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RÉSUMÉ.L’endommagement et la rupture de matériaux à comportement fragile ou quasi-
fragile est analysé ici. Un accent particulier est mis sur la discrimination entre descriptions
discrète et continue de l’endommagement et de la rupture. Les matériaux analysés sont des
bétons, ciments et roches.
ABSTRACT. The degradation and failure of brittle or quasi-brittle geomaterials are analyzed in
this Lecture.  The main emphasis is put on the discrimination between discrete and continuum
approaches to describe damage and fracture.  The materials studied herein are cement, high-
performance concrete and rocks.
MOTS-CLÉS : Rupture fragile, comportement quasi-fragile, approche probabiliste, mécanique
de l’endommagement, ciment, béton, roche.
KEYWORDS: Brittle fracture, quasi-brittle behavior, probabilistic approach, Continuum
Damage Mechanics, cement, concrete, rock.
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1. Examples of geomaterials undergoing single and/or multiple fragmentation

The single or multiple fragmentation in brittle geomaterials (e.g., cement,
concrete and rocks) is analyzed herein.  This mechanism is the key to model damage
and failure in these materials.  Single fragmentation is observed in many brittle
materials when the stress rate is low.  It follows that a weakest link hypothesis can
be made (Freudenthal, 1968) and a Weibull model (1939; 1951) is used to fit
experimental data (Fig. 1)
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where FP  denotes the failure probability, Fσ  the failure stress (i.e., the maximum
value of any suitable equivalent stress), effZ  the effective volume, surface or length
(Davies, 1973), tλ  the corresponding defect density, m the Weibull modulus, 0σ  a
scale parameter relative to a reference density 0λ .  The constant 00 / λσ m  is the
Weibull scale parameter.  In the following, when no special mention is made, the
development is valid for any space dimension n (i.e., 1, 2 or 3).  Otherwise, it will
be clearly stated for which space dimension the results are valid.
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Figure 1.  Cumulative failure probability vs. failure stress for limestone in a series
of 22 three-point flexural tests.  Best fit with a Weibull model (m ≈ 3).
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It can be noted that the previous formulation [i.e., Eq. (1)] enters the framework
of a Poisson point process of intensity tλ  (Gulino et al., 1991; Jeulin, 1991).  The
material microstructure is therefore approximated by point defects of density tλ 
with random locations.

Since the pioneering work of Rinehart (1965), it is known that the ultimate
strength of rocks under so-called dynamic loading conditions exceeds the static
strength by as much as one order of magnitude. The distinct zones resulting from
rock blasting were clearly identified by Kutter and Fairhurst (1971), namely a
comminuted area in the vicinity of the explosive followed by a damaged zone in
which dense microcracking is observed and finally a zone where few long cracks
develop (Fig. 2).  Later, it was recognized that inherent flaws are activated, can
grow and eventually coalesce to form macrocracks (Shockey et al., 1974).
Similarly, concrete can experience multiple fragmentation when hit by a projectile
(Kennedy, 1976).  Yet, when loaded in tension or flexure under quasi-static
conditions, the same materials usually experience single fragmentation and their
failure strength is no longer deterministic (Fig. 1).

Figure 2.  Fragmentation of Beaucaire limestone caused by a blast.  A fully
fragmented 30-mm zone around the hole is accompanied with larger parts where
long cracks develop [after Grare (2002)].
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Consequently, the question to address is to choose between a discrete or
continuum description of damage.  Section 2 deals with a discrete approach of
fracture in brittle materials.  The aim of Section 3 is to show the link between a
discrete analysis of the fragmentation process under dynamic loading conditions and
an extended constitutive equation written in the framework of Continuum Damage
Mechanics (CDM).

2. Fragmentation of geomaterials under quasi-static loading

Under quasi-static loading condition, a weakest link hypothesis can be made.  It
follows that a probabilistic model needs to be used.  In the sequel, the Weibull
model is introduced and applied to different geomaterials.

2.1. Initial defects and brittle fracture

In brittle materials, failure is caused by unstable growth of cracks induced by
defects (or heterogeneities), which are randomly distributed.  Let us consider an
initial flaw size distribution 0f  that depends upon morphological parameters.  For
the sake of simplicity, initial defects are modeled as penny-shaped cracks whose
normal is aligned with the local maximum principal stress direction. The elementary
failure probability 0FP  is expressed as

∫
+∞

=
ca

F daafP )(00 , (2)

where ca  is the critical crack size [ 1/ σYKa cc = , σ1 is the maximum principal
stress, cK  the toughness and Y a dimensionless parameter]. By assuming that the
defect distribution is characterized by a Poisson point process in the framework of a
weakest link hypothesis, the cumulative failure probability FP  of a structure Ω is
related to 0FP  by
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where 0λ  corresponds to a reference defect density per unit volume, surface or
length [see Eq. (1)].
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2.2. Correlation with a Weibull model

Let us assume that the flaw size distribution is approximated by a power law
function (Jayatilaka et al., 1977) for the large sizes
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where p and 0a  are material parameters.  The elementary failure probability can be
rewritten as
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where 00 / aYKc=σ , and one ends up with a two-parameter Weibull law (1939;
1951)
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where .  are the Macauley brackets, )1(2 −= pm  and 00 / λσ m  are the two
Weibull parameters that are related to the flaw size distribution.  By using similar
hypotheses (Hild et al., 1992b), a three-parameter Weibull law can be obtained
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where m , uσ  and 00 / λσ m  are the three Weibull parameters.

2.3. Generalized Weibull model

The previous results can be generalized when initial defects are modeled by
penny-shaped cracks of radius a whose orientation is uniformly distributed (Hild,
2001).  With a mode I failure condition, the original Weibull model (1939) is
obtained.  It is worth noting that the equivalent stress chosen by Weibull
corresponds to an assumption of a mode I mechanism of failure (even though this
concept was not yet discovered).  Other models enter the same framework. Of those,
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one may mention the model developed by Batdorf and Crose (1974). Lastly, the
model proposed by Evans and Lamon (1978; 1983) uses yet another failure
criterion. The key distinction between the three models is given by the failure
criterion (Hild, 1998).

2.4. First case study: DVH effects

For a two-parameter Weibull law [see Eq. (6)], the cumulative failure probability
can be written as
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where a stress heterogeneity factor mH  (Hild et al., 1992a) can be expressed as
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The stress heterogeneity factor characterizes the effect of the load pattern on the
cumulative failure probability.  From a probabilistic perspective, it characterizes the
fact that a defect is critical when it is large enough in a zone loaded significantly.
An effective volume, surface or length effZ  can be defined as (Davies, 1973)

meff ZHZ = . (10)

When the latter is loaded in pure tension (i.e., 1=mH ), it would lead to the same
failure probability as the considered domain Ω subjected to any loading condition.
Finally, the average failure stress avσ  can be written as
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and the corresponding standard deviation sdσ
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where Γ is the Euler function of the second kind (Abramowitz et al., 1965).  These
last two equations illustrate the DVH effects:



Titre courant de l’article     7

− D effect.  The Weibull parameters )1(2 −= pm  and 00 / λσ m  are related to the
flaw size distribution (see Section 2.2). The average strength and the
corresponding standard deviation are directly linked with these parameters.
However, the coefficient of variation avsd /σσ  only depends upon the Weibull
modulus m.

− V Effect.  The larger the loaded volume (surface or length), the smaller the
mean strength (Kadlecek et al., 1967; L'Hermite, 1973) and the corresponding
standard deviation.  This result shows that when extrapolated to real structures,
there is a correction to be applied from data obtained from experiments
performed in the laboratory.

− H Effect.  The more heterogeneous the stress field, the smaller the stress
heterogeneity factor mH , the larger the mean strength.  It follows that brittle
materials are very sensitive to the type of loading  (L'Hermite, 1973).

2.5. Parameter identification

For a two-parameter Weibull law, the identification procedure is
straightforward.  It consists in recasting Eq. (6) in the following form
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Therefore, in a Weibull plot (1939) ( )[ ]FP−− 1lnln  vs. )ln( Fσ , it is expected that
the material data follow a straight line whose slope corresponds to the Weibull
modulus m.  Once the Weibull modulus m is identified, the stress heterogeneity
factor mH  can be computed by using Eq. (9) and then by knowing the intercept, the
scale parameter 00 / λσ m  can be determined.  One can note that a conventional least
squares method can be utilized to tune the Weibull parameters.  For a three-
parameter Weibull law, a least squares method can be used as well.  However, the
identification procedure is not as simple as the previous one.  It is worth mentioning
that a maximum likelihood procedure is also well suited for the identification of
statistical distributions such as the Weibull model (Munz et al., 1999).
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2.6. Application to microconcrete and rock

Microconcrete samples are made of materials with special proportions (1 volume
of cement, 2.67 volumes of sand, 1.33 volumes of aggregates and 0.80 volume of
water) so that the strength is sufficiently low for panels to be analyzed hereafter
(i.e., with a low fiber volume fraction).  Furthermore, the sand distribution is
controlled and an average size of 0.6 mm is obtained.  Similarly, the size
distribution of aggregates is measured and an average of 2.8 mm is found.  The
average compressive strength of 3 standard samples (diameter: 10 mm, height: 28
mm) tested 41, 69, 97 and 132 days after casting is equal to −17.5 MPa, whereas the
average value of Young’s modulus is equal to 19 GPa (Silva, 2002).  Four series of
experiments have been carried out on microconcrete samples.  Two different sample
sizes, namely 25 x 25 x 170 mm3 and 25 x 25 x 320 mm3, and two different types of
loadings, namely three-point flexure (outer span: 150 mm and 300 mm,
respectively) and four-point flexure (outer span: 150 mm and 300 mm, respectively,
inner span: 50 mm and 100 mm, respectively) have been considered.  Each set of
experiments can be analyzed separately to determine the corresponding Weibull
parameters.  To perform the identification, the stress heterogeneity factors are
computed by using Eq. (9) for a beam theory solution in four-point flexure (outer
span / inner span = 2)

2)1(3
1

)1(6
1

+
+

+
=

mm
H m , (14)

and three-point flexure

2)1(2
1
+

=
m

H m . (15)

A reasonable agreement can be obtained (i.e., a correlation coefficient at least equal
to 0.96) when each set of tests is analyzed separately (Silva, 2002).  Since all the
data will be considered as one series, only one set of Weibull parameters is used to
describe the failure properties of the material. An initial Weibull modulus is needed
(e.g., 3.5=m ) so that the Weibull stresses (Beremin, 1983)

( )   /1
0w

m
mF ZH −= λσσ (16)

for each experimental point can be determined by computing the effective volume

mZH .  The stresses are then arranged in ascending order and a new identification of
the two Weibull parameters is possible.  For any of the four Weibull moduli taken
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as initial value, two iterations are needed to converge to the following values:
MPa0.4 and 3.7 0 == σm  (with 0/1 λ  = 20 cm3).  It can be noted that these values

are very close to the average obtained for the four sets of experiments [i.e.,
MPa1.4 and 3.7 0 == σm  (with 0/1 λ  = 20 cm3)].  Figure 3 shows the results

obtained with this procedure in which all the data are considered simultaneously.  A
very good agreement is obtained (i.e., a correlation coefficient greater than 0.99).
This analysis allows us to conclude that the Weibull model leads to reasonable
estimates of the failure properties of the microconcrete studied herein for effective
volumes varying between 0.68 cm3 (i.e., small samples loaded in 3-point flexure)
and 4.67 cm3 (i.e., large samples loaded in 4-point flexure).

Limestone is also analyzed within the present framework.  The rocks are
extracted from the Beaucaire quarry.  Samples of size 50 x 50 x 300 mm3 are loaded
in three-point flexure (outer span: 250 mm).
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Figure 3.  Modified Weibull plot for a
microconcrete.  Best fit with a Weibull
model (m ≈ 7.3).

Figure 4.  Weibull plot for limestone in a
series of three-point flexural tests.  Best
fit with a Weibull model (m ≈ 3).

The results of Fig. 1, corresponding to 22 experiments are recast in a Weibull plot
(Fig. 4).  The Weibull parameters are close to those identified directly, namely
m ≈ 3 and 0σ  = 4 MPa when 0/1 λ  = 19 cm3 (i.e., identical to the effective
volume).  The low value of the Weibull modulus m is an indication of a big scatter
in terms of failure strength, to be expected for this type of geomaterial.
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2.7. Second case study: high performance concrete

High performance concrete is analyzed in the sequel.  This material (powder
reaction concrete, commercial name: DUCTAL®) has a very fine microstructure
made of components of different sizes (Fig. 5a), namely, fine quartz sand
aggregates, cement, crushed quartz and silica fume (Richard et al., 1995).  For the
sake of simplicity, the results reported herein only concern fiber-free matrices for
which a high compressive strength can be achieved but with a ductility comparable
to conventional mortar.  When reinforced by fibers, these materials can achieve
values of the order of −200 MPa to −800 MPa in uniaxial compression (Dugat et al.,
1996).  A residual porosity of the order of 2% is obtained in the present case (i.e.,
when containing short fibers, the compressive strength is equal to −200 MPa).  The
latter is the likely cause of failure in three-point flexure experiments (Fig. 5b).

Figure 5.  a-Microstructure of the high performance concrete studied herein.
b-Fractured surface after a three-point flexural test.

As expected, the behavior is elastic-brittle and the failure stress is scattered.  Figure
6 shows the corresponding Weibull plot for 18 experiments on samples of size
11.2 x 10.2 x 150 mm3 submitted to three-point flexure (outer span: 130 mm).  A
Weibull modulus of 9.5 is obtained and 0σ  = 23 MPa when 0/1 λ  = 59 mm3 (i.e.,
identical to the effective volume).  To compare the three geomaterials studied so far,
Table 1 summarizes the Weibull parameters for the same reference density

0/1 λ  = 1 cm3.
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Figure 6.  Weibull plot for a high performance concrete in a series of three-point
flexural tests.  Best fit with a Weibull model (m ≈ 9.5).

Table 1.  Weibull parameters (m, 0σ ) for three geomaterials compared with a
silicon carbide ceramic and glass when 0/1 λ  = 1 cm3.  Average strength ( avσ ) for
an effective volume equal to 1 dm3.

Material m 0σ  (MPa) avσ  (MPa)

limestone 3 10.5 1

microconcrete 7.3 6.0 2.2

DUCTAL® 9.5 17.1 7.8

SiC† 9.6 180 83

sodalime glass‡ 28.5 1330 1020
†after Denoual and Riou (1995), ‡bulk defects [after Gy and Guillemet (1992)].

It is worth noting that all the geomaterials have scale parameters less than those
observed in ceramics and glasses.  As expected, the high performance concrete
studied herein has properties significantly better than those of other geomaterials.
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2.8. Third case study: ferrocement

Ferciment (i.e., “ferrocement”) was invented 150 years ago by Lambot who, in
1845 constructed pots and seats, and built a boat with this material in 1848.  A first
patent on the mixed use of iron and cement was made in 1851 and ferciment is
patented since 1855 (Lambot, 1855; Marrey, 1995).  Its utilization for structural
purposes only started in 1943 thanks to Nervi’s contributions (1951).  Ferrocement
is the oldest form of reinforced concrete and is composed of a cement-based mortar
or concrete matrix reinforced with a mesh of closely spaced iron rods or wires
(Naaman, 2000).  Nowadays many civil engineering applications use some kind of
fiber-reinforced concrete or cement (Balaguru et al., 1992).  The interest in these
materials is due to the gain in toughness and ductility in the presence of cracks that
are bridged by the fibers.  Furthermore, microconcrete reinforced by fibers
(µCoReF) has been developed as a low-cost material to be used in thin-walled
structural components [e.g., pre-formed skeleton (El Debs, 2000)].  The strength
and deformability of these structures are improved when compared to conventional
“ferrocement” composites (Hanai et al., 1994).  The prediction of cracking in such
structural components is essential for design purposes and this constitutes the main
goal of the present case study.

Figure 7.  Panel geometry (400 x 400 x 25 mm3, S = 100 mm) and 300 mm long
beam model used to account for the eccentricity δ.
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The reinforcements are wires 3.8 mm in diameter made of low carbon steel.  The
average tensile strength is of the order of 870 MPa with an average Young’s
modulus of 210 GPa.  For a frame made of a perpendicular array of 8 welded wires
(spacing between wires: S = 100 mm, wire diameter: d = 3.8 mm), the ultimate
strength is given equal to 895 MPa in the longitudinal direction, and 870 MPa in the
transverse direction.  In the present case, one set of 33 panels is analyzed (panel
size: 400 x 400 x 25 mm3).  The matrix is identical to that studied in Section 2.6.
The reinforcement consists of a grid of welded steel wires. Figure 7 shows a
schematic view of the sample geometry.  Following the analysis initially proposed
by Aveston et al. (1971; 1973), let us consider an elementary cell consisting of a
continuous fiber (Young’s modulus sE  and volume fraction f) embedded in a
matrix (Young’s modulus cE  and volume fraction 1−f).  A perfectly bonded
interface is assumed so that the longitudinal strains are identical in the matrix and in
the fiber (Fig. 8).

Figure 8.  Elementary cell used in the analysis of single and multiple cracking
regimes.

The applied stresses are assumed to be uniaxial and uniform in each section.
When no cracking occurs, the macroscopic Young’s modulus is assumed to be equal
to

sc fEEfE +−= )1( , (17)

so that the stress in the fiber is expressed as

E
Es

s Σ=σ , (18)

and that in the matrix as



14     Nom de la revue. Volume X – n° X/2002

E
Ec

c Σ=σ . (19)

Hence, the applied stress Σ  is related to sσ  and cσ  by

Σ=−+ cs ff σσ )1( . (20)

The microconcrete matrix is weaker than the reinforcement.  Multiple matrix-
cracking will occur when the first matrix crack does not lead to the failure of the
fiber bridging the crack.  If the strength sufσ  is less than the stress level at which
matrix-cracking occurs ccucr EEσ=Σ , there will be single matrix-cracking.
Conversely, when
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there will be multiple matrix-cracking.  To obtain the previous results, the failure
strengths of the matrix and the fibers were assumed to be deterministic.  In practice,
this hypothesis is only a simplification.  In the present case, only the matrix strength
is considered to be of random nature.  Let us associate to each failure stress of the
matrix cuσ  a cracking probability crP  that can be described by a two-parameter
Weibull model [see Eq. (6) with ceff VZ = ]
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so that the critical volume fraction is defined in terms of the first matrix-cracking
event in the composite
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For instance, for a fiber volume fraction f = 0.005, multiple matrix-cracking is likely
to occur (i.e., crff > ) for a probability crP  of 72 % when the volume of the matrix
is equal to the reference volume (i.e., 10 =cVλ ).  Furthermore, the higher the
volume cV , the lower the failure stress for the same failure probability (i.e., V
effect), therefore the more likely multiple matrix-cracking.  This result is valid
provided the composite is subjected to a macroscopic tensile stress.  If the stress
field is heterogeneous, the above-mentioned conclusion can be utilized by
considering the effective volume mc HV  instead of the volume cV  (i.e., H Effect) as
will be shown below.
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In practice, the steel grid induces a loss of symmetry of the microconcrete panels
because of the eccentricity δ (see Fig. 9).  Consequently, the previous analysis has
to be adapted to account for flexure coupled with tension.  A FE analysis shows that
the top part and left part of the modeled quarter sample are not significantly loaded
compared to the center because of the way the strains are prescribed by the
transverse wires (Silva, 2002).  Hence, the loaded volume for the prediction of the
first cracking stress is equal to 300 x 300 x 25 mm3.  To described flexure coupled
with tension, the longitudinal strain field is given by

maxmaxmax )1(
2

1)( εεααεαε ≤
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Figure 9.  Flexure parameter α vs. eccentricity δ.  The crosses are experimental
data.  The experimental average =α  0.33 corresponds to an eccentricity
δ = 2 mm.

Because the eccentricity δ is very difficult to control, a beam calculation is used to
relate δ to the flexure parameter α. The wires aligned along the z direction are not
modeled.  However, it is assumed that thanks to their presence, Eq. (24) constitutes
a good approximation of the longitudinal strain field in an equivalent beam for
which the elastic behavior in the z direction is homogenized for

2/2/ hxd +≤≤− δδ .  The equivalent Young’s modulus in this homogenized
region is computed as

shchh EfEfE +−= )1( , (25)
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where the apparent surface fraction of fibers is computed as
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The eccentricity δ induces a flexural moment δF (Fig. 8) leading to the following
relationship between δ and α
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One can evaluate a priori the effective volume in a ‘tensile’ test of the panels.  By
using Eqs. (9) and (24) and neglecting the fiber stress contribution (since f is very
small), the following stress heterogeneity factor is found
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Equation (28) shows that the lower α, the lower the stress heterogeneity factor and
the higher the average failure stress [see Eqn. (11)].  By assuming that the relevant
volume to consider is cV  = 300 x 300 x 25 mm3, the dimensionless effective
volume mcHV0λ  is of the order of 20 and a multiple cracking regime is to be
expected.

Each of the 33 panels that have been tested exhibits a different value of α for the
cracking events.  In Fig. 9, the values of α corresponding to the first matrix crack
are plotted and the eccentricities deduced from Eq. (27).  As anticipated, these
values are scattered.  Yet the range of values allows us to conclude that the samples
did not experience compressive stresses since α remains positive.  The mean value
of α is equal to 0.33 and that of the eccentricity δ is of the order of 2 mm
(corresponding standard deviation: 0.7 mm).  This value can be compared to the
value δ = 1.9 mm (i.e., δ = h/2) that corresponds to a perfect positioning of the steel
frame in the mid-plane of the panel. These results show that, even though a
millimeter positioning was achieved, it is not sufficient to consider one single value
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for α.  Since each experiment has a different value of α, the only way to treat
globally the scatter is to resort to the Weibull stress [Eq. (16)] so that all data can be
compared with one another.

Figure 10 summarizes all the experimental observations in the modified Weibull
plot (i.e., [ ] wFP σln    vs.)1ln(ln −− ).  All experimental data are located above the
curve given by the Weibull model identified with the flexure experiments.  It
therefore constitutes a lower estimate. This can be shown when fitting the
experimental data with the same Weibull modulus (i.e., m = 7.3) and leaving the
scale parameter free.

-4
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-1

0

1

2

0.5 1 1.5 2

experiment
Weibull model

ln
[-

ln
(1

-P
F)]

ln[σ
w
 (MPa)]

Figure 10.  Modified Weibull plot corresponding to the first, second and third
cracking stresses.  The solid line corresponds to the Weibull parameters determined
from the flexure data.  The dashed line corresponds to the Weibull scale parameter
determined by using the present data.

A value MPa8.4ˆ0 =σ  is found for the same reference density (i.e., 20/1 0 =λ cm3)
with a correlation coefficient equal to 0.96.  It can be noted that the average
effective volume observed in the experiments prior to first cracking,

240≈effV cm3, is at least two orders of magnitude larger than those that correspond
to the unreinforced beams tested in flexure.  Consequently, an extrapolation of the
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model to these very different scales may explain the 20% difference in scale
parameter.

3. Dynamic fragmentation of geomaterials

3.1. Experimental evidence

Tensile cracking, one of the major degradation mechanisms, can be observed
during impact by using so-called Edge-On Impact (EOI) configurations instead of a
real configuration where the degradation is ‘hidden’ in the bulk of the ceramic.
These configurations are developed by the Ernst-Mach-Institute (EMI) in Germany
(Hornemann et al., 1984; Strassburger et al., 1994) and more recently by the Centre
Technique d'Arcueil (CTA) in France (Denoual et al., 1998a; Riou et al., 1998).  It
can be shown that the same damage mechanism (i.e., damage in tension) is observed
in EOI and in real impact configurations (Denoual et al., 1996).

Figure 11.  One quarter of an edge-on impact configuration with dynamic
confinement.

To avoid confined damage induced by the compressive wave close to the impact
zone, a special EOI setup is used (Fig. 11).  It consists in creating an additional
dynamic confinement obtained by using a steel ring containing a tungsten cylinder
whose radius is greater than that of the projectile.  This system creates an additional
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confinement during 13 µs that prevents damage to develop in these zones by
reducing the deviatoric stress (i.e., less than 240 MPa for a distance greater than
12 mm from the impact point) to levels below the threshold of damage under
confined conditions (i.e., of the order of 400 MPa).  When using a 2024 aluminum
alloy projectile, this setup allows to analyze fragmentation with no prior confined
damage (i.e., hoop stresses greater than 35 MPa for a distance less than 80 mm from
the impact point).  Figure 12 shows a post-mortem observation when the tile is put
in a sarcophagus to prevent the fragments to move too much.  In this configuration,
a blunt projectile (20 mm in diameter and 50 mm in length) impacts at 88 m/s a
concrete plate of size 300 x 150 x 10 mm3. After impact, the tile is coated in an
epoxy resin and polished for macroscopic (and microscopic) analyses.

Figure 12.  Post-mortem view of an impacted high performance concrete tile by an
aluminum projectile with a confined configuration.

It is worth remembering that the same principle has been used to devise the
experiments on rocks, for which an edge-on-blast configuration was developed and
validated (Fig. 2).  In that case, only post-mortem observations could be performed.
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3.2. Fragmentation model

When a dynamic fracture is initiated in mode I, the local stress state is modified
around the crack by a stress relief wave which is a complex function of time, crack
velocity and stress wave celerity.  To understand why a crack nucleates, one has to
model the interaction of the zone (i.e., volume, surface or length) affected by the
stress relief and other defects that would nucleate.  The behavior of a flaw around a
nucleated crack can be described by two different cases:

− the flaw is far from the nucleated one and the microscopic stress state is not
affected,

− the flaw is in the interaction zone and the microscopic tensile stress is
decreasing, i.e., no cracks are emanating from this potential initiation site.

A third case may occur in which the flaw is in the affected zone but the local tensile
stress increases, i.e., initiation may occur.  It is assumed that this case is
insignificant in this problem.

Figure 13.  Fragmentation and
obscuration phenomena.

Figure 14.  Schematic of the horizon of a
defect D.

The direction of the microscopic maximum principal stress is assumed to be
constant (i.e., proportional loadings), which allows one to use σ = (σ1, σ2, σ3)
instead of the stress tensor as an equivalent failure stress.  The crack nucleation can
be represented on a space-time graph (Fig. 13).  The space location of the defects is
represented in a simple abscissa (instead of a three-, two- or one-dimensional
representation) of an x-y graph where the y-axis represents the time (or stress) to
failure of a given defect.  The first crack nucleation occurs at time T1 (corresponding
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to a stress σ(T1)) at the space location M1 and produces an ‘obscured zone’ Zo(T−T1)
increasing with time.  At time T2 (corresponding to a stress σ(T2) > σ(T1)) a second
crack nucleates in a non-affected zone and produces its own obscured zone.  The
third and fourth defects do not nucleate because they are obscured by the first and
both first and second cracks, respectively.

It is worth noting that the stress levels in overlapping obscured zones cannot be
greater than the highest initiation stress associated to the considered obscured zones.
The space-time graph is composed of the union of obscured zones in which no flaws
can initiate and the complementary zone in which cracks can nucleate.  Because
different obscured zones may overlap (i.e., a flaw can be obscured by one or more
other cracks), it is preferable to define the conditions of non-obscuration for a given
defect by examining the inverse problem.  It consists in considering the past history
of a defect that would break at a time T.  The defect will break if no cracks exist in
its horizon.  For a given flaw D its horizon is defined as a space-time zone in which
a crack will always obscure D (Fig. 14).  Outside the horizon, a crack will never
obscure D.  The flaw distribution can be split into two parts and the average density
of cracks can be written as

)()()( σλσλσλ obstb −= (29)

where )(σλtZ  denotes the mean number of flaws that may break in a zone of
measure Z (i.e., volume (n = 3), surface (n = 2) or length (n = 1)) for a stress less
than or equal to σ.  The subscripts indicate the crack density (b), the obscured flaw
(obs), and the total density of flaws able to break (t).  Furthermore, we assume that
the distribution of total flaws is modeled by a Poisson point process of intensity tλ 
(see Section 1).  New cracks will initiate only if the defect exists in the considered
zone and if no cracks exist in its horizon so that (Denoual et al., 1997)

[ ] 0)0(  with  )(1)()( =−= bo
tb TPT

dt
d

T
dt

d λλλ (30)

where oP−1  is the probability that no cracks exist in the horizon.  The variable

oP−1  can be split into an infinity of events defined by the probability of finding at t
a new crack during a time step dt in an obscuration zone )( tTo −Ω .  This
probability increment is written by using a Poisson point process of intensity

dtd t /λ .  Those independent events can be used to provide an expression for oP
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where )( tTZo −  is the measure of the obscuration zone at T for a defect that would
break at t.  At the beginning of loading, no interactions occur and )()( TT tb λλ ≈  and
as more and more cracks nucleate )()( TT tb λλ << .  It is expected that the crack
density saturates when +∞→T  even though the total density of flaws able to break
may approach infinity.  Usually, the obscuration zone cannot be assumed as a time-
constant variable and since no analytical expressions are available for ),( tTZo −  an
approximation will be proposed.  The shape of the interaction zone is supposed to
be constant, i.e., all the interaction zones are self-similar (Bluhm, 1969; Freund,
1972) and )( tTZo −  can be written as

( )[ ]n
o tTkCStTZ ))( −=− (32)

where S is a shape parameter, ]1,0]∈k  is a constant, C the longitudinal stress wave
velocity so that kC(T−t) is a representative length of the relaxation around a crack.

When dynamic loadings are considered with a constant stress rate σ&  one can
define a dimensionless flaw density )/~( cλλλ = , time )/~( ctTT = , space measure

)/~( cZZZ =  and stress )/~( cσσσ =  from the condition

nmmn

m

n

c

nm

nm

m

c

cocccccc

SkC
Z

kCS
t

tZZtZ

++














=














=

===

σλ

σ

σλ
σ

λλλ

&& /1
0

/1
0

1

0

0 )(
,

)(

)(  and  )(  with  1
(33)

where the subscript c denotes characteristic quantities.  A characteristic stress can be
defined by cc tσσ &= .  Equation (33) expresses the fact that the characteristic zone of
measure cZ  contains a unique flaw that may break at the characteristic time ct .  By
using Eqs. (1), (31) and (32) an analytical solution is given for the differential
equation (30) in the case of a constant stress rate σ&
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where γ is the incomplete gamma function.  Figure 15 shows the saturation
phenomenon as the considered time becomes greater than the characteristic time.
The crack density at saturation )(~

∞bλ  can be derived from Eq. (34) and is only
dependent on the Weibull modulus m and the space dimension n when normalized
by cλ .  Figure 16 shows an increase of the number of cracks at saturation with the
Weibull modulus m.  An explanation to this phenomenon can be proposed by using
Eq. (30).  With a high Weibull modulus m, the density of cracks will increase
sharply in a small time step when the time T becomes greater than ct .  Because of
the time dependence of the saturation mechanism, many cracks nucleate before any
significant saturation and the material will be fully fragmented.  If m is small, there
is much more time between two crack initiations.  The first nucleated cracks can
then obscure other defects before their own nucleation and only few defects
eventually nucleate.

Figure  15.  Normalized density of
cracks vs. normalized time for three
different Weibull moduli m.

Figure  16.  Normalized density of
cracks at saturation vs. Weibull
modulus for different values of the
space dimension n.

3.3. Damage model

The variable oP  can be used to define a damage variable in the framework of
Continuum Damage Mechanics, even if oP  describes a non-homogeneous stress-
field due to the randomness of fragmentation (Denoual et al., 2000).  By averaging
over a representative zone (to be specified later on), oP  is equal to the damage
variable D, with D = 0 for the virgin material and D = 1 for the fully broken one.  It
is interesting to notice that the first order approximation of Eq. (30) leads to the
differential equation proposed by Grady and Kipp (1980) to describe the evolution
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of a damage variable.  By using Eqs. (30) and (31), the kinetic law of the damage
variable D can be written as
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An expression for the damage parameter D can be derived by integrating Eq. (35)
for a constant stress rate σ&
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Equation (36) shows that 0)1~( ≈=TD  and 1)2~( ≈=TD  (i.e., most of the damage
change occurs during a time interval equal to the characteristic time ct .  During ct ,
the measure of the horizon is limited by cZ  so that the minimum measure of the
representative zone is cZ .  By noting that the applied stress σ  is related to the local
(or effective) stress σ  by σ = σ /(1−D), the ultimate strength ( 0/ =σσ dd ) is
denoted by maxσ  and is expressed as
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The normalized ultimate strength only depends upon the Weibull parameter m and
the space dimension n.  The ultimate strength maxσ  is then proportional to

)/( nmn +σ& .  This result is in agreement with experimental data of oil shale (Grady et

al., 1980) and microconcrete (Brara et al., 2001; Hild et al., 2003)

3.4. Discrete vs. continuum approach, probabilistic vs. deterministic description

Different failure regimes are observed.  Under quasi-static loading conditions, a
weakest link hypothesis is made (Section 2).  It follows that the first fracture event
leads to the complete failure of a structure made of brittle materials.  Conversely,
under dynamic loading conditions, multiple fragmentation is observed and a damage
model can be derived (Section 3.3).  The aim of the present section is to get the
conditions of applications of the previous results.  Figure 17 shows the change of
the tensile strength with the stress rate for an effective volume Veff (n = 3) equal to

0/1 λ .  The lines represent analytical solutions while the dots and error bars are
Monte-Carlo simulations (500 realizations per point).  For a dimensionless stress
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rate less than 0.5, the ultimate strength is not modified by the loading rate and
follows a classical Weibull model [see Eqn. (11)].  When σ&  increases by
approximately one order of magnitude, the ultimate strength follows the analytical
solution (37).  During the transition, the difference between the dashed lines [given
by Eqs. (37) and (11)] and simulations does not exceed 10%.  The standard
deviation significantly decreases in the multiple fragmentation regime.  Even if the
ultimate strength has to be defined for static and dynamic loadings by a mean and a
standard deviation, one can see that dynamic loadings lead to a more ‘deterministic’
behavior.

Figure  17.  Normalized tensile strength avts σσ /  vs. normalized stress rate tσσ && /
when m = 10.  Solid circles (average) and bars (standard deviates) are given by the
Monte-Carlo simulations (500 realizations for each point).

The transition between single and multiple fragmentation can be estimated by
the following condition (Denoual et al., 1998b)

)(max σσσ &=av (38)

The transition between quasi-static and dynamic descriptions defined by Eq. (38)
leads to the following inequalities
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with the transition stress rate tσ&  defined by
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This transition does not only depend on material parameters but also involves the
measure Zeff of the considered element.  The response of a large structure can be
considered as ‘dynamic’ for low stress rates even if the material follows a weakest
link hypothesis for the same loading applied on a smaller volume.

For each principal stress direction id , an anisotropic damage variable iD  is
defined so that the principle strains iε  are related to the principal stresses iσ  by

jiji DDDK σε ),,( 321= (41)

where the usual index summation is used.  The compliance tensor K  is defined by
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where E is the Young’s modulus and ν the Poisson’s ratio of the undamaged
material.  In 3D configurations (n = 3), the kinetic law for iD  is expressed in a
differential form [see Eq. (35)]
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when 0>iσ  and 0>iσ&  (the effective principal stress iσ  is related to the
macroscopic principal stress iσ  by jijjij KDDDK σσ )0,0,0(),,( 321 = ).  The defect
density tλ̂  associated with the Weibull model is defined so that the damage model
is used only if at least one defect is broken in the considered finite element FEΩ of
volume FEV (Denoual et al., 2002)

































<

= otherwise1,max 

 if0

)(ˆ

0
0

m
i

FE

ki

itFE VV
σ
σλ

σσ

σλ (44)



Titre courant de l’article     27

where kσ  a random failure stress obeying the Weibull law (1).  For low stress rates,
the first defect breaks and relaxes the stresses in FEΩ .  It follows that the quasi-
static Weibull properties [Eqs. (11) and (12)] are recovered.  For a high (tensile)
stress rate, the zone relaxed by the first defect to break has a weak influence and a
deterministic (damage) approach applies.  The behavior of a FE cell is therefore not
deterministic and numerous calculations have to be performed when average values
are awaited [e.g., average macroscopic ultimate stress )(max σσ & ].

3.5. Fourth case study: dynamic fragmentation of high-performance concrete

In the following, the capability of the damage model is evaluated to reproduce
observed degradation patterns.  The velocity of a single crack is estimated to be
about 1875 m/s (i.e., the value of the parameter k is equal to 0.4).  The simulation is
performed on the confined EOI configuration with an impact velocity of 88 m/s.
The random stress to failure is computed by using Eq. (1) for a FE volume of
1 mm3.

Figure  18.  Contour of crack density associated to the first principal direction
35 µs (a) and 50 µs (b) after impact in a confined EOI experiment on Ductal®.
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Figure 18 shows the crack density associated to the first principal stress direction
at the end of the fragmentation process.  For high stress rates (i.e., in front of the
projectile and in the Hertz-like cone crack), many cracks nucleate in a FE cell.
Failure of an element set, which can be compared to macroscopic cracks, can be
observed in addition to the continuous degradation generated close to the impact
zone. However, there are some difficulties in handling macroscopic cracks. When a
crack is created, there is a tendency to follow the direction of the FE mesh. This
result may be improved by refining the mesh and the model (Brajer et al., 2002).
Overall, the prediction is in reasonable agreement with the experimental
observations (Fig. 12), namely, a fine fragmentation in the first part of the plate
followed by long radial cracks in the second half.

4.  Summary

A probabilistic (Weibull) model was used in different situations discussed
herein.  First, a weakest link hypothesis was made.  Under this assumption, a single
(discrete) event leads to the complete failure of a structure.  Then multiple cracking
was discussed.  A deterministic formulation can be used within the framework of
CDM, provided there are numerous local events occurring almost simultaneously.
However, strain-softening may lead to strain localization (i.e., macrocrack initiation)
which is a discrete phenomenon again.  Some solutions have been proposed, viz.
non-local damage models (Brajer et al., 2002) or discrete models (Camacho et al.,
1996; Mastilovic et al., 1999).
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