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Abstract

Dynamic loadings produce high stress waves leading to the fragmentation of brittle

materials such as ceramics, concrete, glass and rocks. The main mechanism used to
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explain the change of the number of fragments with stress rate is a shielding phe-
nomenon. However, under quasi-static loading conditions, a weakest link hypothesis
may be applicable. Therefore, depending on the local strain or stress rate, different
fragmentation regimes are observed. One regime corresponds to single fragmentation
for which a probabilistic approach is needed. Conversely, the multiple fragmentation
regime may be described by a deterministic approach. The transition between the
two fragmentation regimes is discussed for high performance concrete, glass and SiC

ceramics.

Keywords: Brittle materials, Continuum Damage Mechanics, discrete model-
ing, dynamic fracture, probability and statistics, single and multiple fragmen-

tation, stress relaxation, Weibull model.

1 Introduction

A consequence of intense pulses on brittle materials is their fragmentation into
discrete domains. For example, ceramics can be multiply fragmented when im-
pacted [1]. This class of materials has received some attention when used as
a front layer of an armor [2,3]. Similarly, glass is used in armored windshields
and can experience multiple fragmentation when impacted by debris or bul-
lets [4,5]. Furthermore, since the pioneering work of Rinehart [6], it is known
that the ultimate strength of rocks under so-called dynamic loading condi-
tions exceeds the static strength by as much as one order of magnitude. The

distinct zones resulting from rock blasting were clearly identified by Kutter
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and Fairhurst [7], namely a comminuted area in the vicinity of the explosive
followed by a damaged zone in which dense microcracking is observed and
finally a zone where few long cracks develop. Later, it was recognized that
inherent flaws are activated, can grow and eventually coalesce to form macro-
cracks [8]. Similarly, concrete can experience multiple fragmentation when hit
by a projectile [9]. Yet, when loaded in tension or flexure under quasi-static
conditions, the same materials usually experience single fragmentation and
their failure strength is no longer deterministic. The aim of the present paper
is to discuss the reasons for this difference in behavior and to propose criteria

as well as numerical strategies to account for the latter.

The fragmentation process is discrete by essence. In the theory developed by
Mott [10], the fragmentation of a rapidly expanding ring was studied. Even
though it is based on some heuristics, its contains some key ingredients (i.e.,
the randomness of the process is clearly stated and accounted for) to analyze
the distribution of fragments in 2D experiments [11]. From a numerical point
of view, discrete modelings are also proposed [12-14] when the fragment size
is greater than or equal to the size of a representative element. Espinosa et
al. [15] have developed a continuum/discrete multi-scale model in which the
finer scale is discrete and allows for the derivation of a continuum description
on a higher scale. Alternatively, Continuum Damage Mechanics can be used
with an isotropic [16-18] or anisotropic [19] damage description to account
for multiple fragmentation. Consequently, in the numerical simulations, the
medium is assumed to be continuum on the scale of a finite element in which

numerous cracks are expected to form.

However, crack densities may strongly vary over the structure and the analysis

of fragmentation through a continuum modeling may be delicate when one or



a few cracks are nucleated or propagate in certain zones. As an alternative,
a multi-scale model has been developed in which the probabilistic aspect is
treated within a damage model [20,21]. The aim of the present paper is to
introduce relevant parameters that enable the user to choose between con-
tinuum and discrete approaches. Section 2 introduces a fragmentation model
accounting for quasi-static and dynamic loading conditions. It is shown that
a Poisson-Weibull framework is convenient to derive closed-form solutions.
Characteristic parameters are introduced in Section 3. They depend on mate-
rial properties (i.e., Weibull parameters) and loading conditions (i.e., strain
or stress rate). A criterion is derived to discuss the transition between single
and multiple fragmentation in terms of the characteristic parameters. Based
upon the fragmentation theory, a so-called multi-scale damage model [21] is
summarized in Section 4. This model is used to analyze different fragmenta-
tion conditions of brittle materials. Section 5 deals with the stress or strain
rate sensitivity of the ultimate tensile strength of high performance concrete.
Section 6 discusses the transition in terms of ultimate strength and toughness
of soda lime silica glass. Finally, in Section 7, the simulation of a so-called
Edge-On Impact configuration [4] is discussed. In particular, the fact that the
transition criterion can be used to analyze damage localization is analyzed for

two SiC grades.

2 Fragmentation of Brittle Materials

For brittle materials, the analysis of failure depends upon the microstructure
in terms of flaw density and failure stress distribution [8]. The microstructure

is approximated by point defects of density A\; with random locations. It can



be described by a Poisson point process of intensity \; [22,23]

o) = (27, ()

0o

where m is the Weibull modulus, o a local stress to be specified later on,
0o the scale parameter relative to a reference density g, (x) the Macauley
brackets (i.e., the positive part of x). The constant \y/oj" is the Weibull scale
parameter. Equation (1) shows that the higher the local stress o, the more
defects can break. The probability P of finding N = B broken defects within
a uniformly loaded domain ) is expressed in terms of a Poisson distribution

M(0)2])”

P(N=B)= "3

exp [~Ai(0)Z]. (2)

The product A\ (0)Z corresponds to the average number of broken defects
within a domain 2 of volume, surface or length Z. Within the weakest link
framework [24], the failure probability Pr is the probability of finding at least

one broken defect in a domain 2
0o

Pe=P(N>1)=1-P(N=0)=1—exp [—Z)\O <@>m] NE))

When the domain is not uniformly loaded, the failure probability can be writ-

Pr=1-exp [—Zeff)\o <<0F>>m] , (4)

0o

ten as

where Zos denotes the effective volume, surface or length [25]

Zar= | l"*(“’)]m dz with o = maxo*(x) (5)

OF

corresponding to an equivalent stress o* (e.g., maximum principal stress) at
a given point x. Figure 1 shows experimental results in three-point flexure of
a SiC ceramic. A typical sintering defect is also shown. In this first regime, a

single local event, i.e., one crack nucleates and traverses the whole structure,



leads to the failure of the latter. It will be referred to as single fragmentation

regime.

Conversely, under impact, a whole cracking pattern is observed [26,27]. It will
be referred to as multiple fragmentation regime. In the following, it is assumed
that the defect population leading to damage and failure is identical when the
material is subjected to quasi-static and dynamic loading conditions [8,28].
To understand why a crack nucleates, one has to model the interaction of a
nucleated defect and other defects that would nucleate. The crack propagation
velocity is assumed to be constant and equal to a fraction & of the longitudinal
wave speed C [29,16,27]. Therefore, one may define a relaxation or obscuration
domain of measure Z, around a crack (i.e., a zone in which the stresses are

less than the applied stresses, thus do not cause new crack initiations)
Zo = S[kCy (T —t)]", (6)

which is a function of a shape parameter S, the present time 7" and the time
to nucleation ¢ < T, and the space dimension (n = 1, 2 or 3). The shape
parameter S may depend on the Poisson’s ratio v but it is independent of
time so that the relaxed zones are self-similar. New cracks will initiate only
if the defect exists in the considered zone and if the flaw does not belong to
any relaxed zone. Therefore, the total flaw density A; can be split into two
parts: namely, A\, the broken flaw density and the obscured flaw density. The
increment of the broken defect A\, density can be related to that of total flaw

density A; by
d\y,  dX;
kL NG
a =@
with A\,(0) = A¢(0) = 0 and P, the probability of obscuration [30]

_P0)7 (7)

Py=1-exp |~ Zo(T)\ {o(T)}] . (8)



where Z, is the measure of the mean obscuration zone

2T Ao (TN} = [ 2T~ )2 ()} at (9)

Equation (8) is an extension of the classical Weibull law (3). In particular,
when the stress rate is small enough, only one defect leads to failure and
Z, = Z and Eqn. (3) applies. It can be noted that Eqn. (8) accounts for over-
lappings of obscuration zones. Furthermore, in the context of mathematical
morphology, the above-described approach is nothing but a boolean islands

model [31,32].

3 Characteristic Parameters and Fragmentation Transition

. . L]
Let us now consider a case with a constant stress rate do/dt = 0. One can

define a dimensionless flaw density (A = A/A.), time (¢ = t/t.), zone size

(Z = Z/Z.) and stress (G = o/o.) from the condition
Ae Ze =1 with A. = M[o(te)] and Z. = Z,(t.), (10)

where the subscript ‘¢’ denotes characteristic quantities. A characteristic stress
is defined by o, = & t.. Equation (10) expresses the fact that the characteristic
zone size Z. contains on average one flaw that may break at the characteristic

time ¢.. By using Eqns. (1) and (10), the characteristic parameters are given

by
P [ o -Imin 7 _ [(ngC’O)mSm/n]mLﬂ
BRI NG ’

1

o7 m+n

m
0y O

o= ) "




and a closed-form solution can be derived for Eqn. (7)

,  (12)

nlm! m+n’ (m+n)!

- 174 L J——
m l(m—irn)] 7[ m nim! s
m+n

where v is the incomplete gamma function. Equation (12) is the ezact solution
to Mott’s problem extended to 2D and 3D cases with an initial flaw density
modeled by a power law function. Figure 2 shows the change of the dimension-
less density A, with the dimensionless time 7. When the time T' < 1, virtually
no obscuration is observed, i.e., P, ~ 0 and A\, &~ \;. Conversely, when T > 1,
P, ~ 1 and saturation occurs. The higher the Weibull modulus m, the higher

the density at saturation.

A similar study is now carried out to determine the ultimate strength prop-
erties. Under quasi-static loading condition, a Weibull model (3) is applied.
It follows that the mean failure stress o, and the corresponding standard
deviation ogq are given by

1 2 2
UW:LLP<1+_>,U:d:%l—‘(l—f—_)—ggv (13)
(Zeff)\o)m m (Zeff)\o)m m

It is expected that these quantities are the key parameters for low stress rates.
In particular, no stress rate effect is obtained when sub-critical crack growth
does not occur [33]. A first order approximation of the coefficient of variation
(i.e., 0sa/0y) is given by m/(v/6m); it follows that the higher m, the lower the

scatter.

The variable P, can be used to define a damage variable in the framework
of Continuum Damage Mechanics [30]. Under quasi-static loading condition,
there is a sudden change between the virgin material (i.e., D = 0) and a fully

broken brittle material (i.e., D = 1). This case can be studied by using an



ad hoc formulation [34,35]. Under dynamic loading conditions, there is a more
gradual kinetics. By averaging over a representative zone (to be specified later
on), P, is assumed to be equal to the damage variable D. It is interesting to
note that the first order approximation of Eqn. (8) leads to the differential
equation proposed by Grady and Kipp [16] to describe the kinetics of an
isotropic damage variable. By using Eqns. (1), (6) and (8), the change of the

damage parameter is written as

D =1-exp [—%ﬁmml . (14)
Equation (14) shows that D(7 = 1) =2 0 and D(¢ = 2) = 1 (i.e., most of
the damage evolution occurs during a time interval equal to t.). During .,
the horizon is limited by Z,(t.) = Z. therefore the minimum measure of the
representative zone is Z.. By noting that the applied stress ¥ is related to
the local (or effective) stress o by o = /(1 — D) [36], the ultimate strength

(d¥X/de = 0), denoted by Y., is expressed as

(15)

Equations (13) and (15) define two different regimes. The first one is obtained
when a weakest link hypothesis is made. It corresponds to single fragmenta-

tion. The second one assumes multiple fragmentation.

The transition between ‘quasi-static’ and ‘dynamic’ strength can be estimated
by the intersection between the weakest link and the multiple fragmentation

solutions (see Fig. 3)

Oy = Sinax (7). (16)



The transition defined by Eqn. (16) leads to the following inequalities

< g(m) stress rate independent regime

Zo > g(m) stress rate dependent regime

with

gm) = [(L'”'),] " (") (18)

m+n-—1 m

When n = 3 and m > 1.5, the function g is less than 1. Consequently, an upper
bound to the stress rate independent regime is given by Z = Z.. The size Z,
can also be considered as the characteristic scale for which a quasi-static /
dynamic fragmentation transition, and a stress (or strain) rate sensitivity is
observed. This characteristic parameter can be used in FE computations in
which the mesh size has to be greater than or equal to Z. to use a continuum

(and deterministic) description of damage.

4 Multi-Scale Damage Model

The state potential is assumed to be given by the Gibbs’ specific enthalpy ®. It
is expressed as a function of the macroscopic stress tensor ¥ and the damage

variables Dy, Dy, and Djs related to cracking in three orthogonal directions

1
p<1>252:8:2 (19)

where § is the compliance tensor dependent upon three damage variables
Dy, D, and D5 associated with three perpendicular cracking directions, p the
mass density and ‘i’ the contraction wrt. two indices. The associated forces

are defined as

0P od 1 oS

E:pa—zzszﬁ and Y, =p

oD, 2~ oD,

Y (20)
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where E denotes the strain tensor and Y; the energy release rate density
associated to the damage variable D; (i = 1,2, 3). The compliance tensor S is

expressed as (Voigt’s notations are used)

1le1 -V -V 0 0 0
v 1—1D2 v 0 0 0
1| v v 1_1D3 0 0 0
S — = (21)
0 0 0 —5ar—ec 0 0

(I—Dz)o‘(l—Dg)o‘
0 0 0 0 —dr ___

(I—Dg)a(l—Dl)a

(1=D1)*(1—D2)>

0 0 0 0 OH—”J

where the constant « is a function of the Poisson’s ratio v (when v = 0.15, o &
0.31 [21]). The kinetics of each damage variable D; is based upon the defect

density A; (no index summation is used)

d? ( 1 dD;

S do;
= ’ n . 1 .
d2 \1— D, dt ) nlS (kCO) g [Uz(t)] when — > 0 and o; > 0. (22)

dt

The cracking velocity kCjy is about 20-40% the longitudinal wave velocity
Cy (i.e., k is ranging between 0.2 and 0.4), and S is a dimensionless shape
factor: in 3D situations S ~ 3.74 [21]. The so-called multi-scale model, uses a

modified kinetics of the defect density (see also Ref. [20])

- 0 if 0;(t) < o,
Zre Aioi(t)] = (23)

W\ )
max [ZFE Ao (U ( )> ,1] otherwise.

o
where oy is the failure stress of the first defect able to break. This failure stress

ok is randomly generated according to a Weibull law (3) when Z = Zpg,

11



where Zpp is the volume of the considered finite element. The multi-scale
model is therefore obtained by modeling the failure of the first defect able
to break (which is scale-dependent, i.e., mesh size dependent) in addition to
the deterministic description of damage used in the continuous model. The
probabilistic nature of flaw nucleation then leads to numerical simulations
that may vary between two different realizations. Once the elastic properties
and the Weibull parameters are known, the model has no other parameters to

tune.

An approximate closed-form solution can be derived. In Eqn. (23), one can
assume that when the applied stress o is less than oy, the density Xt is equal
to O. As soon as o becomes equal to oy, the density Xt is equal to A;. Con-
sequently, if #, denotes the time when o = oy, the damage kinetics is given

by

dA¢

D=1—exp [—ZO(T — 1A o)) — /tT Z(T - 1) a(t)}dtl . (24)

When the applied stress rate is constant, Eqn. (23) can be recast as

D=1—-exp [_ (%)mm %h(ﬂm,n)] , (25)
with
T= E —1 and
h(t,m,n)=(1+7)™*" — [1 + (m+n)T + (m + n)(r;t Tn= 1)7'2] (26)

It can be noted that when ¢./t, < 1, an ultimate strength equal to o, and
the quasi-static solution is obtained (Eqn. (13)). Conversely, when ./t > 1,
the dynamic regime is found with no scatter and Eqn. (14) applies so that the

ultimate strength is deterministic (see Eqn. (15)).
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The transition between the two regimes is now analyzed for a SiC-100 ce-
ramic. Figure 3 shows the change of the ultimate strength vs. stress rate in
a volume (n = 3) of measure equal to 1.25mm? (see Table 1) and subjected
to remote tension (i.e., o is constant). The dashed lines represent analytical
solutions (Eqns. (13) and (15)) while the dots and error bars are Monte-Carlo
simulations of an underlying Poisson point process. When a flaw is broken,
a zone of stress relaxation is produced following Eqn. (6). The macroscopic
stress is therefore equal to o T times the fraction of non-relaxed volumes.
Each simulation point corresponds to 500 realizations. For a stress rate within
[0, 500 MPa ps~'], the ultimate strength is not modified by the loading rate.
Consequently, the ‘quasi-static’ solution (Eqn. (13)) applies. When & increases
by approximately one order of magnitude, the ultimate strength follows the
‘dynamic’ solution (Eqn. (15)). During the transition, the difference between
the dashed lines (Eqns. (13) and (15)) and the Monte-Carlo simulations does
not exceed 10%. The standard deviation significantly decreases in the case of
multiple fragmentation when the stress rate increases. Furthermore, for SiC-
100 ceramics, a stress rate up to 10 MPa xus~! has shown no stress rate effect
on the mean failure strength [28]. This observation is in good agreement with

the result shown in Fig. 3.

In Fig. 3 are also shown the predictions based upon the simplified multi-scale
model. The prediction of the average failure strength is obtained by assuming
that the random stress oy is equal to oy. The corresponding standard devia-
tion is evaluated by computing the failure strength corresponding to the value

Ok = Oy + 0sq. These calculations lead to reasonable estimates. As expected,

13



all results converge for low stress rates towards the closed-form solution given
in Eqn. (13). Conversely, for high stress rates all solutions tend towards X,

expressed in Eqn. (15).

The present model has been validated by two types of edge-on-impact ex-
periments carried out on SiC ceramics. This set-up was developed by the
Ernst-Mach-Institut (EMI) in Germany [4,1,26] and more recently by the
Centre Technique d’Arcueil (CTA) in France [37,27]. It can be shown that
the same damage mechanism (i.e., damage in tension) is observed in EOI
and in real impact configurations [38]. First, a sarcophagus configuration was
used to maintain all the fragments and the overall shape of the fragmented
zone could be predicted by numerical simulations based upon the simplified
damage kinetics given in Eqn. (22) [19]. Second, strains deduced from moiré
measurements could also be predicted by the multi-scale damage model of the
present section with the damage kinetics given in Eqn. (23) [21]. In both cases,
the only parameters used were the elastic properties of the ceramic and the

Weibull parameters.

5 Ultimate Strength of Concrete

The evaluation of dynamic tensile strength of concrete can be obtained by
spalling experiments. Goldsmith et al. [39] reported that spalling could be ob-
served in long round specimens made of brittle materials impacted by a steel
sphere. To analyze spalling of high performance concrete, Klepaczko and Brara

[40] developed a set-up using a split Hopkinson pressure bar impacted on one

14



end by a cylindrical projectile (length: 80mm) and on the other a 120mm
long concrete sample. The tensile loading is uniaxial and ‘homogeneous’ in
the central part of the concrete sample. The range of impact velocity (on
the order of 7m/s) induces strain rates varying between 20 and 120s~'. Dry
and wet concrete samples were tested. The mechanical properties are sum-
marized in Table 1. Figure 4 shows the change of failure stress with strain
rate é= op/(Etp) where F = 42 GPa is the dynamic Young’s modulus and
tr the time rise to reach the ultimate stress level op. A significant strain rate

sensitivity is obtained.

The following analysis is performed by using the results of Section 3. Since the
Weibull moduli of the two materials are unknown, the experimental data can
be used to evaluate them. In a log-log plot, the data can be fitted by a curve of
slope 3/(m+3), see Eqn. (15). Very low Weibull moduli are obtained: namely,
1.8 for wet concrete and 2.2 for dry concrete. The two values are of the same
order of magnitude, thereby indicating that the defect populations are of the
same type, which could be anticipated. The scale parameter ao)\al/m is de-
termined by considering the average failure stresses under quasi-static loading
condition (namely 4 MPa for wet concrete and 5 MPa for dry concrete with an
effective volume of 430 ¢cm?). Furthermore, if one assumes that the cracking
velocity is equal to kCy ~ 1600m/s (i.e., k ~ 0.4), the strength increase can
be computed by using Eqn. (15), see Fig. 4. One can note a clear underesti-
mation of the predicted strength compared to experimental data. Among the
four parameters of the model (namely, the two Weibull parameters, the shape
parameter and the cracking velocity constant k), the value of k is the least
known. Since concrete is a heterogeneous material, one may argue that k is

less than values observed for crystalline materials such as ceramics. By con-
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sidering a value k = 0.2, a good prediction of the strength increase is obtained

(Fig. 4) for the two materials.

6 Ultimate Strength and Toughness of Glass

In most cases, fragmentation of glass is caused under dynamic loading condi-
tions. Consequently, the relationship between fracture toughness or ultimate
strength and loading rate has to be described to model the dynamic behavior
of glass. Fracture of glass is mainly characterized by the properties of surface
flaws [41]. Bouzid et al. [42] studied damage of glass subjected to different
impact conditions by using a split Hopkinson pressure bar and the normalized
drop ball test. They show that the ‘dynamic’ ultimate strength exceeds the
static value by one order of magnitude. The time to failure can be linked to
the ultimate strength (Fig. 5). By using Eqns. (11) and (15), the ultimate

strength depends upon the characteristic time ¢,
Ymax X O¢ X (tc)’% (27)

If one assumes that failure is due to surface defects, then n = 2. By using
Eqn. (27), a value m = 3+ 2 is found, which could be characteristic of surface

flaws (Table 1).

The model discussed in the previous section predicts a strength increase with
the strain or stress rate. In the following analysis, an extension is proposed to
analyze the toughness K. sensitivity to the stress intensity factor rate [.( A
pre-indented beam is loaded in three-point flexure with different loading rates.

The pre-crack has a size of 50um [43]. For low [.(, the toughness is constant

16



and equal to 0.65MPa,/m. Above K~ 2MPa,/ms™! the toughness increases
and can double the ‘quasi-static’ value. Furthermore, the authors note that
for low [.( , the cracking pattern is made of few radial cracks whereas for higher

K, the crack front is made of numerous radial cracks.

The tendency observed in terms of toughness is similar to that obtained for
the strength dependence with stress rate. In the following, it will be assumed
that the same hypotheses can be made for the local toughness as for the local
strength. In glass, the process zone is very small in the vicinity of the crack tip.
Consequently, it is assumed that the cracking sites are located along the crack
front and the toughness distribution is assumed to described by a Poisson

point process of intensity A; per unit length

M) = Ag (%)m , (28)

where m is the Weibull modulus, K a local stress intensity factor, K, the
scale parameter relative to a reference density Ayg. When [.( is low enough, the
weakest link hypothesis applies and only one site will lead to crack advance
with a probability P,

K

P=1—exp [—LeHAU (Eﬂ , (29)

where Leg denotes the effective length. The mean toughness K, and the cor-

responding standard deviation K4 are given by

K, 1 K? 2
K, = 01F<1+—>,K§d:7°2F<1+—>—KV2V. (30)
(LAg)™ m

The initiation sites are depicted by points in Fig. 6. The first cracking event
occurs at time 77 and an obscuration zone of length L,(7T" — T;) increasing

with time develops. If [.( is high enough, at time 75, a second cracking event

17



occurs and produces its own obscuration zone. The third and fourth sites do
not produce cracking events since they are obscured. Consequently, there is a
competition between the loading rate I.( and the obscuration characterized by

a propagation velocity V' so that L,(T —t) is expressed as
Lo=2V (T —1), (31)

which is a function of the present time 7" and the time to nucleation ¢ < T'.

The occultation probability P, is now defined by
Py=1—exp [~Lo(T)A{K(T)}] (32)

where L, is the length of the mean obscuration zone

A,

EMAAKT) = [ 1T %

(K ()} dt. (33)

Equation (32) is an extension of the results given in Eqn. (8). The probability
of obscuration is again used to relate the macroscopic stress intensity factor K
to the local stress intensity factor K in zones that are not obscured: K = (1 —
P,)K. This relationship assumes that the stress intensity factor in obscured
zones is vanishing. When more than one cracking event occurs, the maximum

propagation toughness K. can therefore be related to the rate I.( by

K. = K.exp[—1/(m + 1)], (34)

where K. is the characteristic toughness defined the same way as the charac-

teristic stress (Eqn. (11))

1
m-+41

K K
AoV

c =

(35)

To describe the experimental data shown in Fig. 7, a Weibull modulus m ~ 13

is obtained, an average toughness K, = 0.65MPa,/m for an effective length

18



Leg = 40pm and a velocity V ~ 40pums—!. These parameters allow for a rea-
sonable prediction of the toughness transition observed for soda lime silica
glass. It can be noted that this velocity is consistent with the so-called region
IT in the sub-critical crack growth regime in which crack propagation is con-
trolled by the diffusion of corrosive species to the crack front. The propagation
velocity is dependent on the environment and is almost constant in region II
[44]. Furthermore the order of magnitude of V' is consistent with experimental
measurements reported for soda lime silica glass [45,44]. The transition rate
is predicted to be of the order of _f(m 2MPay/ms~!. This value is in good
agreement with the experimental data of Fig. 7. It can be noted that for rates
K> 103MPa+/ms ™!, the site spacing at saturation is at most on the order of
ten nanometers. This result or the saturation in stress intensity factor (Fig. 6-

¢) may explain the overestimation for very high I.( .

7 Fragmentation of Ceramics

The aim of the section is to analyze the single/multiple fragmentation regime
for two SiC ceramics (Table 1). The SiC-100 grade is naturally sintered and
is not fully dense. No secondary phase can be observed but B,C inclusions
are present [27] because boron was added to enhance diffusion during sin-
tering. Transgranular failure is the dominant mechanism. SiC-B ceramics are
obtained by pressure assisted densification. Aluminum is used to eliminate
porosities. An alumina-rich secondary (glassy) phase is present [46]. Because
of the lower strength of the secondary phase, the failure mode is predominantly

intergranular.
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Transition between the quasi-static and dynamic regimes cannot be studied
by using classical flexural tests. The strain velocities that induce a ‘dynamic’
behavior (as defined in Section 3) cannot be achieved in a flexural test with
a hypothesis of equilibrium in the sample. Therefore, the effective volume
[Eqn. (5)] may change for different loading rates and no conclusions can be
drawn. The ‘quasi-static’ to ‘dynamic’ transition can be studied by using Edge-
On-Impact (EOI) configurations. The EOI configuration is used to validate
damage evolution laws for numerical simulations of the behavior of dense

ceramics [19,21].

For very low impact velocities (& 20m/s), only few fragments are produced
[1,26] and it corresponds to single fragmentation. With an impact of high
velocity (> 500m/s), damage is homogeneous in a circular zone propagating
in front of the projectile. The ceramic is reduced into powder and the multiple
fragmentation regime is achieved. Between the afore-mentioned velocities, an
intermediate behavior can be observed. Below a critical velocity depending on
the material properties, damage is localized into thinner and thinner corridors
when the velocity decreases. This leads us to assume that the corridors are
due the transition between dynamic loadings where no localization occurs and
quasi-static loadings for which the tile is broken into few pieces. The velocity
for which the damage becomes localized in corridors is about 40m/s for SiC-
100 and 185m/s for SiC-B. In the following, criterion (17) is used to examine

the validity domain of ‘quasi-static’ and ‘dynamic’ fragmentation regimes.

The numerical simulations are performed by using the code Abaqus Explicit
[47]. One quarter of 100 x 100 x 10mm? tiles is modelled with cubic elements
of size 1.25mm3. The so-called multiscale model is used, i.e., the failure of

the first defect in each FE cell is random and defined by Eqn. (23). It can
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be noted that for each numerical simulation, the set of random numbers is
characterized by an integer called the ‘seed’ of the random generator [48]. A
given probabilistic simulation is then defined by this integer and can always

be reproduced by using the same ‘seed’.

For the two SiC grades, two simulations with different velocities are performed.
For a first velocity of ~ 500m/s, no localization is expected for the two grades.
For the second velocity (=~ 200m/s), SiC-B experienced localized damage
whereas damage remains homogeneous in SiC-100. The numerical simulations
for the SiC-B grade are in good agreement with the general shape of the dam-
aged zone experimentally observed. In Fig. 8-a (impact velocity: 185m/s) the
damaged zone in front of the projectile that widens and progressively localizes
into corridors is well reproduced by the simulation. One can observe that thin
corridors have a tendency to follow the mesh direction (see the center of the
tile). This is a classical drawback when isolated cracks are modelled by the
failure of FE elements. Damage localization disappears for impact velocities
greater than ~ 350m/s [26], as shown in Fig. 8-b for an impact velocity of
513m/s . The above mentioned transition associated with damage localization
is not observed for SiC-100 (see Fig. 8—c and —d) both experimentally and

numerically. For the two velocities, the damage front remains circular.

The quasi-static/dynamic criterion is now used to analyze the difference in
damage front between SiC-B and SiC-100 grades. The transition does not
only depend upon material (Weibull) parameters but also involves the size
7 = Zpg, of the considered element and the applied stress rate . The response
of a large structure can be considered as ‘dynamic’ for low stress (or strain)
rates even though the same material follows the weakest link hypothesis for

the same loading applied on a smaller volume. There is therefore no intrinsic
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relationship between material parameters and characteristic scales to describe
the fragmentation of brittle materials. This is evidenced by the transition
criterion written for a zone of measure Z submitted to a uniform stress rate

o (see Eqns. (17) and (11))

o< Oy (Zeﬁ)l/m kCy (%)l/n f(m) quasi-static solution

Z
(36)
° 7 1/m g 1/n i i
0> Oy ( %ﬁ) kCy (2) f(m) dynamic solution
with
F(m) = [o—10" " p <m+1> (37)
m) = |e——— — .
(m+n—1)! m

The stress rates are calculated by using Eqns. (36) and (37) for a volume
of 1em?® and the material parameters given in Table 1. Contrary to the ex-
pected result, the two stress rates are comparable for the two SiC ceramics
(Fig. 9). Consequently, localization cannot be related to the single/multiple
failure transition. A more detailed observation of the experimental results of
Fig. 8 shows that a corridor contains a high density of cracks, corresponding
to a high (local) stress rate. Moreover, an analysis of the computed stress rate
generated during an impact at 185m/s shows that the local stress rate at the
corridor tips remains greater than the transition stress rate. This enables us
to conclude that localization into corridors is not a transient phenomenon be-
tween quasi-static and dynamic fragmentation. Furthermore, it can be noted
that the strength of the SiC-B grade is 50% greater than that of SiC-100, for
the same effective volume. The localization into corridors is therefore the only
mechanism that allows for stress concentrations (at the tip of the corridor)

leading to the failure of the ceramic.

In Fig. 9, the three other materials studied herein are shown. For glass, only
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the Weibull parameters corresponding to volume defects can be considered to
compare with the other materials; the cracking velocity kCy &~ 1500m/s [49],
i.e., k ~ 0.26. It can be noted that above a given curve, a dynamic regime is
expected and below a quasi-static regime. As expected, even though concrete
can be multiply fragmented for lower stress rates, only one order of magnitude
separates MB50 dry concrete to SiC-B ceramics. Furthermore, soda lime silica
glass has properties very similar to SiC ceramics in terms of volume defects.
Figure 9 is a map in which all the brittle materials can be compared in terms

of transition between a quasi-static and a dynamic regime.

8 Summary

In this study, the defects in brittle materials are assumed to be randomly
located in the zone and their size distributions to follow a Poisson-Weibull
model. A normalization procedure is defined by introducing characteristic
quantities such as zone size, time and density of broken defects. The dimen-
sionless kinetic law for all the variables of the model is only dependent on the
Weibull modulus. A damage kinetics and description is derived within a Con-
tinuum Damage Mechanics framework. The above-mentioned normalization
technique is used to discuss the choice of the finite element mesh size. The
characteristic volume can be used as a measure of the representative zone, and

defines the scale where the problem becomes deterministic.

By using experimental measurements of the strength of glass and concrete,
it could be shown that the strain (or stress) rate sensitivity could be pre-

dicted by the fragmentation model introduced herein. Further investigations
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are needed to confirm the estimates made since the Weibull moduli of the two
materials were not known. Complete FE simulations are needed to describe
better the load history that was inferred from the information given by the
authors who reported the experiments. Furthermore, an extension of the frag-
mentation model to account for scatter of toughness can be used to analyze
the toughness dependence on stress intensity factor rate. The propagation ve-
locity could be related to sub-critical crack growth controlled by the diffusion

of corrosive species to the crack tip.

The multiscale model has been used to analyze the localization of damage
into corridors in Edge On Impact tests of two SiC grades. The model is able
to reproduce the general shape of the damaged zone in terms of cracking di-
rections, localization of damage into corridors, location of the damaged zone.
It has been shown that the localization into corridors cannot be expressed in

terms of transition between single and multiple fragmentation regimes.

Finally, the scaling strategy can also be used to compare brittle materials
such as ceramics, glasses and concrete. The analysis allows one to discuss the
probabilistic-deterministic transition for different materials experiencing frag-
mentation under dynamic loading conditions. A map was proposed to compare
all these materials by computing the stress rate at the transition between the

above-mentioned regimes.
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Table 1

Material properties of various brittle materials.

Parameters SiC-100f  SiC-B”  MB50d" MB50w? Glass (S)f  Glass (V)*
Young’s modulus E (GPa) 410 455 42 42 70 70
Poisson’s ratio v 0.15 0.16 0.21 0.21 0.22 0.22
Density 3.15 3.20 2.2 2.34 2.5 2.5
Porosity 1.8% 0 NA NA 0 0
Weibull modulus m 9.6 27 NA NA 7 28.5
Mean strength oy, (MPa) 360 560 5 4 100 2750
Effective volume or surface 1.25mm? 1.25mm?® 430cm?®  430cm? 100cm? 10~ %mm?
Number of samples 65 30 NA NA 400 104
Type of test 3-point 4-point  tension  tension disk tension
bending bending bending

b Ref. [28]
>: Refs. [50,51]

1 Ref. [40], MB50d = MB50 dry, MB50w = MB50 wet

b Ref. [52], surface flaws in soda lime silica glass

*: Ref. [53], volume flaws in soda lime silica glass
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Transition map [see criterion (36)] where the failure stress rate
Ow (%)l/m kCy (%)l/n is plotted as a function of the Weibull
modulus m for different applied stress rates o for five brittle
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(simulation), the lines depict the crack directions (perpendicular to the direction of

(half bottom) were provided by Strassburger and Senf [26]. In the half top view

~¢c- SiC-100 (V
Fig. 8. Edge on Impact on SiC-B (a— and b-) and SiC-100 (c- and d-). Pictures

the associated damage). The number of cracks is dependent on the nucleated defect
front of the projectile. Localization is observed for the SiC-B grade at the velocity

of 185m/s whereas the damage front remains circular for the SiC-100 grade.

density. For high velocity impact (=
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different applied stress rates & for five brittle materials (n =3, Z = lem?3). Above
a given curve, a dynamic and deterministic solution applies. Below a given curve, a

quasi-static and probabilistic solution applies.
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