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Abstract. A new approach to determine the displacement field between a reference and a deformed image is
introduced. The method is based on a spectral decomposition of the displacement field which is determined
through a multi-scale approach. The method is tested here on an artificial example by using computer-
generated images devoid of boundary effects (i.e., periodic boundary conditions are used in the image
texture and displacement field). The performance of the proposed algorithm allows for the determination
of the prescribed displacement field up to machine precision, for a strain field whose trace extends from
-50% to 40% with a root-mean-square average of 20%, within sub-minute runs on a standard PC.

PACS. 46.80.4j Measurement methods and techniques in continuum mechanics of solids — 06.30.Bp Spatial
dimensions (e.g., position, lengths, volume, angles, and displacements) — 07.05.Pj Image processing —
42.30.Va Image forming and processing — 46.15.-x Computational methods in continuum mechanics

1 Introduction

In many applications, computer vision is used to detect
and follow the motion of objects (e.g., robotics, medical
imaging, meteorology, and experimental visualization in
fluid or solid mechanics). The technological development
of digital image recorders (e.g., CCD camera or video
recorder), both in quality and low-cost motivates the de-
sign of versatile, flexible, robust and precise means of mea-
suring displacement or velocity fields.

The measurement of the apparent 2D motion in an
image sequence is performed by pattern matching of var-
ious ‘markers’ in consecutive images. A black and white
image sequence is represented by a gray level function or
intensity. Under a constant illumination, the intensity is
thus passively advected by a velocity field to be deter-
mined, but remains otherwise unchanged. This ‘conserva-
tion” principle allows one to write an equation obeyed by
the image intensity in time, namely the so-called ‘optical
flow” equation. Used in differential form, this conservation
principle has given a wide body of efficient numerical algo-
rithms used to extract the velocity field. Alternatively, the
same conservation principle can be used through a direct
matching of sub-regions within the original images.

Let us note that the measurement of the displacement
is an ill posed problem. The displacement can only be
measured along the direction of the intensity gradient.
Consequently, additional hypotheses have to be proposed

to solve the problem. If one assumes a locally constant
displacement (or velocity), a block matching procedure is
found. It consists in maximizing the cross-correlation func-
tion [1,2]. This method is, for instance, used to measure
heterogeneous displacement fields in solid mechanics [3,4].
Many of the procedures available nowadays are based on
Correlation Tmage Velocimetry (CTV) methods [5] directly
inspired from earlier developments in fluid mechanics [6,
7]. Conversely, variational formulations can be used. They
are mainly based on the optical flow equation. A spatial
regularization was introduced by Horn and Schunck [8]
and consists in a looking for smooth displacement solu-
tions. However, this method 1s not appropriate for prob-
lems dealing with discontinuities in the apparent displace-
ment [9]. In the latter case, the quadratic penalization
is replaced by ‘smoother’ penalizations based on robust
statistics [10-12]. Furthermore, when dealing with deforma-
ble solids, other regularization techniques are to be intro-
duced such as the one based on the strain energy [13]. Tt
can be noted that problems as complex as face tracking
with three dimensional motions and deformations can be
handled by using adapted procedures [14].

Similarly, some attempts have been proposed to go be-
yond the simple cross-correlation of sub-images extracted
from the reference and deformed images [15,16]. Based
on finite-element determination of the displacement field,
they suffer from the generic existence of many minima
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of the objective function, so that the determination of
a global optimum is a cost-effective and sometimes inse-
cure operation. Even up-to-date algorithms suited to such
multi-minima optimization problems, such as simulated
annealing or genetic optimization cannot guarantee both
a reliable and cost-effective solution [17].

In this paper, a novel approach, whose capabilities
appear as promising, is proposed. This is a preliminary
report on the feasibility of the method, which has not
yet been validated over a wide range of cases. In partic-
ular, common problems such as the loss of accuracy at
the edge of the image are avoided by testing only pe-
riodic images (paving the plane without discontinuities)
which are deformed through periodic displacement fields.
This special class of problem is easily tractable with the
proposed method, which is based on an intensive use of
Fourier transforms. A concrete example will demonstrate
that even difficult cases can be treated by the present ap-
proach with a good accuracy. However, some more effort
has to be devoted to the treatment of edge effects and
to the development of a robust procedure to get a good
solution in most practical cases.

2 Problem

The spirit of the method is similar to the one-dimensional
treatment proposed by Roux et al. [18], but developed in
two dimensions. As mentioned earlier, the discussion is
restricted to periodic boundary conditions, suited for the
spectral approach presented herein. However, in Ref. [18],
extensions of the present approach have been presented
to consider non-periodic test functions (e.g., affine func-
tions), which allowed for a systematic treatment of more
general strain fields in one dimension. Similar extensions
are still to be developed for the two dimensional case, yet
the road map 1s clear since the general framework devel-
oped herein is valid for any trial displacement, not only
that corresponding to a spectral decomposition of the dis-
placement field. The present paper gives the general out-
line of the method, and for the sake of simplicity, in this
first study, the boundary effects are deliberately ignored,
and thus, only a periodic case is considered.

First, let us consider a reference image, defined as f(z),
e.g., a gray level distribution. This function is assumed to
be periodic of period L both in # and y directions, where
L is the ‘size’ of the image expressed in pixels. An in-
plane displacement field U(z) is defined. Similarly, this
displacement field is assumed to be periodic in both di-
rections with the same period. The passive advection of
the texture f by the displacement field defines a ‘deformed
image’, g(z), such that

9(z +U(z)) = f(z). (1)
This equation is the integral form of the ‘optical low equa-
tion.” Note that this choice prevents the occurrence of
large scale overall rotations, although, locally, rotations
are allowed.

The problem to address is the determination of the dis-
placement field U from the exclusive knowledge of f and
g. As such, the problem is ill posed, unless additional as-
sumptions are made on the regularity of the displacement
field so that the information is sufficient to determine U
with a reasonable accuracy [8]. As a particular case, one
can note that if U is simply a rigid body translation, then
the problem can be addressed by using the standard cross-
correlation technique to maximize the overlap between the
translated f and g [2,18]. Alternatively, if no information
on the regularity of U is available, then there are more
unknowns than equations, so that even ignoring the prob-
lem of multiplicity of local minima, the problem cannot
be solved. Here, the basic assumption is that the displace-
ment field has dominant long-wavelength components, and
for practical purposes, it is assumed to be low-pass filtered.
The translation case thus appears to be the extreme limit
of preserving only one mode (i.e., only the wavenumber
k = 0 has a non-zero amplitude).

3 2D Spectral Method

Let us introduce the following objective functional, T, op-
erating on displacement fields V(z)

= [[ e+ V@) -

This functional reaches its minimum value, 0, for V. = U
(see Eq. (1)), up to a rigid translation of an arbitrary inte-
ger number of periods in both directions. This functional
is the generalization of that used by Roux et al. [18] to
study one-dimensional signals.

The trial displacement V is assumed to be L-periodic
in both directions, since this is a basic prerequisite. Thus,
it will appear as convenient to work in Fourier space, defin-

f(z))? dz. (2)

ing the Fourier transform h of any function h as

b= [

To fulfill the smoothness assumption on U, V is low-pass
filtered. The space of periodic vector displacement fields
Ex is introduced such that V (k) = 0 if [k| < K. Other
choices have been proposed in the literature in order to
match specific requirements. Wavelet functions as pro-
posed in particular by Bernard [19] are well suited to such
a problem.

Let us first assume that f and ¢ are sufficiently smooth
on small scales, and the displacement small enough in am-
plitude so that a Taylor expansion of g up to the first order
can be introduced in the above expression for 7

u= [ wte

It can be noted that there 1s no need to add a penaliza-
tion condition to ensure the smoothness of the solution [8]
since the trial displacements fulfill this requirement. Nev-
ertheless, it 1s important to note that the Taylor expan-
sion requires explicitly that g itself is sufficiently smooth.

z) exp(ik.z)dz. (3)

2) + V(z).Yg(z)) dz.  (4)
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This may appear as a rather stringent requirement since
one may not always master the small scale behavior of
the texture of the reference image. We will see in the fol-
lowing that the proposed procedure allows us to deal with
texture which finally are not extremely smooth (even non-
differentiable) provided they have a sufficiently rich power
spectrum. The latter property will allow us to restore part
of the required smoothness after filtering while still pre-
serving the needed information. Equation (4) corresponds
to the objective functional associated to the optical flow
equation. The displacement field is decomposed as a linear
combination of a basis of Ex, V(z) = Zj vV (z), so that
T[V] becomes a quadratic form in the (vector) amplitudes
v;. The extremality condition thus dictates, for all j,

(/] _(zg O Do) ) (2)Pi2)d ) .

/ (F(z2) - 9(2))o(2); (x)dz.

This system will be written in a matrix form for simplicity
in the sequel, as

ﬂjkgk = Aj : (6)
One can note that the dyadic product (Vg @ Vg) by it-
self cannot be inverted (it has always a zero eigenvalue
in the direction normal to the gradient of ¢), and hence
this formula cannot be used to determine V, if ¥ tends
to a Dirac distribution, as anticipated from the remark
on the necessary regularity of V. However, if Fx is cho-
sen to be restricted to wavelengths much greater than the
correlation length of the texture, the left hand side opera-
tor becomes a genuine definite positive operator, and the
product with ¥ is nothing but a filtering of the operator
(Y ® Yg).

In the following, a spectral representation for the dis-
placement field 1s used. In the present case, the function
W (z) is equal to exp(ik.z) (this complex notation implies
that the objective functional is the integral of the squared
modulus, and hence conjugation will appear in Eq. (5)).
The matrix element My can be written as

My = (Vg @ Vo) (k — k)

(7)
and thus M.v is a convolution product in Fourier space.
However, it appears as being awkward to perform such
a convolution. If one reverts to real space, then the con-
volution appears to be a simple product (i.e., a diagonal
operator). However, the use of a Fourier transform is a
useful step for the filtering operation. Similarly, the sec-
ond member is the filtered (i.e., restriction to Fx space)
of the direct product (f — ¢)Vg. Therefore, the following
scheme can be proposed:

1. Compute the tensor field V¢® Vg, Fourier transform it
and preserve only the modes |k| < K. Inverse Fourier
transform the latter, to obtain a real space tensor field,
M(z). The latter needs only to be computed over a
coarse mesh of size 2K x 2K instead of the original
L x L one.

2. Compute the vector field (f —g¢)Vg, Fourier transform
it and preserve only the modes |k| < K. Inverse Fourier
transform the latter, to obtain a real space vector field,
A(z), on the coarse mesh.

3. Compute the vector field B(z) = M_l(g)é(g), after
checking that the tensor M can indeed be inverted.

4. Fourier transform the B(z) field using the relevant K
modes. The latter components give directly the un-
known v, components

v, = B(k). (8)

4 Discussion

The above procedure is extremely simple, both in its prin-
ciple and in its implementation. It is also very efficient
in terms of computer time since it relies heavily on FFT
codes, and requires only a 2 x 2 tensor inversion on a
coarse mesh. However, the very basic hypothesis used to
derive such a procedure has not yet been discussed, i.e.,
the validity of the Taylor expansion used in Eq. (4). This
question is a rather subtle issue. Generically, the method
is to be used on a texture f or g which is supposed to
have short range correlations, and hence, if the displace-
ment amplitude is greater than this correlation length, the
Taylor expansion is inadequate. Moreover, the M tensor
is only invertible when Vg is rapidly varying over scales of
the order of L/ K. To deal with this problem, the following
approach can be used:

A. Use a texture such that a long-range correlation ex-
ists. This will allow one to low-pass filter the original
and deformed images. This first filtering is performed
so that the rapid fluctuations of f and ¢ are erased
over a scale such that the amplitude of the anticipated
displacement is less than the shorter wavelength pre-
served in this filtering. That is, an upper wavenumber,
K',is used such that U < L/K' where U is the magni-
tude of the anticipated displacement. This guarantees
that the Taylor expansion is legitimate. The determi-
nation of the displacement field is then carried out with
K modes, by using the condition K <« K’. The cri-
terion to be used to adjust K 1s that the minimum
eigenvalue of M is greater than a minimum threshold.

B. Once a first determination of the displacement field
has been obtained with a good accuracy, the refer-
ence (or deformed) image is corrected by using this
displacement field. Two images are obtained for which
the relative displacement field is much smaller in am-
plitude. This allows for a relaxation of the constraint
on K’ (i.e., use a larger value) and thus to expand the
number of modes K used to determine V.

C. This sequence of operations is repeated as many times
as required to estimate the precision of the solution
using the objective functional 7.
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Fig. 1. Reference (left) and deformed (right) images which allow for the determination of the displacement field from their
comparison. The images are 256x256 gray-coded with periodic boundary conditions. The gray level is encoded as a single

precision real number.

5 A practical example

To validate the method, an artificial test case is generated
numerically. First a random texture, f(z), is created. A
self-affine texture is chosen with a roughness exponent {
taken to be 0, so that the amplitude of the Fourier trans-
form scales with the wavenumber as |f(k)|? o |k|=2 [20].
The image size L was taken to be 256 pixels. An example
of such a texture is shown in Fig. (1-left). This choice is
motivated by remark A. of the previous section.

The displacement field was also chosen to be have dom-
inant components for low wavenumbers. The chosen dis-
placement field has a number of Fourier modes K = 10,
ie., U(k) = 0 for |k] > K. An example is shown in
Fig. (2). For low wavenumbers, the power-spectrum of U
was chosen to be also self-affine with a roughness expo-
nent, {, = 1, thus the power spectrum of U decays on
average as |k|~* [20]. In other words, the strain field is a
white noise field.

Once the displacement field and initial texture have
been generated, the deformed image is computed by us-
ing Eq. (1), and a linear interpolation of the gray levels
to evaluate the pixel value in the deformed image. The
obtained g image is shown in Figure (1-right).

The displacement field shown in Figure (2) is drawn
with no amplification. The RMS displacement per site is
6.2 pixels, and the maximum displacement amplitude is
13 pixels. However, the local strain is quite large. Fig-
ure (3) shows the map of the volumetric and deviatoric
components of the strain, defined as

Evol = tr(g) =V.U and
caer = /trle — (1/2)tr(£) 1)’

)

where ¢ is the infinitesimal strain tensor, £;; = (1/2)(0:U;+
0;U;). Even though strain levels are greater than a few

Fig. 2. Displacement field prescribed on a regular square mesh.
Note that the displacement is reproduced without any ampli-
fication factor (unit scale). The computed displacement field
is not shown because one cannot distinguish it from the pre-
scribed one. The RMS difference in the displacement field is of
the order of 107° pixel, i.e., it reaches the machine precision
(i-e., single precision in a Fortran code).

percents, the infinitesimal strain tensor can be used (it
then corresponds to the nominal strain tensor when no
body rotations occur).

The volumetric strain ranges from -52% to 42%, with
an RMS value of 15%, and the deviatoric strain ranges
from 0 to 43%. Tt is to be emphasized that such amplitudes
of strains are far beyond the possibility of most classical
digital image correlation (DIC) approaches [21]. In prac-
tice, such tools are used for strains that rarely exceed a
few percents. Although it is an ideal case, where no noise
is present at any stage of the computation, since all gener-
ation and analysis are performed numerically, the chosen
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-0.52

0.42 0.00 0.43

Fig. 3. Volumetric (left) and deviatoric (right) strain fields
that show the difficulty of this test case. Note the gray level
scale that is indicative of the amplitude of strain values. The

strain maps are computed from the prescribed displacement
field shown in Figure (2).

test case is very difficult and it would not have been easily
resolved by using standard DIC approaches.

Starting from the two images f and g, shown in Fig. (1),
the determination of the displacement field is carried out
recursively as explained in the previous sections. To start
off with, a very low number of modes, K’ = 2, is considered
and every 18th iteration, 2 additional modes are added,
so that for the 18th iteration, K = 4, and finally for the
72nd iteration, K = 10 modes are allowed, as used in the
original generation of the displacement field.

Let us note that as a variation with the general proce-
dure outlined above, no filtering of the texture was used,
because it was chosen to contain initially sufficient long-
range correlations to render this additional smoothing op-
eration unnecessary. The fact that filtering is not needed
constitutes an additional hint that the method is quite ro-
bust. It also suggests that some more work should be de-
voted to clarifying the required properties of the texture to
have a viable procedure with a large class of displacement
fields.

Figure (4) shows the change of the error, (estimated
by the objective functional 7) in log scale, with the iter-
ation number. A progressive reduction can be observed,
which displays a faster convergence when K is increased
(every 18th iteration), up to the point where the value of
K used in the determination of V, reaches the value used
to generate the displacement field (i.e., K = 10). From this
point on, the error suddenly drops very quickly to reach
the machine’s precision (single precision real numbers used
in the program). Consequently, the determined displace-
ment map matches exactly the prescribed one. This result
demonstrates the feasibility of the proposed algorithm, in
a test case which was a prior: difficult to resolve, by using
the standard tools.

The program used to perform this analysis was written
in Fortran, and the runs were performed on a PC (Pen-
tium ITT). The computation time needed to perform 100
iterations was less than one minute. Moreover, the present
work 1s devoted to demonstrating the feasibility of the pro-
posed method, and no effort was made to optimize either
time or memory. There are many ways to make this proce-
dure faster, in particular, by exploiting the coarse-graining

RMS error
'5‘00

10° e
0 10 20 30 40 50 60 70

[teration

Fig. 4. Norm (RMS per pixel) of the difference between pre-
scribed and computed displacement field as a function of it-
eration number. More and more modes are included as the
computation proceeds, and the sudden final drop corresponds
to the stage where the number of allowed modes in the de-
termination equals the number of modes set in the prescribed

field.

80 90 100

capabilities of the different steps. Such an approach has
been followed by using a more classical cross-correlation
approach, and it yielded a gain both in computer time,
and in robustness of the method to analyze tests on glass
wool samples [22].

6 Summary

A novel algorithm has been introduced for the determi-
nation of displacement fields relating a reference and de-
formed image. Only cases with periodic texture and dis-
placement field are considered to work simply with Fourier
transforms,; although the method can be extended to other
cases, since the general framework developed herein is ap-
plicable to any class of trial displacement fields.

A test case was studied with large strains reaching 50%
on a 256 x 256 pixel image, and yet the displacement field
was determined with single precision accuracy within less
than 100 iterations, requiring less than a minute of com-
putation on a PC.

A number of extensions have still to be developed,
such as an optimized procedure to progressively allow for
a larger number of Fourier modes, optimization of the tex-
ture to achieve good convergence with the widest class of
displacement fields, proper account of edge effects. The
success of the present test case indicates that further de-
velopments can be carried out along the lines developed
herein.

The authors acknowledge useful discussions with Professor Y.

Berthaud.
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