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Abstract

In structures containing brittle materials, residual and/or heterogenous
stresses may prevent cracks to propagate up to failure. Consequently, for
such structures, crack arrest has to be accounted for and a weakest link hy-
pothesis may not be applicable. A probabilistic crack propagation model
is derived to describe instantaneous or delayed arrest phenomena. A time-
dependent regime is induced by slow crack growth experienced by ceramics
and glasses. A general expression is obtained in which instantaneous up to
infinite propagation times can be modelled in a unified way. The results are
illustrated on a case study dealing with propagation of cracks in a thin walled
tube submitted to a temperature gradient through its thickness. Different
types of propagation/arrest regimes can be identified.

Keywords: Crack propagation and arrest, Ceramics and glasses, Fracture toughness,
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I. INTRODUCTION

The failure of brittle structures is generally caused by randomly distributed defects in-
duced by the manufacturing process. To predict their ability to survive under a given stress
field, a probabilistic approach is used. In many cases, the weakest link hypothesis is made
[1] and the Weibull model [2,3] is applied: if one of these initial defects starts to propagate,
then the whole structure breaks. This approach, describing the inception of crack propa-
gation caused by initial defects [4], has been progressively extended to account for various
statistical distributions of bulk or surface defects [5], multiaxial criteria for critical loads on
defects [6,7], inhomogeneous stress fields [8]. The very heart of the formulation is restricted
to the onset of propagation, and thus the basic hypothesis is that as soon as a defect becomes
locally unstable, its propagation and the subsequent failure of the structure is postulated to
occur with certainty.

However, there are numerous cases where a brittle material — because of its heterogeneity
— or a structure — because of its shape and the type of loading — may sustain the presence
of a crack. In such cases, the standard “Weibull approach” appears to be inadequate. For
instance, fiber-reinforced composites have been introduced to avoid premature failure of a
brittle matrix when it is reinforced by strong fibers [9]: extensive matrix-cracking can be
observed prior to the final failure induced by fiber breakage. The onset of matrix-cracking
can be described by a Weibull approach: the first fiber fracture event can be determined
with the weakest link assumption. Another example concerns the fragmentation of impacted
ceramics where many cracks are created prior to the failure of the material [10,11].

This work is an attempt to address crack arrest, by taking into account the heterogeneity
of the microstructure as well as a potentially inhomogeneous stress field, so that one can
quantify the probability that a crack may propagate up to a prescribed length and stop.
Moreover, aiming at the description of crack propagation in ceramics or glass [12,13], sub-
critical growth of cracks will be considered [14,15], so that the probability for a crack to reach

a given length will be studied as a function of time. Applications concern for instance cracks



initiated from indentations, where the residual stress field drives the crack extension, or
complex loadings where a compressive stress field will lead to crack arrest in metal/ceramic
assemblies [16]. It can be noted, that within the weakest link framework, models have been
developed to evaluate the time-dependent reliability of brittle materials [17,18]. The latter is
generally referred to as fatigue [19,20], be it static (i.e., when the failure probability evolves
with time under a constant applied load), dynamic (i.e., when the failure probability is stress

rate sensitive) or cyclic (i.e., as usually known for metals and alloys).

II. DEFINITION OF THE MODEL

To address probabilistic crack arrest, one needs to consider 3D crack propagation in a
heterogeneous material. 3D calculations are complex and detailed analyses tend to become
rapidly untractable. One may mention the numerical work of Bower and Ortiz [21,22]
on the propagation of a crack across a medium with tough particles. This approach is
extremely valuable to get some insight into the full complexity of the by-passing of obstacles
by a crack front, however, the numerics involved is too demanding to get an extensive
statistical analysis of the crack propagation. Curtin [23,24] performed a simplified analysis of
a similar problem. A modeling of planar crack propagation in a random environment was also
proposed by Schmittbuhl et al. [25], and Ramanathan et al. [26] which revealed a complex
spatio-temporal organization of the propagation, and scale-invariant crack front morphology.
These studies show that the macroscopic toughness is not simply given by average toughness
and that tougher elements impede crack growth in a lesser extend than with a strongest link
assumption due to the curvature of the crack at those sites which increases locally the stress
intensity factor. In the following, we will develop a simplified model where the crack front
is parametrized by a single parameter, i.e., its mean position. This simplication hypothesis
will allow for a full analytical treatment of the crack propagation statistics. However, we
need to discuss first the conditions under which such a simplified picture may be connected

to the complete 3D problem. We are left here with two options: the first is a pure two-



dimensional situation, where the considered medium is a thin plate with one single grain
accross the thickness. In this case obviously, only the mean crack position is relevant, and
the sub-grain roughness of the crack front can be safely ignored. The second option consists
in coarse-graining the description of the crack and consider only effective parameters and
scales which do not directly reflect the microstructure. After defining our notations, we will
come back to this discussion.

The problem to solve here concerns a solid medium consisting of elastic brittle grains
or potential arrest sites. The grain size or the site spacing is considered to be of extension
1/, with a randomly distributed toughness, characterized by a probability density function,
h(K.), and no spatial correlations on scales larger than 1/)\ are assumed [28]. In contrast,
the elastic properties of the grains are considered to be homogeneous. Therefore, for a
given crack geometry, the stress intensity factor K; — assumed here to be the only relevant
parameter — is supposed to be known as a function of the position of the crack tip  and the
remote stress field. This is a case that we will refer to as being two dimensional. Figure 1
shows schematically the notations used herein. Similar hypotheses have also been made to
analyze the crack advance in fiber reinforced composites. However, instead of toughness
distributions, strength distributions have been used [29,30,24,31].

In three dimensions, we need not only to account for the mean crack position, but also
for the full crack front morphology. Even in the limit of a vanishing roughness of the crack
front, the local stress intensity factor depends on the complete crack front shape through
a long-range convolution kernel. This feature precludes any simple analytical approach to
the problem. The crack front roughness adapts itself to the heterogeneity of the local grain
toughness. A statistical model taking into account this long-range elastic interaction along
the front has been proposed by Schmittbuhl et al. [25], and the statistics of the macroscopic
loading necessary to propagate the crack has been studied in details by Skoe el al. for the
same model [27]. It has been shown in particular that the macroscopic loading displays a
singular behavior close to an effective depinning threshold, as a result of a mapping onto a

genuine second-order phase transition. This allows one to define an effective or “equivalent”
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toughness that accounts for the roughening of the crack front. Consequently, the distribu-
tion of this effective toughness is not simply related to that of the individual grains. If one
uses this effective toughness (or the maximum of it over some chosen propagation distance)
and that this distance is designed to be larger than the roughness amplitude of the crack
front, one comes back to the two-dimensional case. In that case however, the distance 1/
is no longer equal to the grain size, but rather to the roughness of the crack front. Similarly,
the statistical distribution h(K.) is that of the effective toughness, and thus is not simply
related to that of individual grains. We will not address in the present study the relation of
this effective toughness to that of the grains, but rather use the simplified two dimensional
picture, where the crack front is only parameterized by its mean position, and the effective
distribution of critical toughness is assumed to be known (measured experimentally or ob-
tained from numerical simulations). For the sake of simplicity, we will often refer to the
scale 1/X as being equal to the size of one grain (as in 2D situation) even if it has a more
involved definition in 3D cases.

For a given crack path, the stress intensity factor K(z) is known as well as the toughness
of each grain, K (z). The latter field is a random function piecewise constant over a length
1/X and a stress intensity factor K(x) is supposed to vary slowly over the grain size (i.e.,
Az > 1). The cases studied below are bi-dimensional, and cracks are considered to be
straight (i.e., a transgranular fracture mode). One can note that this is not a restriction
and intergranular fracture can be considered in the same framework [16]. The fluctuation
of the toughness may be the result of random crystallographic orientations as observed in
ceramic sintering [32] or arrest sites in glass (the term “site” will be used throughout the
paper with this general meaning). The question addressed herein concerns the conditions
for crack arrest to occur in a random microstructure for any time, either finite or infinite.

The case of a time-independent (i.e., instantaneous) crack propagation criterion is con-
sidered in the third section, and will constitute a basic result from which the time-dependent
case will be derived. In the fourth section, the subcritical crack growth regime is specifically

addressed. The analysis of the statistical distribution of time required for the failure of a



single “grain” in the microstructure leads to the conclusion that the toughest site is the one
that dominates over all other sites along a given crack path. This allows us to express the
probability distribution in terms of Lévy stable laws [33,34]. Such a result relates the time-
dependent crack propagation probability law to a time-independent problem. An equivalent
formulation, which consists in finding the length distribution at fixed time, is derived. A
last section is devoted to the analysis of a case study of a thin walled tube loaded by a

temperature differential.

ITII. INSTANTANEOUS CRACK PROPAGATION AND ENDURANCE LIMITS

Two limit cases are first analyzed. They correspond to instantaneous propagation con-

ditions and endurance (i.e., for any finite or infinite time).

A. Instantaneous Crack Propagation

Subcritical crack growth is first ignored, and thus a simple Griffith criterion [35] is
assumed to be applicable. A crack has reached an extension x and is characterized by
a stress intensity factor K;(z) known from the geometry of the crack path and the applied
load. At position z, the crack tip encounters a potential arrest site characterized by a

toughness K (). The standard Griffith criterion gives the following condition
K.(z) < Ki(z) , (1)

for which the crack will propagate through the site at position x. By using the probability
density for the toughness distribution, the probability of propagation through the site is
denoted by p(z)

KI(it)

p(z) = P(K(z) < Ki(z)) =/ WME)dK = H(K,(z)) , (2)

min
K}

where H is the cumulative distribution of toughnesses (i.e., the integral of h). Since the

toughness is always positive, K, varies within the range [K™" K™®| with: 0 < K™" and
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K7 < +4o0o. For instance, a beta distribution can be used to analyze microhardness
experiments on Al,O3 ceramics for which K™" = 0 and K™* < +oo [16]. By assuming no
spatial correlation in the site toughness, the probability, P(a,b), that a crack may start at
a length a and reach (at least) a length b can be derived. For a given crack path, let us
introduce the abscissa x; of each site ¢ for which the stress intensity factor is minimum, and

write (because of the site-independence realization of the toughness)

n
Pla,) =[] ol - 3)
i=1
Since it is assumed that the site intersection with the crack path can be characterized by a

unique length scale 1/, a continuous limit for the above probability when A(b —a) > 1 is

written as

P(a,b) = exp l/\ /ab log[H (Ky(z))]dz| . (4)

This model is close to the one proposed by Jeulin [36] in which the microstructure is assumed
to be described by a Poisson mosaic. A Poisson tessellation of parameter A defines the grain
boundaries. The latter are made of Poisson lines in the plane for a two-dimensional medium.
The hypotheses made herein (i.e., a constant grain size) will make the following derivations

easier.

B. Endurance

If the instantaneous crack propagation condition, Eq. (1), is not satisfied, subcritical
crack propagation may occur. In such a case, the crack length increases with time [14,37]

according to a modified crack propagation law

dr _ . [Ki(x) = Kan(@)]"

at (K.(2) — Ki(2) (5)

for Ky (z) < Ki(z) < K (x) where Ky, is the threshold toughness below which no propaga-
tion occurs, C a characteristic velocity, m a sensitivity exponent, the two latter quantities

being material (and environment) dependent constants, and (.) the Macauley brackets (i.e.,
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positive part of .’). Such an empirical relation characterizes a regime when crack growth
is no longer simply dictated by the mechanical loading, but is assisted by a (rate-limiting)
chemical reaction, as in stress-induced corrosion [38,13]. We do not enter into the discussion
of the complex mechanisms at play, and interfering effects such as limitation of the crack
velocity by the diffusion of chemically active species (such as water) from the environment
[12], or the existence of a non-zero threshold Ky, [39]. Rather, this empirical law is ac-
cepted as ruling the crack propagation, and trusting numerous experimental studies which
have validated such an algebraic form in different ranges of velocities. In section IV-D, the
identification of the relevant parameters is discussed for a commonly encountered subcritical
crack growth law.

If K;(x) > K.(x), the crack length increases instantaneously, while if K;(x) < Ky, (z),
no propagation occurs. In the following, a time-independent loading will be assumed (i.e.,
static fatigue). The instantaneous extension of the crack is thus described by the results
of the previous section. In the opposite limit of infinite time, i.e., the endurance regime,
a different, though similar, result is expected. The arrest criterion is no longer given by
Ki(z) < K.(z), but rather K;(z) < Ky, (z). Since the mathematical form of this criterion
is identical to that for instantaneous propagation, the previous approach is extended by
substituting K, for K,.

For the sake of simplicity, K;, and K, are assumed to be proportional to each other, such
as what would occur with anisotropic grains in ceramics where the disorientation would be

responsible for an effective heterogeneity of toughness. The toughness ratio is introduced

_ Kth (37)
= K@) (6)

and is considered to be identical for any value of the toughness. Therefore the statistical

distribution h characterizes both the upper K, and lower limit K, toughnesses of the sub-
critical regime. The probability that a crack grow from a to b after an infinite time is thus

simply deduced from Eqs. (4) and (6)

P(a,b,T — +00) = exp l)\ /ab log[H (K(z)/p)]dz| . (7)
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After having written the two limits of a crack extension, i.e., instantaneous propagation,
Eq. (4), and endurance, Eq. (7), the condition for a propagation during a time ¢ less than a

given value 7" is now considered.

IV. SUBCRITICAL CRACK PROPAGATION

The crack propagation law, Eq. (5), allows us to compute the time 7 for a crack to
propagate through a grain of length 1/\ or between two sites 1/\ apart (small as compared

to the current size x)
T:L<<KC—K1>)"‘ ®)
AC \ (K7 — pK.) 7
where K7 is the value of the stress intensity factor at the considered site. One can note that
T is a random variable ranging from 0 to 400, with a probability density function using the
same parameters as the toughness distribution and the material-dependent constants C', m,

A and p. The probability for a crack to propagate along a given crack path [a, b] during a

time ¢ less than a given value T is
A(b—a)
P(a,b,T)=P( > 7.<T), 9)
i=1
where 7; is the time used by the crack to propagate through site 7 of the given crack path,
and \(b — a) the number of traversed sites by the crack.

This expression shows the difficulty that arises at finite (non-zero) times. One can no
longer use a purely local criterion. Rather, a long time may be spent for one site if elsewhere
along the crack path the velocity is large enough to compensate. This gives a non-local
condition that appears more difficult to account for than the previous limits 7= 0 (Eq. (4))
or T =400 (Eq. (7)).

Yet, the sum of uncorrelated random variables has received a lot of attention because

of its ubiquitous character in many statistical problems. In particular, the central limit

theorem is a very powerful tool to handle such problems. However, the latter theorem only



holds for sums of random variables having a finite variance. In the following, it will be shown
that this is not the case here. Extensions of this theorem are needed, and unexpectedly, this

will yield a very simplified picture of the problem, close to the two previous limit cases.

A. Asymptotic Properties of the Random Variable 7

For large values of T, an approximation is determined for the probability P(r > T)
that the time required to traverse a site exceed 7. A large time means that K7 is close to

uK, = Ky,. Let us introduce the small and positive parameter € such that

K.

1
— =— —€. 10
K (10)

By using the crack growth law (5), time 7" can be expressed as a function of ,
T — 1 (1= p—pe "
AC %€

o (1=p\"

The probability that the time to go through one site exceed 7" can be divided into two parts,

(11)

first the probability that the site will resist forever, i.e., K;;, > K, and the probability that
the time remains finite but larger than 7. The latter probability, denoted by P(T < 7 <

+00), is such that

(12)

For large enough 7 (i.e., small enough €), this probability can be approximated by

P(T <7< +00)= /KI/M hMK)AK ~ Kih(K;/u)e (13)

Kr(1/p—e)
provided h(Ky/p) is non-zero. Therefore, the following asymptotic form for the distribution
of time is
9\ L/m
P(T < < +00) ~ Kih(K;/p) (T) , (14)

10



where

1—p\™ 1
@:( /ﬂu) ek (15)
The important result is that, asymptotically, P decays algebraically to zero for large 71" as a
power-law with a low exponent (e.g., for alumina, 1/m is of the order of 1/7). In particular
for m > 1/2 the variance of T diverges, and for m > 1 even the first moment of the
distribution, i.e., the mean propagation time, diverges. Furthermore, © scales as 1/\C as
imposed from dimensional analysis. However, the dimensionless prefactor may easily induce

a strong underestimation of this characteristic time, e.g., for u = 0.5 and m = 7 to consider

reasonable values, a prefactor of the order of 10? is found.

B. Probability of Sub-critical Crack Propagation

In the beginning of this section, we have seen that the probability for a crack to go from
a to b in a time less than 7" involves a condition on the sum S, of n propagation times 7;:
Sp = >0, Ti- As shown above, P(7) has a power-law tail 77 with an exponent oo = 1/m,
and thus quite generally the variance of the times is infinite. Consequently, one cannot
use the central limit theorem [40] for this sum. Lévy [33,34] has proven that such a sum
(when rescaled by n'/®) converges in law towards a stable form, called a Lévy distribution,
characterized by the exponent « (in the general case, an additional asymmetry parameter
is required, but in our case where 7 is always positive, one has to consider the one-sided
family of Lévy distribution completely characterized by «). The sum S, will converge for
large n towards n'/*L,(S}/). The interested reader is referred to Lévy [34] for a detailed

presentation of L. Let us simply recall the most important features:

e L has the same algebraic behavior for large arguments as each of the distribution of

individual times,

e if M, denotes the maximum of the series of n random numbers 7;,
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M, = nfixr; (16)

then both S,, and M,, will scale as n!/®, and their ratio is well-behaved and approaches

a finite value for av < 1 [41]

n—00 1 — o

S, 1
I (—") - , 17
im i (17)
where the ratio is to be understood as the expectation value.

By considering a typical value of m = 7 (see next section), or &« = 1/7, one can see that,
on average, one single time provides 86% of the sum. Therefore, albeit all sites contribute
to the total time, the very wide distribution of these times is such that the sum is very close
to the value of the maximum. For the sum S, to be less than a prescribed time 7', it is
approximately equivalent to require that the maximum M, be less than (1 —a)T. Thus, one
encounters a problem which is very close to the two limits analyzed in the previous section.

One simply needs to compute the value of K, such that the corresponding time amounts

to (1 —1/m)T. A simple inversion yields
K, = K;9(T), (18)

where

B(T) = 1+ [(1 = 1/m)xcT)V/™
14 (1 = 1/m)ACT]Y™

(19)

One may further note that the small correction due to the difference between the sum and
the maximum local time comes into play through the factor (1 — 1/m)'/™ which, for large
m, can be approximated by 1 —1/m?. For m = 7, the latter quantity differs from 1 by only
2%. Therefore, up to second order terms in 1/m, one may simplify the above expression
and rather use

1+ \eT)H™
O(T) ~ [ ] T
1+ p[ACT)]

(20)
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By simply borrowing from the first section the expression for the probability for the crack to
propagate from a to b and using a time-dependent correction for K; given by the function

®(T) defined in Eq. (19), the propagation probability P(a,b,T) can be written as
b
P(a,b,T) = exp l)\ / log[H (K, (z)®(T))]dz| . (21)

Equation (21) constitutes the main result of the paper. It allows for the computation of the
propagation probability by simply correcting (i.e., multiplying) the stress intensity factor by
the function ® defined in Egs. (19) or (20).

C. Time and Crack Length Distributions

From Eq. (21), two main distributions can be derived. The probability density p,; that

the crack starting from a reaches b between times 7" and 71"+ dT’ is

0P(a,b,T)
orT

= AP(a,b,T) dz . (22)

pas(T) = de(T) /a” hK;(2)®(T)| K ()

dr H[K(x)®(T)]
The probability density p,; is therefore proportional to d®(7")/dT, itself directly related to
the subcritical crack propagation law.

Up to now, we have considered the time evolution of the probability distribution for a
crack to grow along a prescribed crack path. Alternatively, one may be interested in the
crack length distribution at fixed time. No new derivation is needed. Let us introduce the
notation z(t) for the position of the crack tip as a function of time, and ¢(x) the inverse

function, the function z(t) being bijective. The two following events are equivalent
{z(T) > b} = {t(b) < T}. (23)

Equation (22) gave the expression of the probability for the second event. Hence, it also
gives the probability for the first one. At time 7', the probability density p, r that the crack

tip lie in between b and b 4 db is

0P(a,b,T)

22 = AP(a,b,T) log |H [K,(5)(T)] | (24)

pa,T(b) -

13



This last result only involves the (multiplicative) correction by the function ® of the applied

stress intensity factor.

D. Time-Correction Function

The previous derivations led us to introduce the function ®, which will be referred to as
the time-correction function. Figure 2 shows the change of ® with the dimensionless time
ACT. Tt can be seen that the approximation of Eq. (19) by Eq. (20) is very close for the
two higher values of m. For the lowest value, a downward shift of the approximation with
respect to the actual function can be seen. However, the general trend is the same and as a
first approximation, Eq. (20) will be used: a skeletal point is obtained for the value A\CT =1
for which ®(1) = 2/(u + 1) for any value of the sensitivity exponent m. It can be noted
that the value of the ratio y is not independent of the usual crack propagation parameters

A and p of an Evans-Wiederhorn propagation law [14,15,37]

dz K] P
soa() .
dt K (25)

where K is a characteristic (e.g., macroscopic) toughness. The threshold stress intensity

factor can be determined by setting the value of K;(dz/dt = Vi) = uK,o so that
Vo\ /P
= (= ) 26
p=(2) (26)

The last two parameters C' and m are determined by assuming that the propagation ve-
locity and its first derivative are identical for the two subcritical propagation models when

K;/Kg = (14 u)/2, i.e., the skeletal point of the function ®

(LR _p(l=p)
C’-A( 5 ) and m—2(1+'u). (27)

Figure 3 shows the use of the present procedure to determine the relevant constants for
a 99.6% alumina ceramic whose original parameters were determined by using flexural ex-
periments performed at different stress rates [42]: K., = 4.5 MPay/m, A = 6.9 m/s and

p = 52. The corresponding parameters are given as follows: y = 0.57 (when V, = 1072

14



m/s), C = 2.1 x 10°° m/s and m = 7.2. The results derived so far are now used to study

crack propagation in a thin walled tube subjected to a temperature gradient.

V. THERMOELASTIC LOADING OF A THIN WALLED TUBE

A thin walled tube of radius R and thickness h (Fig. 4) is subjected to a variable tem-
perature differential between the inner and outer surface between 0 and Af. If (z, ) are

coordinates along the length and circumference of the cylinder, the thermoelastic solution

is (h/R < 1)

ol = Ugw =0 (28)
with
EaAb
9
—- =7 2
o=t (29)

where F, v are the Young’s modulus and Poisson’s ratio of the considered material, respec-
tively, a the coefficient of thermal expansion, x = 0 the mid-surface of the tube wall, z = h/2
the outer surface and x = —h/2 the inner surface. This setting corresponds to the so-called
Bree problem [43] used in the shakedown analysis for elastoplastic materials [44]. In the
present case, one is interested in studying the propagation of cracks from initial defects
caused by the residual stresses induced by the (constant) temperature gradient through the
wall thickness. The onset of crack propagation from initial defects will be referred to as
inception as opposed to initiation for which a crack is formed during the load history. From
a deterministic perspective, inception occurs on the outer surface when Af > 0. Conversely,
when Af < 0, inception occurs on the inner surface. It is worth noting that, even though
the propagation condition is not described by the weakest link assumption, inception is still
assumed to be. Consequently, inception may be modelled by a Weibull law [45] and the

location of inception becomes random. Following Oh and Finnie [46], one can derive the
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distribution of inception sites within the thickness of the tube for any direction in the (z, ¢)
frame since the stress is equibiaxial. In particular, the average inception height, h, is given

by (Af > 0)

h= /O+Oo /Oh/2 z(o’, r)dzdo (30)
with
_1—="Po") 0 (o(d" ) M
lota) = L) D (200 (31
and
a® rh/2
Pi(o®) = /0 /0 ¥(ot,z) dzdot (32)

where Py is the inception probability, M the Weibull modulus, Sy the scale parameter and
Ly the corresponding gauge length. No special care has to be taken in deriving Eq. (30),
since the integration domain is independent of the applied load [47]. If one considers only the
formation of longitudinal cracks (induced by the hoop stresses o), the average inception

height becomes

—_

+

h= :
M +2

bo| =
<

(33)

Equation (33) shows that the likely inception sites are located near the external surface.
The higher M, the closer h to the external surface. In the limiting case of a deterministic
and local failure strength (i.e., M — 400), it is found, as expected, that the inception site
is located on the outer surface.

In the following, it is assumed that inception will occur on the outer surface from a defect
of size of the order of the size of the microstructure (i.e., 1/X). If the defect is modelled
by a semi-circular crack of radius 1/\ < h (Fig. 5), the stress intensity factor K along the

radius of the crack can be written as

(70
K(B) = Y(ﬁ)ﬁ : (34)



where Y is a dimensionless shape factor dependent on the defect type and the considered
location 3. Solutions are available when 10° < 8 < 170° [48]. Near the outer surface, a
‘vertex’ singularity is observed. A lower bound K, to the stress intensity factor is reached

when 8 = 90°

Ko = —6
min 1.16 . 35

Propagation is therefore likely to occur in the longitudinal direction rather than through
the thickness. This fact is even more likely in the present situation because of the decrease
of the stress field through the thickness. Consequently, a channelling crack will develop in
a similar way as in pre-tensioned films [49]. At each stage of the growth, the channel front
adjusts itself to a curved shape, such that the energy release rate at every point of the front
is identical. By construction, this problem is three-dimensional and an accurate solution
would require involved computations. Yet, after the crack length exceeds a few times the
initial radius 1/), a steady state configuration is reached: the front maintains its shape as
it propagates, and the energy released per unit advance no longer depends on the initial
geometry, nor on the channel length. The energy release rate can be evaluated without
knowing the shape of the front by using two plane problems. By subtracting the strain
energy stored in a unit strip far behind of the front, from that far ahead, one can derive

different formulas [49]. One of them is

6., = [ Glayaa, (30

where G, denotes the steady state energy release rate, G(a) the energy release rate of a plane
strain crack of depth a. When Ah > 1, an approximation is given by an edge crack in a
semi-infinite plane. The corresponding stress intensity factor is given by K (a) = 1.120%/ma
[48] so that the steady state stress intensity factor Ky can be calculated by using Eq. (36)
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As expected, K, is independent of the current crack length, it only depends upon the initial

K, = 1.41 (37)

height of the crack. It can be noted that a tunnelling crack [50] can also be used to analyze

17



the propagation condition of a crack whose propagation inception occurs within the bulk and
when the crack does not intersect the inner or outer surface (e.g., the propagation is parallel
to the z-direction). Under this assumption, a steady state configuration is also reached and

the corresponding stress intensity factor now depends on the location z (1 < Az < (Ah)/2-1)

)
K,(z) = 0.89% % . (38)

By comparing Eqs. (37) and (38), it can be concluded that channelling cracks are more likely
to occur than tunnelling cracks near the outer surface. Furthermore, the crack front is likely
to reach very quickly the outer surface anyway.

The channelling crack inducing a steady state situation (with a constant stress intensity
factor Kj;), the propagation conditions are easy to analyze. Furthermore, since the crack
height is equal to 1/, the 2D propagation model derived herein can be used. The crack

extension probability P(a,b,T) can be written as
P(a,0,T) = H[K,,®(T)*" (39)

where A(b — @) is the number of traversed grains. The toughness K, is here assumed to be
bounded by K™ and K™ so that: 0 < K™t < K, < K™ < +o00. Equation (39) shows
that, depending on the level of K, and the considered time T, three different regimes are
obtained (Fig. 6). First, a deterministic propagation regime when K, ®(T) > K™ in which
the crack will traverse the whole tube length. Second, a deterministic arrest regime when
K®(T) < K™ in which the crack is arrested. Finally, a third intermediate situation,
referred to as probabilistic propagation/arrest regime, when K™ < K, ®(T) < K™= In
the latter regime, the longer the crack, the more likely crack arrest. This result is due to the
random distribution of toughnesses and the fact that when the crack propagates, it is more
likely to hit an arrest site (i.e., a grain with a high toughness). Therefore the propagation
probability decreases as the propagation length increases. The curves plotted in Fig. 6 are
upper estimates of the propagation conditions since the steady state stress intensity factor is

on average greater than the inception stress intensity factor. However, for design purposes,
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the steady state condition is a good estimate. Finally, for small values of A(b—a), the discrete
nature of the propagation is clearly visible. As soon as a grain boundary is traversed, there
is a sudden drop of the propagation probability, since a new possible arrest site may be hit.
Conversely, for larger values of (b — a), typically 50 grains in the present case, the effect of

the discreteness of the microstructure on the propagation can no longer be observed.

VI. CONCLUSION

A model for crack propagation in elastic brittle media has been developed. It is based
upon a distribution of random toughnesses from site to site suited either for a two dimen-
sional geometry or a three-dimensional one provided that in the latter case, the grain scale
and the statistical distribution of local toughness are reinterpreted as effective parameters
defined on a scale larger that the natural crack front roughness. A general formulation has

been derived for the propagation probability P(a,b,T)
b
P(a,b,T) = exp l/\ / log[H (K1 (z)®(T))]dz| . (40)

After having determined the instantaneous crack propagation probability (i.e., ®(7T = 0) =
1) and the endurance crack propagation probability (i.e., ®(T" — +o0) = 1/u), time-
dependent function ®(7T") has been obtained. The latter is only dependent upon the pa-
rameters modeling subcritical crack propagation in addition to the discretization A.

The parameters of the propagation model are therefore restricted to the toughness prob-
ability density function that can be determined by using microhardness experiments and the
subcritical crack propagation parameters. It can be noted that the model can be extended
to incorporate the fact that the initial crack size a can be random (e.g., a common assump-
tion in models based upon the weakest link hypothesis). The discretization parameter A
needs to be further studied to get a good evaluation. It is proposed that subcritical crack
propagation constitutes yet another way of tuning A.

The case study dealing with propagation of cracks in a thin walled tube submitted to a

temperature gradient through its thickness showed that a steady state propagation can be
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reached. It also allowed for the determination of three different regimes. Two deterministic
regimes, namely one for which propagation is certain to occur, and one for which arrest
always happens. In between, a probabilistic regime is found for which the longer the crack,
the smaller the crack extension probability. This result is typical of the strongest link
assumption where the propagation event is dictated by the strongest event (i.e., the toughest
grain on the propagation path).

Finally, one can note that, even though static fatigue was considered herein, the same
results can be directly applied in cyclic fatigue (i.e., time 7" becomes equal to the number of
cycles N in Eq. (40)) when the stress amplitude is constant with the number of cycles N.
Instead of an Evans-Wiederhorn crack propagation law, a Paris’ law [51] would be preferred

or any modification accounting for near threshold behavior induced by crack closure [52-54].
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FIG. 2. Time-correction function ® vs. dimensionless time ACT for different values of the

sensitivity exponent m when pu = 0.6.
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FIG. 4. Thin-walled tube of average radius R and thickness h. Frame of a volume element of
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FIG. 5. Longitudinal crack initiated on the outer surface of the tube. Initial semi-circular crack

and channelling crack experiencing a steady-state propagation.
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FIG. 6. Crack extension probability vs. dimensionless extension length for different values of

the cumulative probability H[K;s®(T')]. Three different regimes can be observed.
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