradient is, for example,
described by the weight fraction in B, WB�Y �. The B-rich phase is located for Y � 0 so that
WB�Y � decreases with Y . This is depicted by the gray level in Fig. 1; the darker, the richer in
B-atoms. Note that, since binary diffusion is concerned, WA�Y � � 1�WB�Y � if no porosity
appears during the diffusion process3 on the diffusion scale (e.g., this can be due to the Kirk-
endall effect that exists, for example, in a Ni/Cu diffusion couple). The origin of the diffusion
profile, O, corresponds to the position of an ideal interface before diffusion has occurred (be-
coming an interphase between A and B elements during diffusion). The primary electron beam
(acceleration voltage E0) is focused at point I on the surface sample, at a distance Y � d from
the initial interface.

The first effect depicted in Fig. 1 is due to the electron diffusion in the specimen that
produces a characteristic X-ray emission function whose shape is close to a sphere4 of average
radius RX for medium to high Z materials (i.e., atomic number greater than ten). 2RX ac-
counts for the diameter of interaction that is an upper bound of the spatial resolution of EPMA
techniques.5, 6, 7 The measurement corresponds to an average over this volume leading to what
will be referred to as average effect. When dealing with diffusion couples, it has to be evalu-
ated when the diffusion length (i.e., the distance over which diffusion has occurred) is of the
order of a characteristic length of the spherical emission volume, i.e., when

�
2Dt � RX, where

D is the average diffusion coefficient and t the diffusion time. Furthermore, each part of the
emission volume in S (i.e., the dark gray parallelepipedic volume in Fig. 1) emits characteristic
(IA and IB for the A and B-atoms, respectively) and continuous X-rays in all directions and a
part of them travel through the sample surface at N to reach the spectrometer. Along their way
to the surface, X-ray radiations are absorbed in an exponential fashion in a varying chemical
composition. This phenomenon introduces a specific absorption correction that is controlled
by the detection geometry (take-off angle θ and orientation angle δ of the normal of the inter-
face with respect to the spectrometer) and the position d of the primary electron beam in the
concentration gradient.

Another important effect is the fluorescence that can be due to the X-ray continuum that
can excite both A and B-atoms and the characteristic B-radiations that travel in the specimen
and can excite A-atoms at any point M (since ZB � ZA) leading to fluorescent X-ray emission
(noted If

A) that is measured and modifies the analyzed spectra.8 The volume concerned by this
effect is much larger than that of the primary radiation and can be predominant over a longer
range6 especially for the characteristic fluorescence. Classical correction methods take this
effect into account for a homogeneous volume but not when different phases or multilayered
materials are concerned. These specific cases have been studied9, 10, 11, 12 when the primary
electron beam does not cross an interface. Recent numerical13, 14 and analytical8 studies have
considered this interface crossing to analyze fluorescence across a phase boundary.

The present study focuses on the first discussed phenomenon, i.e., the average and absorp-
tion effect in a chemical gradient when using Kα X-ray lines of the spectrum for determining
the elemental chemical composition. The fluorescent radiations will not be taken into account
by considering only B-radiations. The average and absorption effects and their deconvolution
can be assessed with this radiation since binary diffusion is concerned (i.e., WB yields WA since
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WA � 1�WB). Note that, since nickel and copper will be used, the characteristic fluorescence
is almost negligible since only the copper Kβ radiations are able to ‘produce’ nickel fluorescent
radiations. This is all the more true when a ‘classical’ energy dispersive spectrometer (EDS) is
used since it does not have the required accuracy to distinguish Ni-fluorescent radiations from
those of the continuous background.

The general expression of the measured k-ratio for the element B when the primary elec-
tron beam is at a distance d from the A/B initial interface position is defined1, 15 by the ratio
between the measured intensity in the sample IB�d� and the measured intensity in a pure B-
sample I

�B�

kB�d� �
IB�d�

I�B�
� (1)

with

I�B� � ∆I

� ∞

z�0

� ∞

x�y��∞
F �x�y�z� exp

�
�µB

B ρB
z

sin�θ�

�
dxdydz� (2)

and the numerator describes the average effect (Fig. 1)

IB�d� � ∆I

� ∞

z�0

� ∞

x�y��∞
WB�y�d�F �x�y�z� exp

�
�
� z�sin�θ �

l�0

�
µAB

B ρAB

�
�Y �l��dl

�
dxdydz� (3)

with
Y �l� � y�d � l cos�θ�cos�δ �� (4)

where ∆I stands for the coefficient arising from the detector efficiency or other material and
electron beam parameters (such as the fluorescence yield, Coster-Kronig transitions, the elec-
tron beam intensity or the acquisition time), µ AB

B �Y � is the mass attenuation coefficient of the
B-radiation in the mixed material for a weight fraction WB�Y � that is obtained by a rule of
mixtures6, 15

µAB
B �Y � � WB�Y �µB

B ��1�WB�Y ��µA
B � (5)

and ρAB�Y � is the relative density for the material with a weight fraction WB�Y � that is obtained
by a reverse rule of mixtures

ρAB�Y ��1 � WB�Y �ρ�1
B ��1�WB�Y ��ρ�1

A � (6)

F �x�y�z� is a 3D characteristic X-ray emission distribution corresponding to the ratio between
the emitted intensity of the elemental volume at S (Fig. 1) to that produced by the same isolated
volume. It depends a priori on the local concentration, but this can be neglected if the two
elements, A and B, have close atomic numbers. When a Ni(A)/Cu(B) couple is considered,
F can be assumed to be constant and has to be determined to study the average effect and
other phenomena related with the absorption or geometrical defaults. This spatial distribution
function F , for a pure material, in the local coordinates �I�x�y�z� is axisymmetric along the
depth coordinate z and, as binary diffusion along Y is concerned, all the functions used in
Eq. (3) only depend on y and z. Integrating over x involves only F so that a 2D characteristic
emission function F can be defined as

F�y�z� �
� ∞

x��∞
F �x�y�z�dx� (7)

Consequently Eqs. (2) and (3) become

I�B� � ∆I

� ∞

z�0

� ∞

y��∞
F�y�z� exp

�
�µB

B ρB
z

sin�θ�

�
dydz� (8)
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and

IB�d� � ∆I

� ∞

z�0

� ∞

y��∞
WB�y�d�F�y�z� exp

�
�
� z�sin�θ �

l�0

�
µAB

B ρAB

�
�Y �l��dl

�
dydz� (9)

This 2D characteristic emission function is characterized by its well-known depth part1 that
must be associated with a lateral emission distribution for the present study.

2 Lateral X-ray emission distributions

A Monte Carlo computation16 of the shape of the 2D X-ray emission distribution for pure
copper is shown in Fig. 2 together with the lateral and depth distributions. The distribution
function along the lateral coordinate y and the depth z is close to a Gaussian for the material
considered7 that has the following property

F�y�z�� ψ�y�φ��z�� (10)

where ψ�y� is a lateral X-ray distribution that accounts for the radial spread of the electrons
and φ ��z� a depth-distribution function. Moreover, if the distribution ψ is normalized (i.e., the
mean number of ionization per electron is only contained in φ ��z�)

� ∞

y��∞
ψ�y�dy � 1� (11)

then φ � is equivalent to the well-known depth distribution function φ�z� that is defined by the
ratio between the X-ray intensity emitted by a thin layer of thickness dz at a depth z (Fig. 2)
and that produced in an isolated thin layer1

φ�z� �
� ∞

y��∞
F�y�z�dy �

� ∞

y��∞
ψ�y�φ��z�dy � φ ��z�

� ∞

y��∞
ψ�y�dy � φ��z�� (12)

when considering Eq. (11). The model used for describing φ�z� is given by17, 18

φ�z� � γ exp���αρz�2�� �� 	
Gaussian

Transient function� 	� ��
1� γ�φ�0�

γ
exp��βρz�

�
� (13)

where the Gaussian accounts for the random walk along z of the electrons producing X-rays
and the transient function describes the change of the electron path from a collimated beam to
an entire scattered process at a depth zr. This model gives good results in the present case with
modified parameters for medium to high atomic number materials.19, 20 Note that zr corresponds
to the position where the transient function in φ�z� becomes negligible, i.e.,

zr �� 1
βρ

ln

�
ξ

γ
γ�φ�0�

�
� (14)

where ξ is the residual percentage of the transient function.

The lateral distribution function can be defined in a similar way as φ�z�, i.e., ψ�y� can
be defined as the ratio between the X-ray intensity emitted by a thin layer of thickness dy
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at y coordinate and that produced in an isolated thin layer (Fig. 2) and normalized following
Eq. (11). This distribution function has not received a lot of attention. However, considering
the electron diffusion process in the specimen as it is described in the previous paragraph to
explain the shape of φ�z�17 and, in particular, the isotropic scattering of the electrons at depth
zr, leads us to assume that the lateral distribution function for y � 0 to ∞ is close to the depth
one for z � zr to ∞ (this is illustrated by the identical dashed lines in the ψ and φ distributions
in Fig. 2). This assumption allows us to write ψ�y� as the Gaussian part of the φ�z� distribution
with a coordinate shift equal to zr

ψ�y� �
αρ�

π erfc�αρzr�� �� 	
normalizing factor

exp

��αρ��y�� zr��

2� � (15)

where the pre-exponential parameter is a normalizing factor to satisfy Eq. (11) and the absolute
value of y yields the symmetry of the distribution with respect to y � 0. This distribution can
be experimentally obtained from the B-element X-ray intensity measurements when crossing a
perfect interface between two close materials (e.g., a Ni(A)/Cu(B) couple) with a spectrometer
position δ such that all the measured B-radiations are absorbed in B (see Section 3.1), i.e.,
�δ � � π�2, and Eq. (3) yields

IB�d� � ∆I

� ∞

z�0

�
�d

y��∞
ψ�y�φ�z� exp

�
�µB

B ρB
z

sin�θ�

�
dydz� (16)

If the standard measurement, I
�B�, is carried out under the same condition as IB�d�, considering

the k-ratio allows one to simplify the numerator and the denominator by the integration over z
and the ∆I factors, then Eq. (1) becomes

kB�d� �

�
�d
y��∞ ψ�y�dy� ∞
y��∞ ψ�y�dy

�
�

�d

y��∞
ψ�y�dy� (17)

since the denominator is equal to 1 in accordance with Eq. (11). Thus, deriving Eq. (17) with
respect to d yields

ψ�d� ��∂kB

∂d
�d�� (18)

An example of this method, obtained with an electrodeposited Ni(A)/Cu(B) diffusion couple
without diffusion, is shown in Fig. 3. Fitting results of Eqs. (15) and (17) on k-ratio measure-
ments by EDS across a perfect interface allows for the determination of the unknown param-
eters of the lateral distribution (i.e., αρ and zr) as depicted in Fig. 3(a). The resulting lateral
distribution is checked in Fig. 3(b) by plotting the latter and the derivative of the EDS measure-
ment following Eq. (18). Curve fitting of the EDS measurements shown in this figure validates
the choice of the lateral distribution since the value of αρ found for ψ�y� is very close to that
obtained with the closed-form formulas19, 20 for φ�z�. Furthermore, a value of ξ of the order
of 0.5% seems to lead to a consistent value of zr (Eq. (14)) when compared to the 2D X-ray
distribution obtained by Monte Carlo computations (Fig. 2). The lateral spread expressed by
Eq. (15) is in good agreement with other numerical computations16 and with the shape obtained
at least for other medium to heavy materials21, 22 when considering the K-lines.

A simplified expression is generally used for the lateral spread by replacing ψ�y� by a
Gaussian distribution23, 24

gσ �y� �
1�

2π σ
exp

�
� y2

2σ2

�
� (19)

5



where σ is the standard deviation of this distribution. Moreover, the corresponding kB-ratio has
a closed-form expression, by using Eq. (17)

kB�d� �
�

�d

y��∞
gσ �y�dy �

1
2

�
1� erf

�
d�
2σ

��
� (20)

By simply fitting the measurement points with this last expression as it has been performed in
Fig. 3(a), one can tune σ (i.e., σ � 0�27µm for nickel or copper materials with E0 � 25keV).
The lateral distribution gσ �y� corresponding to this fit is shown in Fig. 3(b) and can be com-
pared with ψ�y�. A negligible difference is obtained between gσ �y� and ψ�y� for the kB-ratio
(Fig. 3(a)), which is less accurate for the distribution function (Fig. 3(b)) but it still remains
acceptable.

Finally, it is important to note that the size of the beam diameter may have to be taken
into account contrary to what happens for the depth behavior. This is all the more important
when WDS measurements are carried out where the probe diameter can be of the same order
of magnitude as the interaction volume. However, for EDS measurements of medium to heavy
materials in an SEM, since the probe current is generally low (i.e., between about 0.1 to 1nA)
and the acceleration voltage (reasonably) high (to excite the K-shell of the considered species),
the effect of the electron beam diameter on the lateral spread of the electron remains negligible25

and will be neglected in the lateral X-ray distribution used later on. Let us now focus on some
‘geometrical default’ effects on the measurements that will be neglected in the last part where
a general algorithm is proposed for the deconvolution of the average effect.

3 Geometrical effects on EPMA measurements

3.1 Position of the spectrometer with respect to the diffusion axis

The position of the spectrometer with respect to the diffusion axis plays an important role in
the measured k-ratio. This arises from the specific absorption term in Eq. (3). It is interesting
to study the change of the kB-ratio with δ for a perfect boundary between A and B, i.e., when
no diffusion has occurred. Equation (3) reduces to

IB�d� � ∆I

� ∞

z�0

�
�d

y��∞
ψ�y�φ�z�exp ��A �z�δ ��dzdy� (21)

with

A �z�δ � �

�




�





�

µB
B ρB

z
sin�θ�

if

��
�
�δ � � π�2�

�δ �� π�2� z���y�d� tan�θ�
cos�δ �

�

�
µA

B ρA�µB
B ρB

� y�d
cos�θ�cos�δ �

�µA
B ρA

z
sin�θ�

otherwise�

(22)

The effect of the spectrometer position on the global apparent concentration curve (i.e., the
kB-ratio) is depicted in Fig. 4(a) where the variation of the kB-ratio is plotted vs. the position
d of the measurement point from the interface between A and B for different mass absorption
coefficients and spectrometer angular positions δ . A strong dependence of the (simulated) mea-
surements with δ is observed even for low absorption coefficients like those of a Ni(A)/Cu(B)
couple. This introduces an asymmetry in the apparent concentration profile that could lead to
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wrong interpretations of the diffusion coefficient (see Section 3.2.2). This effect is related with
the mass absorption coefficient µA

B (when dealing with B-radiations). The combined effect of δ
and this coefficient is depicted in Fig. 4(b) where the change of the measured kB-ratio for d � 0
with δ and µA

B is plotted. This result shows a strong dependence of the measurement with these
two parameters except when �δ � is greater than or equal to π�2, i.e., when the spectrometer is
on the same side as B and no absorption occurs in A. This observation leads us to conclude that,
if A and B-radiations are both measured, then the best spectrometer position is δ � π�2, i.e.,
the spectrometer must be parallel to the initial interface between A and B (and it must be close
to the center of this interface). Consequently, in all the following developments, it is assumed
that δ � π�2.

3.2 Non-perpendicular phase boundary

3.2.1 A simplified X-ray emission distribution

In all the previous (and following) developments, the initial interface is implicitly assumed
to be perfectly perpendicular to the sample surface. The effect of its non-perpendicularity on
concentration profiles has to be evaluated. It is possible to estimate the sensitivity of the mea-
surement on the real interface orientation by simplifying the characteristic distribution function
of the X-rays. As mentioned in Section 2, for the materials considered, the electron paths tend
to an entire isotropic scattered process at a depth zr. This allows us to approximate the 3D
X-ray emission distribution, in this section, by a sphere of radius Rs centered at a depth zr from
the sample surface as depicted in Fig. 5(a). The discussion is limited here to the case of a
perfect phase boundary without diffusion. In the following, the absorption, the atomic number
(i.e., dependence of the X-ray emission distribution with Z and therefore with WB) and the
fluorescence effects are neglected. The kB-ratio for a perpendicular interface is then given by
the ratio between the volume of the sphere that is in the B-phase to the entire partial-spherical
volume

kB�d� �

�












�













�

1 when d ��Rs�

1�2
v0�d�

Vtot
when �Rs � d ��d��

1� 1
Vtot



vzr�d�� v0�d�

�
when �d� � d � d��

2
v0��d�

Vtot
when d� � d � Rs�

0 when Rs � d�

(23)

where d� �
�

R2
s � z2

r , Vtot � π�2Rs� zr��Rs � zr�
2�3 stands for the entire volume of the part

of the sphere that is under the surface, and

vzr�d� �
� zr

0

�
�R2

s � z2�cos�1

�
� d�

R2
s � z2

�
�d

�
R2

s � z2�d2

�
dz� (24)

is the volume of the sphere in the A-phase that lies between z � 0 and z � zr (the dark grey
surface in Fig. 5(a)) whereas

v0�d� �
π
3
�d�Rs�

2
�

Rs� d
2

�
� (25)
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describes the part of the hemisphere (i.e., for z � zr) that lies in the A-phase (the light grey
surface in Fig. 5(a)). This simplified description of the X-ray emission distribution is still
difficult to handle analytically when dealing with a non-perpendicular interface. Furthermore,
the effect of a non-zero depth shift zr is negligible as shown in Fig. 5(b) where the root mean
square error between a hemispherical distribution (zr � 0 in Eq. (23)) and a partial-spherical
one (0 � zr � Rs in Eq. (23)) is plotted vs. the dimensionless depth shift zr�Rs for a perfectly
perpendicular interface. The maximum error is found to be about 0.18%, which is negligible.
Note that it is equivalent to consider a hemisphere (i.e., zr � 0) or a sphere (i.e., zr � r) for
a perpendicular interface. However, even if it is simpler to consider the case of the sphere
for studying the effect of a non-perpendicular interface, it always yields symmetric apparent
concentration profiles for any interface orientation. This is in contradiction with the asymmetric
effect observed experimentally for a non-perpendicular interface as it will be shown in the next
part. Consequently, the hemispherical distribution is chosen and is represented by the case
zr � 0 so that Eq. (23) reduces to26

kB�d� �

�


�



�

1 when d ��Rs�

1� 3v0�d�

2πR3
s

when �d� � Rs�

0 when Rs � d�

(26)

Note that the radius of the hemisphere, Rs, can be obtained by fitting the k-ratio predicted by
Eq. (26) on the measured k-ratio when crossing a perfect interface similarly to what has been
performed in Section 2 with more realistic X-ray distributions and accounting for absorption.
An example is given in Fig. 6 where EDS measurements of the Cu k-ratio when crossing a per-
fect interface in a Ni/Cu couple with a primary electron beam acceleration voltage E0=25keV
leads to Rs � 0�56µm that is close to the effective spatial resolution (see Section 4.3). This
value is less than the radius RX (close to 1µm in the present case, see Fig. 2), since the latter
accounts for the whole area affected by the X-ray emission whereas Rs accounts for an equiv-
alent constant X-ray distribution. It is interesting to note that the measurements and the k-ratio
predicted by the hemisphere distribution are close in spite of the simplicity of this distribution
and the assumptions made.

3.2.2 Asymmetric effect

Let us now consider an interface oriented by an angle ζ (assumed to be positive) with respect
to the normal of the sample surface (Fig. 7(a)), the kB-ratio is expressed as

kB�d� �

�







�








�

1 when d ��Rs�cos�ζ ��

1�2
v0�d cos�ζ ��

Vtot
when �Rs�cos�ζ �� d ��Rs�

1� 1
Vtot

�
v0�d cos�ζ ��� vζ �d�

�
when �Rs � d � Rs�

0 when Rs � d�

(27)

where Vtot � 2πR3
s�3 stands for the complete volume of the hemisphere,

vζ �d� �
2R3

s

3

� ζ

ϕ�0

�
1�

�
d cos�ζ �
rcos�ϕ�

�2
�3�2

dϕ� (28)
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is the volume of the hemisphere that corresponds to the error introduced by the non-perpendicularity
(represented by the dark grey volume in Fig. 7(a)), and v0 is the same part of the hemisphere as
described in the previous part (see Eq. (25) and the light grey surface in Fig. 7(a)).

An example of the measured k-ratio predicted by Eq. (27) is given in Fig. 7(b) for two
misorientation angles compared with a perpendicular interface. The change of the profile with
ζ , i.e., its asymmetry, is similar to what has been depicted for the effect of the spectrometer
position δ in Section 3.1. An interesting parameter for studying these apparent concentration
profiles is the skewness, γ1, which accounts for the dissymmetry of kB�d� that is the conse-
quence of a non-perpendicular interface. It can be obtained from the derivative of kB�d� with
respect to d

γ1 �
� Rs

�Rs�cos�ζ �

�d�d�3

V 3�2

∂kB�d�

∂d
dd� (29)

where d and V stand for the mean and the variance of the distribution ∂kB�d��∂d, respectively.
The change of the coefficient of asymmetry (i.e., the skewness) with the default of perpendic-
ularity, ζ , is shown in Fig. 8(a) where a corrected skewness, γ1� 0�42ζ , is plotted versus the
misorientation angle ζ . This plot shows that it is difficult to detect the asymmetry when ζ is
less than or equal to π�10. This corresponds to an absolute skewness of about 0.13. A val-
idation of the use of the skewness to detect a non-perpendicular interface has been obtained
by measuring the apparent concentration profile of copper in an electrodeposited multilayered
Ni/Cu tube with perfectly planar interfaces (see the schematic in Fig. 8(a)). Cutting this tube
with different radial shifts from the axis allows one to obtain several interface misorientations.
Furthermore, these interfaces remain perfectly planar on the micrometre scale. The (local)
misorientation angle is estimated by using the low depth of field for high magnification of an
optical microscope (i.e., about 0.3µm for a dry objective with a numerical aperture of 0.9 and
magnification of 100) and the micrometre-calibrated focusing mechanism for measuring the
vertical displacement of the sample (2µm graduations). The misorientation angle is measured
inside the tube and not at the interface but this introduces a negligible error as the ratio between
the thickness and the average radius of the tube is low in the present case (about 10�2). In
the following example, it introduces an error of about 1Æ that is less than the error due to the
value of the depth of field and the precision of the focusing stage (about 5Æ). Furthermore, the
local misorientation can be checked by measuring the ratio between the apparent radius of the
interface and the real radius. Finally, the measurement with the EDS spectrometer leads to an
average misorientation angle (since the real interface is a cylinder) on a depth of about 1µm
that induces a negligible difference between this average angle and the tangential angle at the
surface.

Figure 8(b) shows the resulting kB-ratio obtained on an extreme case such that the opti-
cally estimated misorientation angle is equal to 0�4π�0�1 (i.e., ζ � 70�5Æ). The mean derivative
over 3 consecutive EDS measurement points is first determined and the skewness is derived us-
ing Eq. (29) (γ1 � 0�244 for the example in Fig. 8(b)). This leads in Fig. 8(a) to a misorientation
angle of about 0�44π (i.e., ζ � 80Æ) that is confirmed by comparing the corresponding curve
using Eq. (27) and the measurements in Fig. 8(b). A difference of 14% is found between ‘op-
tical’ and EDS measurements. This result is satisfactory when considering the simplification
in the X-ray emission distribution, the high misorientation angle and when considering the fact
that the interface may not be really ‘perfect’.

It is interesting to analyze what kind of interdiffusion coefficient the asymmetric effect
induces if no correction is performed, that is when the measured k-ratio is taken to be the weight
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fraction W (this analysis can be applied to account for the effect of the spectrometer position in
Section 3.1). The results are shown in Fig. 9 where the ratio between the apparent interdiffu-
sion coefficient for a misorientation angle ζ , say D�

ζ , and that for a perfect interface, say D�

0 is
plotted with respect to the apparent concentration W�

B � kB. The apparent interdiffusion coef-
ficient has been obtained by the Boltzmann-Matano method3 applied to the k-ratio predicted by
Eq. (27). It is important to remember that this method is not very accurate for extreme concen-
trations (i.e., when WB � 0 or WB � 1 that corresponds here to kB � 0 or kB � 1) and that in
these cases, the Grube method should be used.3 The asymmetry of the apparent concentration
due to the misoriented interface leads to a concentration-dependent interdiffusion coefficient
similar to what is generally obtained for a Ni(A)/Cu(B) couple27 when ζ is negative (i.e., D
increases with WB). The opposite trend occurs when ζ is positive. These trends can be re-
verted when �ζ � becomes greater than about 0�3π . This phenomenon is linked with a change in
asymmetry of the concentration profile with respect to the misorientation angle ζ (Fig. 8(a)).
The asymmetric effects due to the detector angle position δ and the interface misorientation ζ
are not very obvious to handle accurately even though no diffusion has occurred. This would
be all the more difficult when diffusion is studied. Consequently, δ should be close to π�2 and
ζ to 0. These assumptions are made in the following analysis and the geometrical configuration
of the sample checked before any measurements.

4 General deconvolution of concentration profiles

4.1 Introduction and simplified result

The aim of the present EPMA measurements is to obtain the interdiffusion coefficient(s) for the
considered species. The subject of this part is to obtain the real diffusion coefficient from the
real weight fraction curve WX�Y � (where X stands for material A or B). This weight fraction
must be extracted, by an adapted deconvolution technique, from the measurement mX�d� of the
real k-ratio (see Eq. (1)) for the element X at point d, say kX�WX�Y ��d�, with

mX�d� � kX�WX�Y ��d��n�d�� (30)

where n�d� is the measurement noise that contains the error arising from the detector or some
surface sample roughness as well as that from the instability of the primary electron beam
current for example. In this section, the analyzed sample is assumed to be well prepared and
positioned with respect to the spectrometer, i.e., δ is close to π�2 and ζ to 0 (see Sections 3.1
and 3.2.2, respectively).

The physical effect that mainly affects the measured curve in the present case is the
so-called ‘average’ effect. It can be qualitatively assessed by neglecting the absorption ef-
fect and the fluorescent radiations for a nearly concentration-independent diffusion coefficient.
Then, using the approximate lateral X-ray Gaussian-like distribution gσ (Eq. (19)) allows one
to show28, 29, 26 (Appendix A) that the apparent interdiffusion coefficient obtained with the raw
measurements curve, D�, is related to the real one, D, by

D� � D�
σ2

2t
� (31)

where σ is the standard deviation of the lateral X-ray distribution and t the diffusion time.
Equation (31) illustrates the average effect on the measured interdiffusion coefficient that leads
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to an overestimation of the real diffusion coefficient and particularly when D � σ 2�2t. This
equation could be used to obtain real diffusion coefficients but they are generally concentration-
dependent.3 Furthermore, the absorption effect and the fluorescent radiations cannot be ne-
glected in general. Thus, a more complex deconvolution technique must be used.

4.2 Deconvolution procedures

The real measurements yield discrete values of Eq. (30) in N displacement points di

�
i
X � �

i
X ��i� (32)

where �i
X is the EPMA measurement at point di that is set in the vector �X , �

i
X the real k-

ratio at point di and �i the noise at point di. The noise is assumed to be Gaussian of mean
value 0 (i.e., no systematic error during measurements) with the same standard deviation σn for
each point. An estimated value of about 0.01 is found in all the present measurements. It is
important to note that this assumption can have very important consequences on the quality of
the deconvolution, since it is very sensitive to �i,

30, 31 and that it can be improved by determining
the true distribution of noise at each measurement point if sufficient measurements are carried
out or by including this distribution as unknown parameters in the deconvolution procedure.30, 31

The unknown weight fraction WX�Y � is assumed to be stepwise constant between two
measurement points (see Fig. 13 in Appendix B) and values at the measurement points di, say
�i

X , are set in a vector �X . This assumption leads us to write the calculated k-ratio at point di
for the element X , say �i

X , from the unknown weight fraction as

�
i
X �

N

∑
j�1

�
i j
X ��X��

j
X � (33)

where �
X

stands for the transfer matrix for the measurements of X-ray radiations and consists
of discrete values of the absorption, average and fluorescent effects. Note that this matrix is
not necessarily square, i.e., the number of points for the discretization of the weight fraction
curve could be different from (i.e., greater than) the number of measurements. This may be
considered as impossible since the number of unknowns is greater than the number of data. Yet
it is possible if the functional used for the deconvolution includes additional information on the
solution.

The basic idea of deconvolution is to minimize the usual mean square error ε between
the calculated and measured data

ε2 � ∑
X�A�B

��X ��X�
t ���1 � ��X ��X� �

N

∑
i�1

∑
X�A�B

��i
X ��

i
X�

2

σ2
n

� (34)

where � is the covariant matrix of the noise distribution that is assumed to be equal to σ 2
n �,

where � is the identity matrix in the present case, and �t the matrix transposition. Only A-
radiations are affected by the fluorescent ones and this leads to time-consuming computations
and a transfer matrix �

A
that is not very easy to determine. Therefore, the deconvolution will

generally only take the B-radiations into account and the previous equation reduces to

ε2��B��B� �
N

∑
i�1

��i
B��i

B�
2

σ2
n

� (35)
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where the transfert matrix for the B-radiations, �
B

given in Appendix B, is used to compute
�B with Eq. (33). The computation of the A-radiations8 can be used to check the quality of the
deconvolution. Note that the deconvolution is more accurate if the A-radiations are considered
too as they give extra information without any additional unknowns since WA � 1�WB and
kA �� 1� kB.

This way of reconstructing the real weight fraction profile (i.e., �B from �B by mini-
mizing Eq. (35)) leads, in the general case of a non-square transfer matrix, to the approximate
solution

�̂B �
�
�

B
t ��

B

��1
��

B
t ��B� (36)

if the dependence of �
B

with �B is neglected during the computation of the minimization.
However, this type of solution is generally inaccurate and non physical (i.e., highly oscillating
solutions with values greater than 1 or less than 0). This is due to the fact that the mathe-
matical problem is both ill-posed and ill-conditioned.30, 31 It is then possible to use regularized
algorithms that include constraints on the solution. It consists in minimizing 30, 31

Tλ ��̂B� � ε2��B��̂B��λR��̂B��
∞
B�� (37)

where R is a regularization functional based on some a priori knowledge on the real solution,
λ the regularization parameter that has to be determined and W∞

B�Y � is an a priori reference
concentration profile whose values at the measurement points di are set in the vector �∞

B.
This reference may be the concentration profile obtained with a constant diffusion coefficient
first evaluated on the measurement points and corrected with Eq. (31) or the measurements
themselves. The most basic regularization functionals are quadratic and the best choice in the
present cases, when considering the typical (smooth) concentration curves, leads us to minimize
the roughness of the solution via its second order derivatives32, 33 by using the so-called L2

34, 31

(i.e., quadratic) regularizing functional

R��̂B��
∞
B� �

N

∑
i�1

�
∂ 2ŴB

∂Y 2

�����
i

� ∂ 2W∞
B

∂Y 2

����
i

�2

� (38)

�
�
�̂B��

∞
B

� ��
2
t ��

2
� ��̂B��

∞
B

�
� (39)

where �
2

is the second order finite differences operator (including variable discretization step
∆i, see Appendix B, and symmetric boundary values). If the dependence of � with � is ne-
glected during the minimization steps, then it yields the following estimate for the reconstructed
profile

�̂B�λ � �
�
�

B
t ��

B
�λ�

2
t ��

2

��1 �
�
�

B
t ��B �λ�

2
t ��

2
��∞

B

�
� (40)

Matrix�
2

can be replaced by another differentiate order matrix or a combination of these differ-
ent matrices.32, 33 The choice must be made with the a priori knowledge on the solution.35, 33, 31

This last equation shows the effect of �
2

in the deconvolution process; in addition to incorpo-
rating prior knowledge on the solution (right-hand term in Eq. (40)), it increases the low eigen-
values of � away from zero while leaving the high values unchanged (corrected left hand-term
in Eq. (40)). This avoids ill-conditioned matrices for which the inversion may be numerically
inaccurate. For the choice of the reference concentration profile, several computations show, in
the present case, that �∞

B � �, i.e., no particular reference curve, appears to be a good choice.
One major difficulty consists in determining the best value of the regularization parameter λ
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that ensures that �̂B�λ � is as close as possible to the true profile �B. Plotting R��̂B�λ �� vs.
ε2��B��̂B�λ ��, when the minimum of the functional Tλ is reached, for different values of λ
leads to an L-shaped curve (the so-called ‘L-curve’) where the optimal value for λ is reached
at the L-corner.36, 37 The two extreme branches of the L-curve correspond to λ � 0 (Eq. (37)
reduces to the ill-conditioned problem with Eq. (35)) that may lead to a solution with a perfect
agreement with the data (i.e., the predicted k-ratios agree as well as possible with the measure-
ments m) and λ �∞ (i.e., the solution perfectly agrees with the a priori knowledge defined by
the minimum of the regularization function). One practical way of finding λ is to use the Gen-
eralized Cross Validation (GCV),35, 33, 31 which is based on finding λ that minimizes the error
between the measurements �B and any reconstructed value of the measurement, �l

B, from the

estimate �̂
l
B�λ � obtained by removing the l th point, �l

B, from �B. This procedure consists in
estimating λ by minimizing33, 31

V �λ � �
N
��

�� 	
B
�λ �

�
��B

�t
�
��

�� 	
B
�λ �

�
��B

�
tr2
�
�� 	

B
�λ �

� � (41)

where

	
B
�λ � � �

B
�
�
�

B
t ��

B
�λ�

2
t ��

2

��1
��

B
t � (42)

This way of deconvoluting the signal, i.e., by minimizing the functional defined by Eq. (37)
with the so-called regularized L2-function34, 31 (Eq. (38)) and the previous optimal value of λ ,
is usually referred to as ‘L2 deconvolution’ and leads to acceptable solutions in classical cases
(when the average effect is not too important, i.e.,

�
2Dt�σ � 1, see Eq. (31)). However, in

some extreme cases (when the average effect is important, i.e.,
�

2Dt�σ � 1), this regular-
ized functional is unable to avoid oscillations in the solution. An improvement is obtained by
allowing for discontinuities at l points of the deconvoluted curves.34, 31 For these points λ is
reduced by a scale factor or set to zero. However, this includes new unknowns, i.e., the indices
corresponding to the position of the discontinuities, that are not very easy to handle. A similar
(but weak) ‘effect’, and simplified procedure, are obtained by using a non-quadratic regularized
functional,34 called L20

R��̂B�s� �
N

∑
i�1

Φ

�
∂ 2ŴB

∂Y 2

�����
i

�s

�
� (43)

with

Φ�u�s� �
s2 u2

s2 �u2 � (44)

where s is a threshold for the second derivative, i.e., when �u� � s the regularized functional has
a quadratic behavior (it reduces to the L2 functional) whereas �u�� s leads to an asymptotically
constant function that allows one to recover, to a certain degree, some (real) strong disconti-
nuities in the diffusion profile (i.e., when

�
2Dt�σ 	 1). The corresponding functional to be

minimized will be called ‘L20 deconvolution’ in the following section. The value of the regu-
larization parameter λ is more difficult to determine in this case. We used a simplified method
based on the experimental fact that most of the terms in Eq. (43) are such that Φ�u�s� 
 u2

(i.e., strong discontinuities occur only for few points). Consequently, for most of the points,
λ can be obtained by the GCV method (Eq. (41)). Since it gives very satisfactory results (see
Section 4.3), a unique regularization parameter equal to that obtained by the previous GCV
method with �

B
computed with �̂B � �B is chosen. The threshold s has to be fixed or set as
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an unknown of the problem. Since it corresponds to a threshold for the second order derivative
that must allow for strong discontinuities, it is linked to the ratio between the average diffusion
length,

�
2�D� t, and the standard deviation of the lateral X-ray distribution, i.e., σ if the lateral

X-ray distribution is modeled by the Gaussian gσ (see Section 2). If
�

2�D�t�σ � ∞, then
no strong discontinuities (at the considered scale) occur and s� ∞ (i.e., the L20 functional is
then equivalent to the L2 smoothing criterion). Conversely, the case

�
2�D�t�σ � 0 requires a

threshold s that is linked with the discretization step ∆ i (see Appendix B). A discretized weight
fraction curve when no diffusion has occurred (i.e.,

�
2�D�t�σ � 0) has indeed a maximum

second order derivative equal to 1�mini�∆i�, so that s may be expressed as

s �

�
1�

�
2�D� t
σ

�a
cs

mini�∆i�
� (45)

where the exponent a and the coefficient cs must be determined. The values a � 2 and cs � 1
give acceptable results in the cases described hereafter even if a more detailed study should be
performed. Note that the left-hand term between parentheses can be conveniently replaced by�

2D�t�σ where D� is the apparent (constant) diffusion coefficient obtained by fitting a weight
fraction curve on the raw measurements.

Note finally that other regularization functionals exist and one of the most popular is
based on the Maximum Entropy Principle38 that is well-adapted for signals with bright spots
on a dark background and can yield very good results for EPMA depth profiles deconvolution
of layered samples.39, 40, 41, 42

4.3 Implementations, validations and results

The L2 deconvolution (based on Eq. (40)) is implemented by using basic subroutines for ma-
trix inversion and one dimensional minimum search43 for λ (Eq. (41)). Since �

B
depends on

�B, the algorithm is carried out several times. For each step, the transfer matrix is set to be
concentration-independent and is computed with the deconvoluted weight fraction curve ob-
tained at the previous step (the first step is initialized by using �

B
��B�). This procedure is

repeated until the weight fraction profiles converge (i.e., mean square error between the pre-
vious deconvoluted profile and the new one is less than or equal to a prescribed threshold).
The L20 deconvolution (based on Eqs. (37) and (43)) uses a non-convex regularized functional
and needs specific minimization algorithms. The simulated annealing procedure44 is chosen.
A modified subroutine45 for the simulated annealing method is implemented. This way of
minimizing the criterion is all the more interesting for the present non-linear system since it
allows the transfer matrix �

B
to be updated continuously during the minimization. Note that

ε��B��̂B� is no longer convex in this case and the simulated annealing algorithm is all the
more necessary. Unfortunately, this subroutine requires control parameters that must be tuned
for the present utilization. The optimal control parameters (see an example in Table 1) are not
very easy to obtain and need several tests44 on a reference deconvolution problem for example
(e.g., the generalized case of Fig. 11, see next paragraph). This must be carried out with care
as ill-chosen parameters lead to inaccurate (or incomplete) deconvolution. This leads to a not
completely automated and difficult deconvolution method since the simulated annealing pa-
rameters (especially T0 and rT ,44, 45 see Table 1) must be found and checked for each problem.
In the present cases the values of Table 1 have been used successfully. Furthermore, note that
the deconvoluted weight fraction point �̂i

B are only scanned inside the �0�1� range with this
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minimization algorithm that enables one to reduce the possible number of solutions and could
artificially improve the deconvolution.

The two deconvolution methods and their implementation are first validated on simple
cases when using the measured B-radiations only. Constant diffusion coefficient, D, curves
(see Eq. (49) in Appendix A) are computed and used as the real weight fraction to compute
N
mB ‘raw’ measurement points with Eqs. (32) and (33) with the absorption parameter of a
Ni(A)/Cu(B) couple (for δ � π�2 and θ � 40Æ), the X-ray distribution of these materials for
E0 � 25keV (see Section 2) and white noise of standard deviation σn � 0�01. The curves are
deconvoluted with the two different methods and a weight fraction profile based on a constant
diffusion coefficient, D�, is tuned on the deconvoluted curve and compared to the prescribed
coefficient D. The results are shown in Fig. 10 where the error made on the diffusion coeffi-
cient, D��D� 1, for different deconvolution functionals is plotted as a function of the average
effect parameter

�
2Dt�σ . The error made on the diffusion coefficient without any deconvo-

lution is first shown: a computed error obtained with the simulated ‘raw’ measurement points
(i.e., including all physical effects) is compared with the simplified analytical result (Eq. (31))
only accounting for the average effect. The main differences between these two curves arise
from the absorption effect (that is not considered in the closed-form solution) since it can en-
hance the average effect (see Section 3.1). Second, the residual error made with the different
deconvolution functionals when using only the B-radiation measurements, mB, is plotted. The
L20 deconvolution yields better results than the L2 one, since it allows for some strong discon-
tinuities (at the scale of the standard deviation of the lateral X-ray distribution) in the weight
fraction curves. However, the improvement is not very important especially when consider-
ing the higher computation time. In the specific case of a Ni(A)/Cu(B) couple analyzed with
a ‘classical’ EDS detector in an SEM, the A-fluorescent radiations are of the same order of
magnitude as the measurement noise. The kA-ratio can thus be assumed to be fluorescent radi-
ations free and obtained with the same technique as for the B-radiations. The measurements of
the A-radiations can thus be used for the deconvolution by replacing the reduced mean square
error between the calculated and the measured data involved in Eq. (37) by the complete one
of Eq. (34). This yields the last curve in Fig. 10 that corresponds to the L20 deconvolution of
the previous simulated measurements when using both mA and mB with a similar technique for
the determination of the regularized parameter λ and the threshold s as the L20 deconvolution
when using mB only (Eqs. (41), including �

A
and �A, and (45) respectively). This leads to

an important improvement in the deconvolution for low
�

2Dt�σ ratios. Note finally that the
choice in the discretization step is very important as it must be sufficiently small to correctly
discretize the deconvoluted weight fraction curve. If it is not, it will reduce the quality of the
deconvolution since too high displacement steps of measurement (limited by the SEM spatial
resolution) never allows for a reconstruction of a diffusion curve with small diffusion lengths�

2Dt.
The improvement in the resolution of EPMA measurements corrected by deconvolution

can be estimated by analyzing the error curves of Fig. 10 for the simplified cases used for plot-
ting this graph. The resolution is defined by the minimum distance between two objects such
that they are just resolved. In qualitative analysis a value equal to 2σ is found.24 In Fig. 10, the
point

�
2Dt�σ � 2 corresponds to the abscissa where the error on the diffusion coefficient for

‘classical’ EPMA (without any deconvolution) starts to increase with an offset of 0.39. This is
depicted by the right hand downward arrow (that corresponds to 0.53µm for nickel or copper
materials with E0 � 25keV, see Section 2). The middle right downward arrow corresponds
to L2 deconvoluted EPMA and the middle left hand arrow to the L20 case for the same offset
when using mB only. It shows that the L2 deconvolution technique allows one to improve the
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EPMA resolution by a factor of about 4.9 (i.e., 0�11µm for a nickel or copper material with
E0 � 25keV) whereas the L20 one allows only for an improvement of about 5.6 (i.e., 95nm for
a nickel or copper material with E0 � 25keV) for the simplified diffusion cases used to plot
Fig. 10. A great improvement up to a factor of 9.75 (i.e., 54nm for a nickel or copper material
with E0 � 25keV) in the resolution can be obtained if the measured A-radiations are used in
the L20 deconvolution functional (left hand arrow) showing how it is important to improve the
computation of fluorescent radiations, when they are not negligible, in order to being able to
include the A-radiation measurements.

The deconvolution algorithms, when using the B-radiations measurements only, are then
applied to a real case of Ni(A)/Cu(B) diffusion, i.e., with a concentration-dependent diffusion
coefficient such that

�
2�D� t�σ � 0�75. The real weight fraction curve is computed by solv-

ing the diffusion equations3 for a 550ÆC and 10-minute diffusion with a given concentration-
dependent diffusion coefficient. The latter is measured after maintaining a Ni/Cu electroplated
diffusion couple at 550ÆC for 24 hours.27 In this last case, the average effect is so weak that
it can be neglected and the real weight fraction profile is obtained by classical ZAF or φ�z�
correction procedures (with δ � π�2, θ � 29Æ and E0 � 25keV) and used to obtain the diffu-
sion coefficient by the Boltzmann-Matano method.3 The computed ‘real’ weight fraction curve
is then used to simulate N 
mB ‘raw’ measurement points with Eqs. (32) and (33) with the
absorption parameter of a Ni(A)/Cu(B) couple (for δ � π�2 and θ � 29Æ), the X-ray distribu-
tion of these materials for E0 � 25keV (see Section 2) and white noise of standard deviation
σn � 0�01. These measurements are deconvoluted and the results are shown in Fig. 11(a) where
the two deconvolution functionals give similar and acceptable results but with a huge difference
in computation time (e.g., more than one thousand fold) that depends on the simulated anneal-
ing parameters (see Table 1). This validates the use of the B radiation measurements only when
the average effect is such that the resolution of the deconvolution method is not reached (see
Fig. 10). The change of the deconvoluted diffusion coefficient D with the weight fraction can
then be extracted from the deconvoluted curves by the Boltzmann-Matano method for medium
values of the weight fraction since this method is not accurate for extreme values.3 The results
are compared to the real diffusion coefficient27 in Fig. 11(b). The two deconvolution function-
als yield the same behavior that is acceptable when compared to the real curve because the error
between the real diffusion coefficients and the deconvoluted ones is less than the error arising
from the measurement noise (see the scatter due to white noise in the ‘raw’ measurements on
the diffusion coefficient in the same figure).

Figure 12 illustrates the use of the A and B-radiation measurements in the deconvolu-
tion. The ‘raw’ measurements are computed by using the Ni(A)/Cu(B) material parameters in
Eqs. (32) and (33) from a given weight fraction profile obtained with a constant diffusion coef-
ficient (see Eq. (49) in Appendix A) such that

�
2Dt�σ � 0�24. Note that the absorption effect

has been increased in this case (i.e., µA
B � 15µNi

Cu) to increase the difficulty of the deconvolution
as shown in Section 3.1 (i.e., the difference in the mass absorption coefficient of the two ma-
terials may lead to an additional ‘average’ effect that adds to the standard one). The limitation
of the L2 deconvolution, when using only mB only, is clearly shown in this figure since the
deconvoluted weight fraction curves oscillate with some non-physical values (i.e., outside the
�0�1� range). Increasing λ to enhance the smoothing part of the functional does not solve the
problem because the result becomes too smooth. Furthermore, replacing�

2
by �

1
(i.e., the first

derivative matrix) or �
0

(i.e., the identity matrix) in Eq. (40) is not satisfactory either, because
the results are then degraded by high frequency oscillations. The improvement in the quality of
the deconvolution with the L20 functional when using both mA and mB is clearly seen.
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A sensitivity analysis on the regularization parameter λ and the second order derivative
threshold s (for the L20 deconvolution only) has been performed for the deconvolution cases of
Figs. 11 and 12. The results are reported in Table 2 and 3, respectively. We define the mean
square error for the deconvoluted weight fraction as

E 2�λ �s� �
N

∑
i�1

�
�̂

i
B�λ �s���

i
B

�2
� (46)

where �i
B stands for the real weight fraction and �̂i

B�λ �s� for the deconvoluted one for any
�λ �s� couple at the same displacement point di. Tables 2 and 3 contain the ratio between
this error for any �λ �s� couple and those obtained with the assumed optimal parameters, i.e.,
smoothing parameter obtained by the GCV method (Eq. (41)) for the L2 and L20 functionals
and second order derivative threshold obtained with Eq. (45) for the L20 functional. In Table 2,
the sensitivity to λ is similar and not very important for the L2 and the L20 deconvolution meth-
ods when using mB only in the ‘classical’ case of Fig. 11. This similarity can be explained by
the low sensitivity to s for the L20 deconvolution for this case as there is no strong discontinuity
(see the asymptotic behavior of E 2 vs. s for s � sopt) and the L20 is not absolutely necessary as

it can be seen in Fig. 11 where the results for �̂B obtained by the two deconvolution methods
are very similar and close to the real weight fraction. As the two deconvolution methods are
not very sensitive to λ and s, the methods used to determine them (namely, the GCV method
(Eq. (41)) for λ and Eq. (45)) for s) are acceptable for the present case, i.e., when the problem
is not too close to the limitation, or resolution, of the deconvolution technique. In Table 3,
the sensitivity with respect to λ and s has been reported for the L20 deconvolution when using
mA and mB in the limit case of Fig. 12. A strong dependence to the second order derivative
threshold is shown. Furthermore the error values quickly reach a plateau as well as for s � sopt
and s � sopt. This may arise from the specific L20 regularization function (Eq. (43)) and a�

2Dt�σ ratio close to the resolution of the considered method (Fig. 10), i.e., if the threshold s
is too high, the deconvoluted curve is too smooth and contains too many strong discontinuities
in the other case. Last, the sensitivity to the smoothing parameter λ is not very important but
the value obtained with the GCV method (Eq. (41)) seems not to be optimal since lower value
leads to lower error.

Finally, when the goal of the EPMA measurements is to study diffusion, it is important
to note that all the deconvoluted weight fraction curves lead to an accurate corrected position
of the Matano interface,3 which corresponds to the abscissa YM such that

�
�Y �YM�dWB � 0.

The position of this interface, which is crucially important in diffusion analyzes,3 is shifted by
the average and absorption effects as shown in Fig. 12 where the downward arrow indicates the
position of the Matano interface for the ‘raw’ measurements whereas the real Matano interface
is located at Y � 0.

5 Conclusions

The average effect that occurs in EDS or WDS measurements of concentration profiles is
mainly described herein. It is caused by the lateral distribution of the emitted X-rays for
which a model for medium to heavy materials has been proposed and compared to its ‘clas-
sical’ Gaussian approximation. The resulting average may have a non-negligible influence on
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the evaluation of interdiffusion coefficients when the diffusion length is of the same order of
magnitude as the range of the lateral distribution of the X-rays.

When a diffusion couple made of two materials with close atomic numbers is considered,
some geometrical effects associated with the average effect can occur, namely, the position of
the spectrometer with respect to the concentration gradient and the non-perpendicularity of the
initial interface between the two diffusing species with respect to the analyzed surface. All these
effects associated with the absorption effect lead to overestimate the real diffusion coefficients
and do not allow for an accurate evaluation of the position of the Matano interface.3 This study
completes the effect of the fluorescence radiations on the apparent concentration profiles that
has been carried out elsewhere.8

Some general deconvolution algorithms for close atomic number materials have been
proposed and evaluated. They allow us to improve the EPMA resolution by a factor 5 if the
B-radiations are only considered. An improvement of a factor 10 can be expected by including
the A-radiations too in the analyzes. The computation of the fluorescent A-radiations is gener-
ally needed; yet faster computation algorithms are needed. These deconvolution methods may
be extended for any materials if the variation of φ�z� with the weight fraction is known. Up to
now, this remains a difficult task that is not completely solved analytically but some ideas, like
computing each of the basic parameters involved in φ�z� with an average atomic number eval-
uated with an appropriate weighting law,46, 47 have been useful in some cases. The techniques
used to determine the deconvolution parameters, λ and s, have been validated by a sensitivity
analysis when the average effect is such that the resolution of the deconvolution method is not
reached. However, the determination of other critical parameters, such as noise distribution,
should be improved by using fully Bayesian approaches.30, 31

Last, the present method for measuring concentration profiles on the submicrometre scale
with EPMA must be compared to depth profiling techniques such as sputter depth profiling,39, 40, 41

dimple grinding profiling42 or energy variation methods46, 47 that have been applied to determine
the concentration and thickness of the layers of multilayered samples. The latter is interesting
since it is not destructive but it is limited by the electron depth range in the sample and the num-
ber of measurement points (itself limited by the range and available values in primary electron
beam acceleration voltages), the sputter depth profiling (and dimple grinding technique, which
is similar) is one alternative method since it allows the user to measure deeper concentrations
with improved accuracy but it is a little bit destructive. The present method is also destructive,
if the diffusion couple materials analyzed is a layered sample, but adapted to diffusion profile
analysis on a long spatial range. Furthermore, it can be generalized in 2D situations (e.g., sim-
ilar to image deconvolution33, 31) to improve X-ray map resolution.

Acknowledgments. The authors wish to thank Prof. J.-P. Barbot of SATIE (ENS de Cachan,
France) and Prof. G. Demoment of LSS (Supélec, Orsay, France) for their helpful discussions
on deconvolution techniques and Dr M. Reginatto of EML (New York, USA) for providing a
copy of the deconvolution algorithm MAXED.
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A A simplified convolution analysis

In the forthcoming developments, the geometrical angle between the direction of the concen-
tration gradient and the spectrometer, δ , is assumed to be equal to π�2. For a concentration-
independent diffusion coefficient D and a given temperature T , the weight fraction profile for
the element X and for a diffusion time t, WX�Y� t�, can be expressed by using the Fourier trans-
form � of the diffusion equation3

��
�

∂WX

∂ t
� D

∂ 2WX

∂Y 2 �

WX�Y� t � 0� � W0
X�Y ��

(47)

so that
WX�Y� t� � �

�1 

�

�
W0

X�Y �
�

exp
��ω2Dt

��
� (48)

and when the initial concentration is equal to a step function at Y � 0 , it leads to

WX�Y� t� �
1
2

�
1� erf

�
Y

2
�

Dt

��
� (49)

Since the measured concentration profile is equal to the k-ratio (i.e., kX�d� � IX�d��I
�X�, see

Eqs. (1), (8) and (9) in Section 1), one has

kX�d� �

� ∞
y��∞

� ∞
z�0 WX�y�d�gσ�y�φ�z� exp

�
�µAB

X ρAB
z

sin�θ�

�
dydz

� ∞
y��∞

� ∞
z�0 gσ �y�φ�z� exp

�
�µX

X ρX
z

sin�θ�

�
dydz

� (50)

where the simplified Gaussian expression, gσ , has been used for lateral X-ray distribution (see
Eqs. (10) and (19) in Section 2). If we assume that µAB

X ρAB 
 µX
X ρX for any WX , the inte-

grations over y and z can be separated and the integration over z of the numerator is equal to
that of the denominator and they cancel out. This amounts to neglecting the absorption effect.
Equation (50) can be rewritten as

kX�d� �

� ∞
y��∞ WX�y�d�gσ �y�dy� ∞

y��∞ gσ �y�dy
�

� ∞

y��∞
WX�y�d�gσ �y�dy� (51)

since
� ∞

y��∞ gσ �y�dy � 1 by definition of the Gaussian distribution. The previous equation
shows that kX�d� is equal to the convolution product between the concentration profile and the
lateral distribution of the X-ray emission. It can be simplified by invoking the Fourier transform
and using Eq. (19) of Section 2

kX�d� �
� ∞

y��∞
WX�y�d�

1�
2πσ

exp

�
� y2

2σ2

�
dy� (52)

�
� ∞

Y��∞
WX�Y �

1�
2πσ

exp

�
��Y �d�2

2σ2

�
dY� (53)

� �
�1
�
��WX�Y ��exp

�
�ω2σ2

2

��
� (54)

19



This last expression is similar to Eq. (48) and corresponds to the Fourier transform of a convo-
lution product. By Fourier transforming WX�y� t� given in Eq. (48), Eq. (54) can be rewritten
as

kX�d� � �
�1
�
�

�
W0

X�Y �
�

exp
��ω2Dt

�
exp

�
�ω2σ2

2

��
� (55)

� �
�1 


�

�
W0

X�Y �
�

exp
��ω2D�t

��
� (56)

�
� ∞

Y��∞
W0

X�Y �
1

2
�

πD�t
exp

�
��Y �d�2

4D�t

�
dY� (57)

with
D� � D�σ2�2t� (58)

If the initial concentration profile is equal to a step function, then a similar expression as
Eq. (49) is obtained

kX�d� �
1
2

�
1� erf

�
d

2
�

D�t

��
� (59)

where the apparent diffusion coefficient D� is different from the true diffusion coefficient D if
σ2�2t is not negligible compared to D. Equation (58) describes the average effect of the X-
ray characteristic emission distribution (under the specified assumptions on the diffusion and
absorption coefficients) and has been obtained by other authors following different routes.28, 29

Note that the previous derivation is exact for a perfect interface even for strong concentration-
dependent coefficients if δ � π�2. The above results can be used to identify σ from EPMA
measurements26, 8 as described by Eq. (20) in Section 2.
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B Expression of the transfer matrix �

This appendix aims at determining the expression of the second order transfer matrix � defined
by

�
i
X �

N

∑
j�1

�
i j
X ��X��

j
X � (60)

It consists in discrete values of the absorption corrected emission function gσ �y�φ�z�. It is re-
stricted to the case δ � π�2, with the Packwood and Brown depth distribution function φ�z�17, 18

and a Gaussian lateral distribution gσ �y� (see Section 2). Equation (60) initially expressed as
(see Eqs. (1), (8) and (9) in Section 1)

�
i
X � kX�d � yi� �

IX�yi�

I�X�
�

�
� ∞

y��∞

� ∞

z�0
WX�y� yi�

gσ �y�φ�z� exp

�
�µAB

X ρAB
z

sin�θ�

�
I�
�X�

dydz� (61)

with

I��X� �
� ∞

y��∞

� ∞

z�0
gσ �y�φ�z� exp

�
�µX

X ρX
z

sin�θ�

�
dydz� (62)

corresponds to the intensity measured by the spectrometer for a pure material divided by the
parameter ∆I (containing the solid angle of the detector and other factors, see Section 1). If
WX is assumed to be stepwise constant, i.e., WX�y� ��

i
X for yi�∆i�1�2� y � yi �∆i�2 with

∆i � yi�1� yi and the concentration profile is considered to be constant for �∞ � y � y1 and
yN � y � �∞ (see Fig. 13), then the previous integrations can be replaced by a summation of
sub-integrations over each interval



yi�∆i�1�2�yi �∆i�2

�
. Replacing the integration variable

y by η � y� yi leads to

�
i
X �

πσ
2
�

2α ρX I�
�X�

∑
j
�

j
X



γ G �µ j

1�� �γ�φ0�G �µ j
2�
�� �� 	

integration over z

integration over η� 	� ��
erf

�
y�
2σ

��yi� j
2

yi� j
1

� (63)

where G �ξ � � exp�ξ 2�erf�ξ �, and

µ j
1 �

�µρ� j
X

2α ρX sin�θ�
� (64)

µ j
2 �

βρX sin�θ���µρ� j
X

2α ρX sin�θ�
� (65)

yi� j
1 � y j� yi�

∆ j�1

2
� (66)

yi� j
2 � y j� yi �

∆ j

2
� (67)

(68)

with (see Eqs. (5) and (6) in Section 1)

�µρ� j
X �

�
�

j
X µX

X ��1��
j
X�µ

X
X

��
�

j
Xρ�1

X ��1��
j
X�ρ

�1
X

��1
� (69)
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Equation (63) is not satisfied for j � 1 and j �N since the right-hand side terms (i.e., integration
over η) must be replaced by�


�




�
1� erf

�
y1� yi �∆1�2�

2σ

�
if j � 1�

1� erf

�
yN� yi �∆N�1�2�

2σ

�
if j � N�

(70)

since ∆0 and ∆N are assumed to tend to infinity (Fig. 13). The components of the transfer matrix
are expressed by

�
i j � Ξ j �

�







�








�

erf
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yi� j
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(71)
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Ξ j �

πσ
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ment du signal et de l’image. In Les Techniques de l’Ingénieur, 2001; TE 5235-1 –
TE 5235-25.

32. Cullum J. Math. Comput., 1979; 33(145): 149–170.

33. Fortier N, Demoment G., Goussard Y. J. Vis. Commun. Image Represent., 1993; 4: 157–
170.

34. Idier J. Regularization Tools and Model for Image and Signal Reconstruction. In
3rd International Conference on Inverse Problems in Engineering, 1999; Website.
http://www.me.ua.edu/3icipe/fin3prog.htm [January 2003].

35. Thompson AM, Brown JC, Kay JW, Titterington DM. IEEE Trans. Pattern Anal. Mach.
Intell., 1991; 13(4): 326–339.

36. Hansen P. SIAM Rev., 1992; 34(4): 561–580.

24



37. Gulliksson ME, Wedin PA. Optimization Tools for Inverse Problems using the Nonlinear
L-Curve and A-Curve. In 3rd International Conference on Inverse Problems in Engineer-
ing, 1999; Website. http://www.me.ua.edu/3icipe/fin3prog.htm [January 2003].

38. Gull SF, Skilling J. Theory. In Quantified Maximum Entropy – MemSys5 User’s Man-
ual. The Maximum Entropy Data Consultants Website. http://www.maxent.co.uk/ [January
2003].

39. Smith GC, Park D, Cochonneau O. J. Microsc., 1995; 178(1): 48–55.

40. Richter S, Lesch N, Karduck P. Mikrochim. Acta, 1998; [Suppl.] 15: 125–131.

41. Lesch N, Aretz A, Pidun M, Richter S, Karduck P. Mikrochim. Acta, 2000; 132(2-4): 377–
382.

42. Richter S, Karduck P. Developments in EPMA Depth Profiling using the Dimple Grinding
Techniques. In EMAS 2001 – 7th European Workshop on Modern Developments and Appli-
cations in Microbeam Analysis, Heikinheimo E, Walker CT, Armigliato A (eds). European
Microbeam Analysis Society, 2001; 367.

43. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in
Fortran – 2nd Ed. Cambridge University Press: Cambridge, 1992. Website:
http://www.library.cornell.edu/nr/bookfpdf.html [January 2003].

44. Goffe WL, Ferrier GD, Rogers J. J. Econom., 1994; 60: 65–99.

45. Reginatto M, Goldhagen P. MAXED, A Computer Code For the Deconvolu-
tion of Multisphere Neutron Spectrometer Data Using the Maximum Entropy
Method; Report no. 595. The Environmental Measurements Laboratory Website.
http://www.eml.doe.gov/publications/reports/ [January 2003].

46. Pouchou JL. Anal. Chim. Acta, 1993; 283(1): 81–97.

47. Pouchou JL. Mikrochim. Acta, 2002; 138(3-4): 133–152.

25



List of Figures

1 Schematic of the entire process of X-ray emission in a concentration (weight
fraction) profile WB�Y � for A/B diffusion couples (with ZB � ZA). The change
in concentration is depicted by the gray level (the darker, the richer in B-
element). An electron beam is focused on a point I of the sample surface at
a distance d from the origin, Y � 0, of the concentration curves O correspond-
ing to the initial interface between the A and B elements with no diffusion. The
spread of the electrons in the sample produces a 3D characteristic emission of
X-rays. Each point, S of this distribution generates A and B primary X-rays
that emerge from the sample surface at N, with a take-off angle θ , to reach
the spectrometer whose orientation with respect to the concentration gradient
is δ . It detects the A and B X-ray intensities, i.e., IA and IB. Moreover, B-
radiations are absorbed in the material and can produce secondary excitation
of A-atoms at M. The generated fluorescent A-radiations that emerge from the
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11 Regularized deconvolution of simulated raw B-radiations measurements (Eqs. (32)
and (33)) for a real concentration-dependent diffusion coefficient of Ni(A)/Cu(B)
electroplated diffusion couple27 at 550ÆC for 10 minutes (

�
2�D� t�σ � 0�75):

(a) Weight fraction curves and deconvolution(s) when using the B-radiations
measurements only. The two deconvolution techniques (Eqs. (38) and (43))
lead to very similar results (only the L20 deconvolution is shown). The recon-
structed measurements correspond to the k-ratio (Eq. (33)) obtained with the
deconvoluted weight fraction profile obtained by L20 deconvolution. Only a
fraction of the points is shown for the sake of clarity (total number: 40). (b)
Diffusion coefficient dependence with weight fraction in Cu(B) obtained by
the Boltzmann-Matano method3 where the derivative is computed as the aver-
age slope of 6 consecutive points. The two deconvolution functionals yield the
same acceptable behavior since the error between the real diffusion coefficients
and the deconvoluted ones is less than the error arising from the measurement
noise depicted by the scatter in the raw diffusion coefficient (σn � 0�01� E0 �
25keV� δ � π�2� θ � 29Æ� λ � λGCV � 24, s � sopt � 49 (Eq. (45))). . . . . . . 39

12 Regularized deconvolution of simulated raw measurements (Eqs. (32) and (33))
for a weight fraction curve with a constant diffusion coefficient (Eq. (49)) when�

2Dt�σ � 0�24. Comparison between the L2 deconvolution when using the B-
radiations measurements only (Eqs. (38)) and L20 one when using both A and
B-radiations measurements (Eqs. (34) and (43)). The reconstructed measure-
ments correspond to the k-ratio obtained with the deconvoluted weight fraction
profile obtained by L20 deconvolution (Eq. (33)). The downward arrow corre-
sponds to the position of the Matano interface3 for the raw measurement curve
whereas its real position (determine with the real weight fraction curve) is lo-
cated at Y � 0 (σn � 0�01� E0 � 25keV� δ � π�2� θ � 29Æ, material parameters
correspond to a Ni(A)/Cu(B) couple except µA

B � 15µNi
Cu to increase the absorp-

tion effect, λ � λGCV � 47, s � sopt � 0�2 (Eq. (45))). Only a fraction of the
points (total number: 45) and the B-curves are shown for the sake of clarity . . . 40

13 Typical concentration profile and its spatial discretization with stepwise con-
stant functions corresponding to measurement points. . . . . . . . . . . . . . . 41
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Figure 1: Schematic of the entire process of X-ray emission in a concentration (weight fraction)
profile WB�Y � for A/B diffusion couples (with ZB � ZA). The change in concentration is de-
picted by the gray level (the darker, the richer in B-element). An electron beam is focused on a
point I of the sample surface at a distance d from the origin, Y � 0, of the concentration curves
O corresponding to the initial interface between the A and B elements with no diffusion. The
spread of the electrons in the sample produces a 3D characteristic emission of X-rays. Each
point, S of this distribution generates A and B primary X-rays that emerge from the sample
surface at N, with a take-off angle θ , to reach the spectrometer whose orientation with respect
to the concentration gradient is δ . It detects the A and B X-ray intensities, i.e., IA and IB.
Moreover, B-radiations are absorbed in the material and can produce secondary excitation of
A-atoms at M. The generated fluorescent A-radiations that emerge from the sample surface can
reach the spectrometer that detects their intensity If

A.
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Figure 2: 2D X-ray emission distribution in copper obtained by Monte Carlo simulations16 with
an electron probe diameter of 10nm and an acceleration voltage E0 � 25keV. Definition of the
lateral X-ray distribution ψ�y� and the depth one, φ�z�, by integration of the 2D distribution
over thin layer of thicknesses dy and dz, respectively. φ�z� generally contains a transient and a
Gaussian part delimited by the depth zr that stands for the depth where the effect of the transient
function in Eq. (13) becomes negligible. For medium to heavy materials (i.e., atomic number
greater than ten) and negligible primary electron beam size with respect to the whole area
affected, ψ�y� is assumed to be close to the part of φ�z� between zr and ∞, which is depicted
by the dashed lines.
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Figure 3: (a) Change of kB-ratio vs. d for different lateral X-ray distributions fitted on EDS
measurements when crossing a perfect interface of a Ni(A)/Cu(B) electrodeposited couple.
Only a fraction of the measurement points is shown for the sake of clarity (total number: 44).
(b) Corresponding lateral X-ray distributions. The derivative of the measured kB-ratio has
been obtained by considering the average slope for 5 consecutive measurement points. (E0 �
25keV� δ � 8π�9� θ � 29Æ)
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Cu.
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Figure 5: (a) Comparison between the Monte Carlo computation16 of the X-ray distribution for
copper (E0 � 25keV) with the approximated spherical one (sphere of radius Rs centered at a
depth zr). Gray surfaces define the partial volumes used in Eq. (23) when crossing a perfect
interface. (b) Dimensionless root mean square error between a spherical X-ray emission distri-
bution with a depth shift zr (Eq. (23)) and a hemispherical distribution, i.e., zr � 0 (Eq. (26)),
vs. dimensionless depth shift zr�Rs .
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Figure 6: Determination of the radius Rs of the simplified spherical X-ray distribution by fitting
the curve obtained with Eq. (26) on EDS measurements when crossing a perfect Ni(A)/Cu(B)
interface (E0 � 25keV� δ � 8π�9� θ � 29Æ).
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tion angle ζ obtained with Eq. (27).
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Figure 8: (a) Change in the corrected coefficient of asymmetry �γ1�0�42ζ � (Eq. (29)) with the
misorientation angle �ζ � and schematic of the Ni/Cu tubular specimen used to determine the
misorientation angle (
 0�44π) from the corrected skewness (0.82). (b) kB-ratio measurements
on a Ni(A)/Cu(B) couple with a non-perpendicular interface (ζ � 0�4π obtained by optical
measurement) and the corresponding simulated kB-ratio with Eq. (27) and ζ � 0�44π obtained
by the measured skewness. Only a fraction of the measurement points is shown for the sake of
clarity (total number: 54) (E0 � 25keV� δ � π�2� θ � 29Æ).
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Figure 10: Error between the real diffusion coefficient, D, and the raw (without deconvolu-
tion) or deconvoluted ones, D�, obtained by different deconvolution techniques vs. the ratio
between the diffusion length,

�
2Dt, and the standard deviation of the lateral X-ray distribution

σ that evaluates the average effect. All the curves, except the second one, are obtained by
simulating raw measurements with Eqs. (32) and (33) for a constant diffusion coefficient, D,
curve (Eq. (49)) with a white noise of standard deviation σn � 0�01. The obtained measure-
ment curves are discretized. The first curve is obtained without any deconvolution by assuming
an apparent constant diffusion coefficient D� curve (Eq. (49)). The second is a direct plot of
Eq. (31). The three following curves have been obtained by assuming an apparent constant
diffusion coefficient D� curve (Eq. (49)) on deconvoluted weight fraction curves with different
functionals and measurements, i.e., the first two curves use only the B-radiation measurements,
mB, in the deconvolution functional whereas the last curve uses both the A and B-radiations
measurements when the fluorescent A-radiations can be neglected (all material parameters are
equivalent to a Ni(A)/Cu(B) couple with E0 � 25keV, σn � 0�01, δ � π�2, θ � 40Æ). The
regularization parameter λ is obtained by the GCV method (Eq. (41)) and the second order
derivative threshold s for the L20 deconvolution with Eq. (45). The downward arrows corre-
spond to the resolution obtained without deconvolution and with the L2 and L20 ones. The L2
deconvolution (with mB only) allows one to improve the EPMA resolution by a factor 4.9 and
the L20 (with mA and mB) one by a factor of 9.8 for the simplified cases used to plot this graph.
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Figure 11: Regularized deconvolution of simulated raw B-radiations measurements (Eqs. (32)
and (33)) for a real concentration-dependent diffusion coefficient of Ni(A)/Cu(B) electroplated
diffusion couple27 at 550ÆC for 10 minutes (

�
2�D�t�σ � 0�75): (a) Weight fraction curves and

deconvolution(s) when using the B-radiations measurements only. The two deconvolution tech-
niques (Eqs. (38) and (43)) lead to very similar results (only the L20 deconvolution is shown).
The reconstructed measurements correspond to the k-ratio (Eq. (33)) obtained with the decon-
voluted weight fraction profile obtained by L20 deconvolution. Only a fraction of the points
is shown for the sake of clarity (total number: 40). (b) Diffusion coefficient dependence with
weight fraction in Cu(B) obtained by the Boltzmann-Matano method3 where the derivative is
computed as the average slope of 6 consecutive points. The two deconvolution functionals yield
the same acceptable behavior since the error between the real diffusion coefficients and the de-
convoluted ones is less than the error arising from the measurement noise depicted by the scatter
in the raw diffusion coefficient (σn � 0�01� E0 � 25keV� δ � π�2� θ � 29Æ� λ � λGCV � 24,
s � sopt � 49 (Eq. (45))).
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Figure 12: Regularized deconvolution of simulated raw measurements (Eqs. (32) and (33)) for
a weight fraction curve with a constant diffusion coefficient (Eq. (49)) when

�
2Dt�σ � 0�24.

Comparison between the L2 deconvolution when using the B-radiations measurements only
(Eqs. (38)) and L20 one when using both A and B-radiations measurements (Eqs. (34) and
(43)). The reconstructed measurements correspond to the k-ratio obtained with the decon-
voluted weight fraction profile obtained by L20 deconvolution (Eq. (33)). The downward
arrow corresponds to the position of the Matano interface3 for the raw measurement curve
whereas its real position (determine with the real weight fraction curve) is located at Y � 0
(σn � 0�01� E0 � 25keV� δ � π�2� θ � 29Æ, material parameters correspond to a Ni(A)/Cu(B)
couple except µA

B � 15µNi
Cu to increase the absorption effect, λ � λGCV � 47, s � sopt � 0�2

(Eq. (45))). Only a fraction of the points (total number: 45) and the B-curves are shown for the
sake of clarity .
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Table 1: Example of parameters used for the simulated annealing algorithm determined with
the deconvolution problem of Fig. 11. See Goffe et al.44 for description and practical method
for finding the best parameters.

Parameter Description Value

∆ε Convergence criterion 10�4

T0 Initial temperature 10
rT Temperature reduction factor 0.85
NT Time through NS loops before temperature reduction 10
NS Time through function before length adjustment of Vi 10
Nε Time function tolerance is achieved before termination 4
Ci Length adjustment factor (controls how fast Vi is adjusted) 2 (i � 1�N)
Vi Step length for the weight fraction 0.5 (i � 1�N)
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Table 2: Sensitivity analysis for the L2 and L20 deconvolution methods (when using mB only)
to the smoothing parameter λ and the threshold for the second order derivative s with the
deconvolution problem of Fig. 11. λGCV stands for the value obtain with the Generalized Cross
Validation method33, 31 (Eq. (41)), sopt � 2D�t��σ 2 mini ∆i� (Eq. (45)) and E 2�λ � s� is the mean
square error between the real weight fraction curve and the deconvoluted one for any couple
�λ � s� (Eq. (46)) with E 2

ref � E 2�λGCV� sopt�.

λ�λGCV 1/16 1/8 1/4 1/2 1 2 4 8 16

E 2�λ � sopt��E
2
ref L20 1.6 1.38 1.2 1.075 1 0.974 1.04 1.16 1.63

E 2�λ ��E 2
ref L2 1.44 1.24 1.1 1.02 1 1.04 1.13 1.31 1.63

s�sopt 1/16 1/8 1/4 1/2 1 2 4 8 16

E 2�λGCV� s��E 2
ref L20 1.023 1.015 1.011 1.005 1 0.99 0.99 0.99 0.99

Table 3: Sensitivity analysis for the L20 deconvolution method (when using mA and mB) to
the smoothing parameter λ and the threshold for the second order derivative s with the de-
convolution problem of Fig. 12. λGCV stands for the value obtain with the Generalized Cross
Validation method33, 31 (Eq. (41)), sopt � 2D�t��σ 2 mini ∆i� (Eq. (45)) and E 2�λ � s� is the mean
square error between the real weight fraction curve and the deconvoluted one for any couple
�λ � s� (Eq. (46)) with E 2

ref � E 2�λGCV� sopt�.

λ�λGCV 1/100 1/8 1/4 1/2 1 2 4 8 100

E 2�λ � sopt��E
2
ref L20 3.8 0.9 0.92 0.96 1 1.02 1.04 1.05 21.4

s�sopt 1/16 1/8 1/4 1/2 1 2 4 8 16

E 2�λGCV� s��E 2
ref L20 3.6 3.34 1.17 1.16 1 1.64 1.56 1.59 1.6
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