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Response of saturated porous media to cyclic thermal loading

E. Blond *, N. Schmitt and F. Hild

LMT-Cachan
(E.N.S. de Cachan / C.N.R.S U.M.R. 8535 / University Paris 6)
61 avenue du Président Wilson, F-94235 Cachan Cedex, France

SUMMARY

The response of a semi-infinite saturated porous medium submitted to a harmonic thermal loading
on its free face is studied herein. The pressure diffusion equation that governs the fluctuation of
the interstitial pressure is established. This equation allows us to obtain prevalent parameters. The
location of the maximum fluid pressure is derived and it is shown to depend on the diffusivity ratio
and the frequency of the thermal loading. Furthermore, it is also established that the maximum fluid
pressure depends on the diffusivity ratio and the thermal amplitude only. Copyright © 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Poromechanics is widely used in various applications where both the fluid mass transfer and
the mechanical behavior must be modeled, from biomechanics to material sciences [1]. This
work deals with the thermomechanical behavior of saturated porous media. The estimation of
the response of porous media subjected to thermal loading is of interest in various engineering
fields such as extraction of oil [2], concrete resistance against fire [3], reliability of airfield [4],
nuclear waste disposal [5], experimental measurement of low permeability [6]. The reliability of
the working lining of steel ladles is yet another case for which the above-mentioned framework
can be applied [7].

In steel ladles, the inner layer of a composite refractory lining is in contact with molten
slag during casting. Bauxite bricks used for this wear layer are impregnated by slag over a
few centimeters. In the wetted area, microcracks appear, propagate parallel to the hot face
during the following casting and cause spalling [7]. In this problem, strong couplings exist
between heat transfer due to the cyclic thermal loading varying between 1200°C and 1600°C),
deformation of the porous matrix due to structural and material effects, fluid mass flow (i.e.,
liquid slag), chemical reactions (e.g., dissolution, precipitation) and phase transformations.
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2 E. BLOND, N. SCHMITT, F. HILD

The aim of this work is to investigate the role played by the liquid slag in the initiation
of spalling. One cause that could be responsible for crack initiation is that the molten slag
present in the refractory open porosity (typically 15 — 20%) produces an interstitial pressure
that is high enough to induce additional tensile stresses in the refractory brick. Consequently,
the thermomechanical coupling between liquid mass transfer and the deformation of the solid
skeleton will be studied herein.

The first development of a poromechanical approach for an elastic and isotropic porous
medium under isothermal condition was proposed by Biot [8]. This work was generalized for
anisotropic elastic media [9] and for viscoelastic porous media [10]. Rice and Cleary [11] recast
Biot’s theory in terms of easier physical interpretations and developed general methods of
resolution. They have also underlined that considering the stress tensor and pore pressure as
basic variables may be advantageous to the Navier formulation.

Different approaches have been proposed to develop an anisothermal theory. For example,
Derski and Kowalski [12] derived from the thermodynamics of irreversible processes a complete
set, of equations that accounts for the thermal effects. Palciauskas and Domenico [13] extended
Biot’s theory with some anisothermal modifications. They established an upper bound to the
increase of interstitial pressure for porous media subjected to a homogeneous elevation of
temperature assuming that the undrained boundary condition is the worst case.

Although the anisothermal theory becomes relatively well-known, only few closed-form
solutions are available. Booker and Savidou [14] established an exact solution for the
consolidation of the soil around a point heat source and proposed an approximate solution for a
cylindrical source. McTigue [15] presented resolution methods and established exact solutions
for a half-space submitted to a constant surface temperature or heat flux with either drained or
undrained boundary conditions. He also derived a closed-form solution for a heated cylindrical
wellbore. The case of a heat source (spherical or cylindrical) which decreases exponentially
with time was treated by Giraud [16] by considering a low permeability clay for nuclear waste
disposal. Wang and Papamichos [2] discussed solutions for a cylindrical wellbore and a spherical
cavity subjected to a constant temperature change and heat flow rate.

This relative lack of interest during the last years for exact solutions can be explained by the
development of computer simulations that permit the scientists to model complex situations.
Closed-form solutions are obtained from a full linearization of the governing equations. Thus
they do not account for phenomena that may be significant in many of the above-mentioned
engineering fields. However, finite element analyses in poromechanics are not as ‘easy’ as in
solid mechanics. For example, Vermeer and Verruijt [17] established that the time step is
linked to the spatial discretization in a transient consolidation analysis. This phenomenon is
also observed in a transient thermal analysis [18]. This problem can make the simulation of
coupled mass fluid flow and heat transfer impossible for very different diffusivities. To by-pass
the difficulties posed by the finite element formulation in poromechanics, Dureisseix et al. [19]
have proposed a new numerical strategy.

Under these circumstances, the derivation of an exact solution for a simplified problem
presents several advantages: first, it allows one to quickly obtain the prevalent material
parameters for a given analysis; second, the study of this solution helps to better understand
and quantify the influence of these parameters; third, it permits one to distinguish phenomena
that are the consequence of the loading from those that are due to the material behavior.

This work is close to McTigue’s paper [15] and complementary. McTigue has treated the
case of a half-space with a homogeneous initial temperature which is submitted to a constant
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RESPONSE OF SATURATED POROUS MEDIA TO CYCLIC THERMAL LOADING 3

temperature on its face. He has shown that the maximum interstitial pressure is constant and
that the peak propagates in the half-space with a kinetics driven by the square root of time
[15]. In the present study, a harmonic thermal loading is considered and the framework of
the thermodynamics of open porous continuum media proposed by Coussy [20] is adopted.
In the following section, the governing three-dimensional equations are summarized in their
simplest form. These equations, re-written in a unidimensional setting, enable us to obtain
a diffusion equation for the fluid pressure with a temperature-dependent source term. This
pressure diffusion equation allows us to obtain the prevalent parameters. In the next section, a
closed-form solution for a thermo-poro-elastic half-space submitted to a cyclic thermal loading
is developed. The location of the maximum fluid pressure is derived and it is shown that it is
related to the diffusivity ratio and the frequency of the thermal loading. Furthermore, it also
shown that the maximum fluid pressure depends only on the diffusivity ratio and the thermal
amplitude.

2. GOVERNING EQUATIONS AND CHARACTERISTIC PARAMETERS

The porous medium is assumed to be made of a solid continuum skeleton filled by a continuum
fluid phase. The modeling is carried out in the framework of physical linearization and
infinitesimal transformations. The derivation starts from the linearized equations of isotropic
thermoporoelasticity [20]. The set of conservation laws includes the momentum balance for
the medium, the fluid mass balance and the energy balance equations.

When inertia and body forces are neglected, the momentum balance equation is given by

div(g) =0 in Q (1)

where ¢ is the Cauchy stress tensor and (2 the considered volume; g a symmetric tensor because
it satisfies the balance of moment of momentum equation.
By considering Darcy’s law, the linearized equation for the fluid mass balance can be written

as
1 Om

0 ot =kA(p—p;) in Q (2)
where m is the variation in fluid mass content per unit initial volume, p; the fluid density, &
the hydraulic conductivity (by analogy to thermal conductivity), and p the fluid pressure. The
subscript ¢ denotes the initial state of any considered field. The hydraulic conductivity & is
equal to the intrinsic permeability divided by the dynamic viscosity of the fluid. Equation (2)
is a reduced form because the Soret effect (i.e., fluid flux due to temperature gradient) is
neglected.
The energy balance equation is expressed as

DrA(T - T;) = B—T in Q (3)

ot
where T is the temperature and D7 is the thermal diffusivity of the whole medium. The
convective heat transport by the pore fluid and the source terms due to the thermoelastic
coupling are neglected. The Dufour effect (i.e., heat flux due to pressure gradient) is also
neglected so that the heat diffusion equation is totally uncoupled when the thermal diffusivity
does not depend on mechanical variables. Consequently, Dy can be regarded as an empirical
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4 E. BLOND, N. SCHMITT, F. HILD

coefficient.

Equations (1)-(3) are not sufficient to determine the four unknowns. Closure is provided by
the constitutive equations for the skeleton and the fluid. In this study, the skeleton is assumed
to be homogeneous, isotropic and thermoelastic. All material parameters are assumed to be
independent of the temperature.

The constitutive equation for the skeleton is given by [20]

g =g, +\(Tre) L+ 2ue —b(p—pi)L — 30,Ko(T —Ti)L (4)
with K

where ¢ is the infinitesimal strain tensor and I the identity tensor, A and p Lamé’s coefficients,
@, the drained coefficient of thermal expansion, K, the compressibility of the saturated porous
medium in drained conditions, K the compressibility of the skeleton and b Biot’s coefficient
(b =1 for both skeleton and fluid incompressibility).

The constitutive equation for the fluid is expressed as [20]

p=pi+ M(—bTre + pﬁ) + 30, M(T — T)) 6)
- f
with
am = (b—1)ag+ (1 - ®))as +ard; (7)
and

1 b—,; P,

M~ K, +&l (8)

where a; and ay are the coefficients of thermal expansion of the skeleton and fluid,
respectively, ® the porosity, Ky the compressibility of the fluid and M Biot’s modulus
depending on porosity, skeleton and fluid compressibility (M — oo for both fluid and skeleton
incompressibility).

This set of equations [(1),(2),(3),(4),(6)] is completed by a set of initial and boundary
conditions depending on the considered problem. It is not necessary to specify them to obtain
the parameters that control the pressure fluctuations due to thermal loading.

2.1. One-dimensional pressure diffusion equation

To identify the characteristic parameters, let us consider a saturated porous medium subjected
to a one-dimensional heat flux, in combination with a plane strain state. Therefore, the
displacement is given by u(M,t) = u(x,t)e,. In this case, by using the constitutive equation
(4), the momentum balance equation (1) leads to a one-dimensional Navier’s equation

o [ ou b
— |la=— —=—P —agf| =0 9
dr | 9z 3K, 0 ©)
with 1
— UV
P Sl (10)
1 + 140}
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RESPONSE OF SATURATED POROUS MEDIA TO CYCLIC THERMAL LOADING 5

where v, is the drained Poisson’s ratio, P = p — p; and § = T — T; the change of fluid pressure
and temperature, respectively. Similarly, by using the constitutive equation (6), the fluid mass
balance equation (2), one obains

82_P 1 0P b 0°u  3ay,, 06

2 _2am 97 11
0xz2 kM ot  kOxzOt kOt (11)
The heat diffusion equation (3) is expressed as
026 1 06
R 12
61‘2 DT ot ( )

To establish a relationship between the temperature and the fluid pressure, Egs. (9) and
(11) are recast to remove the displacement. For problems involving a traction-free surface (at
z = 0), the integration of Eq. (9) over z yields

ou b
— = —P. 1
a(?a: a00+3K0 (13)

Substituting Eq. (13) into Eq. (11) and using Eq. (12) leads to

PP 1 9P  §,Dr 0%

02 Dn ot -k 0a (14)

where Dy is the hydraulic diffusivity (by analogy to the thermal diffusivity) and is defined by

1 p2 \ !
Dy=k(— 1
H=k <M + 3aK0> (15)

and 6, the coefficient of relative bulk variation

b
0p = —g — 30y, . (16)
a

This result is in agreement with that of McTigue [15]. The fluid pressure P is governed
by a pressure diffusion equation with a source term depending on the temperature field.
Equation (14) and the heat diffusion equation (12) constitute a convenient set to study the
transient pore pressure response to a thermal loading. Since the heat diffusion equation is
uncoupled, the temperature can be seen as a bulk load for the pressure diffusion equation.

2.2. Characteristic parameters

Equation (15) shows that the hydraulic diffusivity Dy is related to the intrinsic permeability
(equal to the hydraulic conductivity multiplied by the dynamic viscosity of the fluid) and the
relative bulk compressibility of both the fluid and the solid skeleton (i.e., influence of the Biot’s
modulus M). Consequently, a high intrinsic permeability does not necessarily produce a high
hydraulic diffusivity.

The diffusivity ratio g—;’ has a strong influence on the excess of the pore pressure level
induced by thermal loading. If the hydraulic diffusivity is significantly greater than the
thermal diffusivity, the bulk variation pore/fluid due to the thermal loading can easily be
accommodated by the rapid motion of fluid. The pressure remains almost constant and equal

Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
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6 E. BLOND, N. SCHMITT, F. HILD

to the initial value. Conversely, the pressure increases to a maximum and then levels off due
to the fluid motion.
Equation (16) with Eq. (7) yields

5y = o [b(é —3)+3} ~3[(1 - ®)a, + ay] . (17)

This expression for the coefficient of relative bulk variation §, shows that there exist two
sources of bulk variation: namely, the differential pore/fluid expansion and the poroelastic
coupling. By noting that the drained coefficient of thermal expansion ay must be less than or
equal to that of the skeleton g, Eq. (17) can be rewritten as

5v§3{as (<I>+b<3—2—1>>—<1>al] . (18)

Biot’s coefficient b is always less than or equal to unity [20] and the drained Poisson’s ratio v,
is less than 0.5, therefore a is greater than % An upper bound for , can be proposed

0y < 3% (s — ay) - (19)

In general, the coefficient of thermal expansion of solids is less than that of liquids. This can be
justified by the stronger atomic bonds in solids. Consequently, the coefficient of relative bulk
variation J, is negative. This result, in conjunction with the pressure diffusion equation (14),
shows that the pressure increases with temperature. Because 4, is negative, the source term
of Eq. (14) is proportional to the opposite of the curvature of the temperature difference theta.

The coefficient §, has also a direct influence on the maximum pressure induced by a
temperature increase. For example, in the case of undrained conditions, assuming that m = 0
in the pore pressure constitutive equation (6) leads to

ou
P=M|3anfl—b—] . 20

( am 83:) (20)
The substitution of Eq. (20) into Eq. (13) provides the link between the pressure in undrained
conditions P,4 and the temperature change 6

1 p2 \ !
Poy=—6, ([ — _ 21
a4=-9 <M+3aK0> b 1)

This undrained pressure is the maximum interstitial pressure reached for a homogenous
thermal loading [13]. For heterogeneous heating, if one replaces the value of # by the maximum
change in temperature 6,,,,., it is reasonable to consider P,4 as an upper bound. However, as
it will be shown below, it is possible to exceed this value. It is expected that P,4 remains close
to the maximum, and it can be considered as a characteristics of the problem. Furthermore,
this expression shows clearly the influence of §, on the maximum interstitial pressure.

3. CYCLIC HEATING OF A HALF-SPACE

To establish a solution for Eq. (14) to obtain the prevalent parameters and examine their
influence on the pressure fluctuation induced by a cyclic thermal loading, additional hypotheses

Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
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RESPONSE OF SATURATED POROUS MEDIA TO CYCLIC THERMAL LOADING 7

are necessary. First, let us consider a half-space domain with a traction-free surface. The
traction-free surface corresponds to the origin of the z axis. Second, let us assume that the
fluid pressure variation P at the x axis origin remains equal to zero during loading (e.g., drained
boundary condition). Third, let us consider a harmonic temperature variation prescribed on
the surface of the half-space (i.e., = 0). Consequently, it is possible to write

AT
O(z=0,t) = Tcos(wt + ) (22)
where w is the frequency of the cyclic loading, AT its amplitude and ¢ a phase lag. Under

these hypotheses, since the heat diffusion equation (12) is uncoupled when the steady-state
regime is considered, the solution is expressed as [21]

O(z,t) = %cos(wt — K7z + ¢)e K17 (23)

Kr=\/5p- (24)

where K7 is the wave number of the heat propagation. Equation (23) describes a wave
propagation with a forced time oscillation and a spacial damping (Fig. 1).

with

[Figure 1 about here.]

Solution (23) is considered as a loading for the pressure diffusion equation (14). By using a
classical calculation [21], the solution of (14) is obtained for Dy # Dr (see Appendix A)

P(z,t) = B (e K"%cos(wt — Krz + ¢) — e K#7cos(wt — Kyz + ¢)) (25)
with 0y DrDpg AT
v TUH
= Qv ZT¥R 27 P
g k Dg —Dr 2 (26)
and

Ky = ,/ﬁ (27)

where Kpg is the wave number of the fluid mass flow, considering a harmonic pressure
loading at the traction-free surface in combination with isothermal conditions. Equation (25)
characterizes the propagation of a pressure wave with a time forced oscillation and a spatial
damping (Fig. 2). The pressure is induced by the competition between heat and fluid mass
propagation. Equation (26) shows that the parameter g is singular when Dy = Dr. However,
Eq. (25) can be extended by continuity (Appendix B). As shown in Fig. 2, the absolute
maximum pressure Pp,,, is reached behind the traction-free surface for an abscissa z,.

[Figure 2 about here.]

3.1. Location of the maximum pressure

Let us now determine the abscissa x., of the absolute maximum pressure Py,,.. It is essential
to know the expression for z.,. to establish that of P,,,,. In addition, it allows us to understand
how the loading influences the maximum pressure location.

Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
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8 E. BLOND, N. SCHMITT, F. HILD

Equation (25) is transposed in the complex space. The associated complex function P(z,t)
reads

P(z,t) = BF(z) '(wt+o) (28)

with

F(.’E) — 67(1+i)KTI _ 67(1+i)KHI (29)

One can observe that P is the product of two complex functions: one has a unit modulus and a
time dependent phase (i.e., the term ei(“’t*d’)) and the second one has modulus and phase that
depend on z (i.e., the term F) Because of this feature, the pressure fluctuation amplitude is
only dependent on the abscissa and the local maximum pressure is not reached simultaneously
at each point because of the phase lag. Since P(x,t) is the real part of the complex function,
it can also be written as

P(z,t) = |B|||F(2)]| cos(wt + ¢(x)) (30)

The term |3|.||F(z)|| is the maximum pressure fluctuation at each point. To find the maximum
of P(z,t) one can maximize the modulus of F'. Therefore, ., must satisfy

d -
IF@Il =0 (31)

With the assumption that ||F(z..)|| # 0 (reasonable for a maximum), z., is solution to the
following equation

e "+ pe’™ = (14 p) cos(yr) + (1 — p) sin(yz) (32)

with
w 1 1
=Kr—Kpg=1/o |—— — ——

v =5 [ &

and
Ky |Dr
=% =\ D, (34)

where p is a material-dependent parameter. It is characteristic of the relative kinetics of the
heat diffusion and fluid mass transfer. The constant + depends on both material and loading
parameters. It is due to the phase lag between the thermal and hydraulic waves and is strongly
related to the kinetics of the loading, described by the frequency w.

The abscissa of each local maximum of ||F'(z)|| is the solution to Eq. (32). The trivial solution
Zep = 0 is not in agreement with the hypothesis ||F(z.,)|| # 0 made to obtain Eq. (32).
Furthermore, ., is the abscissa of the absolute maximum and an upper bound of P(z,t) is a
sum of decreasing exponentials (see Eq. (25)). Consequently, z.,. is the lowest strictly positive
solution to Eq. (32). To our knowledge, a closed-form solution to this equation does not exist.
Approximate solutions are now proposed to analyze the influence of the prevalent parameters.

3.1.1. Similar diffusivities. Let us examine the case when Dy and D have the same order
of magnitude, but are not equal. A first order approximation yields

pel (35)

Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
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RESPONSE OF SATURATED POROUS MEDIA TO CYCLIC THERMAL LOADING 9

Cosine and sine functions are less than unity, thus the solution to Eq. (32) must be the
sum of exponentials less than 2. Consequently, the product yz., must to be less than unity.
Equation (32) can be approximated by

e 7" 4+ e = 2cos(yx) (36)

We can conclude that the solution z., of Eq. (32) is such that vz, ~ 0. Consequently, Eq. (32)
can be simplified

(e —p) (77" —=1) =0 (37)
The only non zero solution is given by
-1 2Dy 1
= ) =422 38
v = —rln () = S In() (39)
One can note that yz.. = — In(u), which is in agreement with the assumption made previously.

The product vz, is as close to zero as u is close to one.

3.1.2. Very different diffusivities. Two cases must be examined: namely, K7 much greater
than Kp, and the inverse case. First, let us assume that Kr is much greater than Kg (i.e.,
u < 1). By considering a first order approximation, one has

p~0 and v~ Kr (39)
Equation (32) can be approximated by
e 7" + pe?® = cos(yx) + sin(yx) (40)

To our knowledge, this equation does not admit a closed-form solution. A graphical resolution
is proposed: let 0 be equal to vz, Fig. 3 shows the change of the functions involved in Eq. (40)
with § for different values of p.

[Figure 3 about here.]

Let us assume that § is close to 0, then, as a first order approximation, accounting for the
expression (24) for v, Eq. (32) can be rewritten as

~K7(1—p)’r = K7(1 — p)’z. (41)

The solution z = 0 has been previously rejected. Consequently, § close to zero imposes that
be close to one. The solution for Eq. (41), which tends to 6 = 0, is not valid as a solution to
Eq. (32) when p < 1.

The other solution 4., to Eq. (40) tends quickly to 2X when u decreases. A Taylor expansion
of Eq. (40) about 2Z yields

- w 3 x w 3
e~ -|-ut23T + (6 — %) (—6_37 +u637) =2 <6 — %) . (42)
The solution is then given by
[2D7
Ler X T f(/j,) (43)
Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
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10 E. BLOND, N. SCHMITT, F. HILD

with
3T e + ,ue%r
_ 2t 44
=T - (4

Second, when K7 is much less than Kp (i.e., p > 1), Eq. (32) can be written in the same

way as (40) where p and v are replaced by p' and +' where ' = % and v/ = Kg. Thus, the

abscissa z., is found to be
2D 1
Zop ~ | =L f <—> (45)
w 0

3.1.3. Comments on the location of Ppa.- A good agreement between the explicit
approximate solutions of x., established previously and that obtained by numerical resolution
of Eq. (32) with Matlab 5.2. [22] is shown in Fig. 4. To compare numerical results and our
estimations, it is convenient to use the dimensionless abscissa Krx.,. By using Eqs. (38), (43)
and (45) for z.,, this dimensionless abscissa only depends on p. In Fig. 4, the approximate
solutions are given by Egs. (43) for u varying between 0 and 0.7, (38) for u ranging from 0.7
to 3, and (45) for p varying between 3 and 1000.

[Figure 4 about here.]

One can note that Eqs. (38), (43) and (45) are proportional to the inverse of the square root
of the frequency for a given diffusivity ratio. It appears that the location z., of the maximum
interstitial pressure Py, is directly influenced by the frequency of the thermal loading: the
higher the frequency, the lower ... The influence of the frequency w and the diffusivity ratio
on the abscissa x., is shown in Fig. 5.

[Figure 5 about here.]

3.2. Mazimum pressure

Let us now substitute the definition of the hydraulic diffusivity Dy (15) in the expression of
the pressure in undrained conditions P,4 (21) and replace 6 by %. It yields

8.Dy AT

Ppg=— k 9 (46)
Equation (26) defining S can be rewritten as
Dy Ppa
- _ 4
B=-5. D, (47)

By accounting for the definitions (33) and (34) for v and p, and substituting them in the
expression of the modulus of F' (29) and using Eq. (47), for each location z, the maximum
pressure is given by

2

P, T
maz (2) . V14 e 212 — 2e="2cos(yx) e KH® (48)
P,q 1—p2
The maximum pressure in the medium is defined by
Pz = sup (Praz(x)) (49)
z€]0,00[
Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
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RESPONSE OF SATURATED POROUS MEDIA TO CYCLIC THERMAL LOADING 11

By definition, this maximum pressure is located at z = z... By noting that the product vz,
in Eq. (48) does not depend on w, the dimensionless maximum pressure only depends on the
diffusivity ratio

Pmaz‘

B = gl (50)

where g(u) is a function defined over different ranges of p:
e When p ~ 1, substituting Eq. (38) for z., into Eq. (48) yields

Pmaz _‘ ,’«L2

- V1+ 42 = 2pcos[Ln(u)] pr (51)
nd

1— p?

e When p < 0.7, substituting Eq. (43) for z., into Eq. (48) yields

2
Prmaz _ ‘ K \/1 +e20-m) — 26~ (1-mFW) cos[(1— p)f ()] e ™ (52)

Pnd 1_/1'2

e When p > 3, substituting Eq. (45) for z., into Eq. (48) yields

2

Pmaz':‘ H

1 i
i e \/1 L e 2EUIG) oo I ot —1yp(y e (53
nd — W

I I

These three equations define the solid line drawn in Fig. 6. The points correspond to Eq. (48)
for which z., is obtained by numerical resolution of Eq. (32) with Matlab 5.2. [22]. A good
agreement is obtained between the the two predictions.

[Figure 6 about here.]

3.2.1. Comments. These results allow us to calculate in a simple way the maximum
interstitial pressure reached for a given load. Moreover, Eq. (46) of the undrained pressure
P,,4 shows that the range of pressure fluctuation is only dependent on the range of the thermal
loading.

One can note in Fig. 6 that, for low diffusivity ratios, the maximum pressure P, is
greater than the undrained pressure P,4. The dimensionless pressure tends to 1.07. This
value, greater than one, is not due to numerical approximations for the resolution or to the
first order approximations. The maximum pressure indeed exceeds the undrained reference.
By substituting Eq. (13) into the constitutive equation for the fluid pressure (6) yields

m 1 b> ayb

— == P —3a;, | 0 4

Py <M+3aKO> +< . 3a ) (54)
By recasting Eq. (54) and accounting for Egs. (46) for P4, (15) for Dy and (16) for 4, yields

at * = x.p
m AT P,
E(xcratcr) =0y <acr - T 1;:::;) (55)

It is worth remembering that ¢, is negative and

AT
067" < T (56)
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Since 4, is negative and 6., is less than %, the change in fluid mass content m(z.,,t..) is
positive. Consequently, the ‘overpressure’ can be explained by a positive change in fluid mass
content coupled with a negative relative bulk variation. This condition is even more severe
than the classical undrained boundary condition (i.e., m = 0).

This result can also be explained from a physical point of view. The range of temperature
fluctuation is not the same at each point and there exists a spacial phase lag. Therefore, the
volume fluctuation is not homogeneous, and the fluid mass flow too. Furthermore, to verify
the fluid mass balance, the change in fluid mass content m cannot be negative at each point.
Consequently, the fluid mass flow is one dimensional but not with the same direction at all
points at a given time. It is possible to visualize schematically what is happening: let us
imagine three elementary volumes, totally filled with liquid, connected in only one direction
and drained on the two boundaries. When submitting them to a rapid heterogeneous heating,
the temperature variation is the highest on the boundary volumes. Due to their contraction,
the three volumes expel their excess in fluid. Therefore, the volume in the middle tries to expel
its excess volume but, in the same time, it receives the fluid mass flow from its two neighbors.
Therefore, the pressure can exceed the undrained reference.

Conversly, for single heating of a half space, the heat and fluid mass flow are always in the
same direction, and the master curve (Fig. 6) gives an upper bound to the pressure. By using
McTigue’s work [15], it is possible to draw the curve that relates the dimensionless maximum
pressure to the diffusivity ratio for a constant temperature prescribed on the surface of a semi-
infinite saturated porous medium with an initial homogeneous temperature. The two curves
are compared in Fig. 7. One can see that the maximum pressure induced by a Heaviside
temperature applied on the traction-free surface is less than that generated by a harmonic
thermal history.

[Figure 7 about here.]

4. EXTENSION TO A FINITE MEDIUM AND FOR OTHER BOUNDARY CONDITIONS

4.1. Validity of the results for a finite medium

For a one-dimensional problem of a finite medium, it is reasonable to model it by a semi-infinite
medium if its thickness is greater than the wave length A defined by [21]

_ 27
K

where K is the wave number. By using Eqs. (24) for K7 and (27) for K, the previous results
are still valid for finite media of thickness ¢ when

£> zﬂ\g sup (v/Dir,/Dr) (58)

The higher the frequency of the thermal load, the thinner the considered wall can be.

A (57)

4.2. Other thermal boundary conditions on the traction-free surface
In the above study, only the case of a prescribed temperature on the traction-free surface

has been considered. It is interesting to examine the case of a prescribed heat flux, usually
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modeled by convection or radiation. A prescribed temperature gives an upper bound of the
possible thermal loading. Consequently the maximum pressure derived previously is also an
upper bound for the problem with a prescribed heat flux.

In the considered application (i.e., impregnation-spalling of the inner lining of a steel ladle),
the problem cannot be described by a semi-infinite porous medium because the thickness of
the considered wall is too thin. Therefore, the goal is to check that the master curve, which
has been established for a half-space, gives an upper bound to the dimensionless maximum
pressure for a wall of finite thickness. The presence of a second edge facilitates the pressure
relaxation by fluid mass flow through the back face.

Numerical simulations have been performed by using the finite element code Abaqus-5.8
[23] with drained boundary conditions (i.e., P = 0 on the two ends) and assuming a plane
strain state. First, the heat transfer computations are solved by considering a convection
heat exchange on the two traction-free faces with a constant temperature in the outer
medium and two different temperatures in the inner ladle, one during heating and one during
cooling. Second, the space-time temperature field has been used as loading for the poroelastic
computations. Many simulations have been performed to control the effect of the diffusivity
ratio, the heat exchange coefficient prescribed on the thermally loaded face (inner ladle).

As could be anticipated, the maximum pressure is dependent on the diffusivity ratio and is
also influenced by the thermal exchange coefficient on the hot face. Furthermore, the maximum
interstitial pressure is located a few centimeters from the hot face and its location is close to
that of microcracks observed in bricks [24]. Figure 8 shows that all the values of the maximum
dimensionless pressure lie under the master curve. Moreover, the higher the heat exchange
coefficient, the closer the simulation to the master curve that was obtained for a prescribed
temperature history on the free surface.

[Figure 8 about here.]

5. CONCLUSION

In this paper, the behavior of a homogeneous, isotropic and elastic saturated open porous
medium has been studied when subjected to a cyclic thermal loading on its traction-free
surface. First, by using the fully linearized governing equations, we have shown that the
interstitial pressure is related to the temperature field by a pressure diffusion equation with a
source term that depends on the local heating (or cooling) rate. The analysis of this partial
differential equation allows us to obtain a set of prevalent material parameters that affect the
response of the medium, namely: the coefficient of relative bulk variation d,, (Eq. (16)) and the
diffusivity ratio p (Eq. (34)). For a given thermal loading, the maximum interstitial pressure
depends upon these parameters as well as the thermal range of the loading.

In the particular case of a semi-infinite porous medium submitted to a harmonic temperature
loading on its free face, a closed-form solution for the fluid pressure is obtained by solving the
pressure diffusion equation. It is shown that a pressure peak appears behind the traction free
surface and the study of this solution shows that:

e the position of the maximum pressure peak mainly depends on the frequency of the load:
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the higher the frequency, the closer the peak to the loaded surface.
e the maximum dimensionless pressure is related to the diffusivity ratio by a master curve
(Fig. 6).

It has also been established that the pressure induced by a uniform temperature in undrained
conditions P, 4 can sometimes be exceeded. Moreover, a cyclic thermal loading is more severe
compared to the Heaviside thermal loading studied by McTigue [15] in drained boundary
conditions or to the homogeneous heating in undrained condition treated by Palciauskas [13].
Consequently, the master-curve (Fig. 6) defines a general upper bound for thermal loading
conditions.

In summary, even if this fully linearized theory should not be applied without some caution
because it is accounting for a limited phenomenology, the master-curve can be used in
engineering applications to estimate quickly the maximum interstitial pressure induced by a
thermal loading. Furthermore, it important to note that the undrained pressure underestimates
the maximum pressure for low diffusivity ratios.
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APPENDIX A

To solve diffusion equations such as Eqs. (12) or (14) in the case of a half-space submitted to a
harmonic loading, it is convenient to rewrite the equation in the complex space and postulate the
separation of variables [21]. The complex function associated to Eq. (23) is

5= AT -Gtk itwtts) (59)

2

Concerning é, let us assume that the pressure has the following form

P =U(z)e'WtHe) (60)
Then, Eq. (14) leads to
dQU W - Z’U)(;U AT —(14)Krpx
i? " Du' Tk 2 ¢ : (61)

The function U is the sum of the solution to Eq. (61) without second member and of a particular
solution to this equation with a second member. The general solution to the equation without second
member is [21]

Ugen = ae” 1 FOKu® (62)
where « is an unknown constant and Ky is defined by Eq. (27). Let us assume that the particular
solution can be written as

Upare = Be~ DKL (63)

By introducing Eq. (63) in Eq. (61), assuming that Dy # Dr, one obtains Eq. (26) for the parameter
B. Equation (26) shows that § is singular when Dy = Dr. However, Eq. (25) for P(z,t) can be
extended for this case by continuity (appendix B).
The drained boundary condition yields
a=-—p3. (64)

Consequently, the solution to Eq. (61) is given by
P(z,t) = BF(z) ') (65)

where F is defined by Eq. (29). The interstitial pressure field is the real part of P and we obtain
Eq. (25).
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APPENDIX B

Here, the goal is to show that Eq. (25) for P(z,t) can be extend by continuity to the case Dy = Dr.
Equation (25) can be rewritten in terms of an amplitude multiplied by a cosine (see Eq. (30)).
Consequently, it is sufficient to check for the continuity of the modulus |3|.||F (x)|] to conclude on
the validity of P(z,t) in the case of equal diffusivities. By using Eq. (30), one can see that at each
point, the amplitude of the pressure fluctuation is equal to the local maximum pressure. Therefore,
we only have to extend Eq. (48) when p = 1 (Eq. (34)) that imposes that v = 0 (Eq. (33)). A second
order expansion of the exponential in Eq. (48) yields

2
Pma,:z:

P ‘1 e V2 | zeFHT 4 0(yz) . (66)

Substituting the definition (33) for v in Eq. (66) and accounting for the definition (34) for u yields

Praz
Pnd

2
(z) = 1i—uﬁ Kz e X0% 4 O(yx). (67)
Consequently, the limit of the amplitude of the local maximum dimensionless pressure for equal
diffusivities is given by
Praz 1 —Kpge
r)=— Kgzx e "H". 68
@)= Kn (68)
This expression shows that, for a given abscissa, the limit of the maximum dimensionless pressure
when the hydraulic diffusivity tends to the thermal diffusivity is the same on the right side and on
the left side. Consequently, Eqs. (48) and (25) for P(z,t) can be extended by continuity to the case
of equal diffusivities.

Furthermore, by accounting for Eq. (38), the following result is obtained

lim
u=1 Ppg

Pma.a: 1
li = —~0.2
i . (69)

This result is in agreement with the master-curve shown in Fig. 6.
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Figure 7. Maximum dimensionless pressure versus diffusivity ratio: Heaviside and harmonic loading
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Figure 8. Maximum dimensionless pressure versus diffusivity ratio for different heat exchange
coefficients, Finite Element Analysis results (symbols) and upper bound (solid line)

Copyright © 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 00:1-12
Prepared using cfmauth.cls



