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We propose a multi-scale approach to determine the displacement field by
digital image correlation. The displacement field is first estimated on a coarse
resolution image and progressively finer details are introduced in the analysis
as the displacement is more and more securely and accurately determined.
Such a scheme has been developed to increase the robustness, accuracy and
reliability of the image matching algorithm. The procedure is used on two
different types of examples. The first one deals with a representative image
that is deformed exactly to assess the intrinsic performances. In particular,
the maximum measurable strain is determined. The second case deals with
a series of pictures taken during compression experiments on mineral wool
samples. The different steps of the procedure are analyzed and their respective
role is assessed. Both reflection and transmission images are tested. (¢)2002

Optical Society of America

OCIS codes: 070.2590, 100.2000, 100.5010, 120.3940, 120.6150, 040.1520.

1. Introduction

In recent years, the development of efficient tools for field velocimetry, aiming at fluid flow
visualization [1], has been quite important. Digital Particle Image Velocimetry (DPIV)
[2, 3, 4, 5], Digital Image Correlation (DIC) [6, 7] or more generally Correlation Imaging
Velocimetry (CIV) [8, 9] have proven to be an efficient and robust tool whose precision can

be extended much below the pixel accuracy. The spirit of the method is to look for the



maximum correlation between small zones extracted from the ‘deformed’ and reference im-
ages. The translation, which corresponds to the maximum correlation, can be obtained for
different positions of the zone of interest. This allows for the determination of a displacement
field which is piecewise constant. The correlations are evaluated either in the reference space
[6, 10] or Fourier space [2, 3, 11, 12, 13] and the extensive use of Fast Fourier Transforms
(FFT) is very effective in reducing the computation cost.

Some applications concern soft solids where strain gauges can be difficult to position or
may disturb the response of the material because of stiffness variations (e.g., mineral wool
[9], paper and wood [14], polymers [15, 16]). In most experiments in solid mechanics, the
random texture used to determine the displacement field is not changing during the test,
e.g., cracks may appear, but the alterations are localized and hardly induce any artifacts. It
can be noted that the texture is either natural (e.g., many materials at high magnification)
or artificial (e.g., by spraying paint). In some applications however, this is no longer the
case, e.g., during a compression test of mineral wool samples where pictures are obtained in
transmission. As the sample is compressed, the average texture intensity decreases when the
aperture is not altered. In addition, the change in intensity due to the compression alters the
absorption and scattering of light in the material, and hence increases the distortion between
the images in a complex and heterogeneous manner. As a consequence, classical methods fail
to measure accurately the strain fluctuations in such situations.

One purpose of the present study is to propose a multi-scale approach to increase the
maximum detectable displacement compared to conventional DIC techniques. Since texture
variations are suspected to occur, a special procedure is developed to deal with this effect,

which can be probed in particular, for the above-mentioned mineral wool samples. Section 2



introduces two basic tools needed to develop a DIC technique, namely, displacements meas-
ured by a correlation algorithm and the choice of a strain descriptor in the finite deformation
framework. In Section 3, the basic DIC algorithm is recalled. A sub-pixel procedure is used
to increase the sensitivity for accurate strain measurements. The maximum detectable dis-
placement is evaluated on a deformed picture, which is artificially generated. A multi-scale
approach is then developed to increase the maximum detectable displacement, without af-
fecting the minimum measurable strain. Section 4 deals with artificially deformed images
to analyze the effect of different steps introduced in the multi-scale correlation algorithm.
Section 5 is devoted to the analysis of two sets of compression experiments performed on
mineral wool samples, respectively. This material allows for large strains, and various expo-
sure modes. Moreover, being heterogeneous, it displays fluctuations in local strains. It thus
constitutes a difficult test case for the analysis. Mineral wool is a material for which better
mechanical performances can be reached by mastering the microstructure and homogeneity.
In particular, for medium to high density products, the wool is “crimped” to get better me-
chanical performance. Crimping is a uniaxial compression along the line direction performed
on the wool by forcing it through progressively slower advancing compression belts. This in-
dustrial process, suited to continuous production, induces buckling of the denser planes and
hence changes the orientation of initially horizontal fibers to vertical or at least more isotropic
distributions. Hence, it is of interest to be able to resolve the local strain, or irreversible part
of the strain, in order to relate it to the local ‘microstructure’ such as material density or
fiber orientation. This is especially important for crimped products and where quality fac-
tors for the texture can be derived from the local analysis of the irreversible strain, and its

relationship to morphological features.



2. Preliminaries
A. Displacement measurement by image correlation

To determine the displacement field of one image with respect to a reference image, one
considers a sub-image (e.g., a square region) which will be referred to as a Zone Of Interest
(ZOI) or interrogation window. The aim of correlation method is to match the ZOI in the two
images (Fig. 1). The reference image corresponds to the texture of a stone wool sample. The
displacement of one ZOI wrt. the other one is a two-dimensional shift of an intensity signal
digitized by a CCD camera. To estimate a shift between two signals, one of the standard
approaches is based on a correlation function. One considers signals ¢g(x) which are merely

perturbations of a shifted copy f(x — u) of some reference signal f(x)

9(x) = f(x —u) +b(z) (1)

where u is an unknown in-plane displacement vector assumed to be constant locally (i.e.,
independent of the position x) and b(x) a random noise (e.g., photon noise, readout noise,
dark current noise for CCD cameras [17]). To evaluate the displacement w, one may minimize

the norm of the difference between f(x —wv) and g(x) with respect to a trial displacement v

min||g — £(. — )|’ 2)

where ‘. denotes a dummy variable. The functional ||g — f(. — v)||* can be used in other
instances when the displacement field, instead of being constant, is either affine or developed
in terms of a truncated Fourier series [9]. These variational formulations are mainly based on

the optical flow equation. A spatial regularization was introduced by Horn and Schunck [19]

and consists in a looking for smooth displacement solutions. However, this method is not



appropriate for problems dealing with discontinuities in the apparent displacement [20]. In
the latter case, the quadratic penalization is replaced by ‘smoother’ penalizations based
on robust statistics [21, 22, 23]. Furthermore, when dealing with deformable solids, other
regularization techniques are to be introduced such as the one based on the strain energy [24].

In fact, any class of displacements may be introduced and a Taylor expansion yields
a linear system in the unknown displacement components [18]. If one chooses the usual
quadratic norm ||f[|?> = [ [72°|f(2)? d=, it corresponds to the so-called MQD method
used in experimental fluid mechanics [25] when implemented directly with a constant trial
displacement. With this norm, the previous minimization problem is equivalent to maximizing

the quantity h(v)

o) = n@= [ [ s@ia- o 3)

where x denotes the cross-correlation operator. Furthermore, when b is a white noise, the
previous estimate is optimal. The displacement maximizing the cross-correlation product
will be denoted by w and corresponds to an evaluation of the unknown displacement vector
u. The computation of a cross-correlation product can be performed either in the original

space or in Fourier space, by using an FFT
g% f = FFT™! (FFT[g] FFT] f]) (4)

where the complex conjugate is overlined. In the following sections, extensive use of the
cross-correlation product will be made. It will always be evaluated via Fourier transforms to
speed-up the computations. Numerous works have addressed the issue of the periodicity of
the image implicitly assumed when using FFT. In particular, there lies the main difference
between the Maximum Quadratic Difference (MQD) method and standard correlation based
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evaluations, as discussed in details in Ref. [25]. In the present work, we deal with this problem

through windowing filters (e.g., Hanning window or edge-blurring) as discussed further down.

B. Strain measures

Finite strain measures are needed since the strain level will be greater than a few percents.
These measures are built by using the deformation gradient tensor F' relating an infinitesimal

vector dag in the reference configuration (£2y) to de in the deformed configuration (£2)

de = F dx (5)
so that the tensor F' can be related to the displacement gradient Vu by

F=1+Vu, (6)

where 1 is the second order unit tensor. For Lagrangian measures, they can be expressed by

using the strain tensors E,, [26]

= (C™—1)  when m#0

sIn (C) when m — 07"
where C = F' F denotes the right Cauchy-Green deformation tensor, and * the transposition
operator. When m = 1, the Green-Lagrange strain tensor is obtained, m = 1/2 is the Cauchy-
Biot (or nominal) strain tensor and yields AL/Lg for a uniaxial elongation, where Lg is a
reference (or gauge) length and AL the length variation. The case m — 0T corresponds to
the logarithmic (or Hencky) strain tensor. The latter is the only additive strain measure. By
definition, all these strains are equal to zero for a rigid translation (i.e., F =1 and C = 1)

or a rigid rotation (i.e., F = R and C = 1), where R is an orthogonal tensor. When the



amplitude of the body motion is small as well as the strain gradient, all measures converge

towards the so-called infinitesimal strain tensor € defined as
]‘ t
s:§[Vu—|—(Vu)]. (8)

In the following, for the sake of simplicity, the nominal strain tensor will be used and will

be denoted by E = E,.

3. A multi-scale approach in digital image correlation
A. Conventional approach

In practice, two images are considered. The first one, referred to as ‘reference image’ and
the second one, called ‘deformed image’. The following algorithm is summarized in the flow
chart of Fig. 2. To determine the average displacement, one extracts the largest value P
of an inscribed region of interest (ROI) of size 27 x 2”7 centered in the reference image.
The same ROI is considered in the deformed image. A first FF'T correlation is performed to
determine the average displacement w, of the deformed image with respect to the reference
image. This displacement vector is expressed by an integer number of pixels and is obtained
as the maximum of the cross-correlation function evaluated for each pixel of the ROI. This
first prediction enables one to determine the maximum number of pixels that belong to
both images. The ROI in the deformed image is now centered at a point corresponding to
displaced center of the ROI in the reference image by an amount wy.

The user usually chooses the size of the ZOIs by setting the value of p < P so that
its size is 27 x 2P pixels. To map the whole image, the second parameter to choose is the

shift § = ||dx|| = ||dy]|| between two consecutive ZOIs: 1 < ¢ < 27 pixels. This parameter



defines the mesh formed by the centers of each ZOI used to analyze the displacement field
(Fig. 1). The analysis is then performed for each ZOI independently. A first FET correlation
is carried out and a first value of the in-plane displacement correction Aw is obtained. The
components of Aw are again integer numbers so that the ZOI in the deformed image can
be displaced by an additional amount Aw. The displacement residues are now less than 1/2
pixel in each direction. A sub-pixel iterative scheme can be used.

This first procedure is well-adapted for small strain levels. If no additional positioning
is performed, to be successful, the norm of the displacement correction Aw has to be lim-
ited. Otherwise, the correlation fails since there is not enough information to determine the
correction. To illustrate this effect, a conventional analysis is performed between the refer-
ence image (512 x 512 pixels, 8-bit digitization) shown in Fig. 1 and an artificially deformed
image. The reference image corresponds to a stone wool sample to be artificially deformed
along the vertical direction (i.e., §). The deformed image is computed by using Eq. (1), and
a linear interpolation of the gray levels to evaluate the pixel value in the deformed image.
No noise is added (i.e., b(.) = 0) but the signal is digitized by using the same 8-bit coding.
The same 512 x 512 pixel ROI is considered and different values for p are investigated. In
the present case, the initial correction w, is found to be vanishingly small. Consequently,
the middle height of the image is a line of symmetry for the displacement field. Figure 3
shows the standard deviation of the vertical displacement w, for each vertical position y of
the ZOIs when 6 = 16 pixels. The smaller the standard deviation, the more accurate the

displacement evaluation. For symmetry reasons, the standard deviation W, is interpolated



by a parabolic polynomial defined by

Wy(y) = a(p) + B(p)(255.5 — y)° (9)

where o and (3 are constants dependent upon the size of the ZOIs (i.e., 27 x 27 pixels). An
arbitrary limit Wy, is defined such that below the latter, the evaluation is considered to
be accurate and above which it is questionable. A value of 1 pixel is chosen. Consequently,
displacement corrections Aw varying within the range +7 pixels can be measured accurately
when p = 4 and +13 pixels when p = 5. For higher values of p, no intersection is found
when the average strain is equal to 0.05 (Fig. 3). As a first approximation, a displacement
correction greater than +3 x 2P~ pixels leads to a loss of accuracy in its evaluation. It
can be noted that when a value of 0.6 pixel is chosen, the displacement estimate is more
accurate than in the previous case and the ‘quarter rule’ is obtained (i.e., the maximum
measurable displacement is equal to one quarter of the size of the ZOI [27]). These results
shows that the first pixel evaluation wg is crucial in allowing to increase the admissible
range of measurable displacements. Table 1 shows that the higher p, the more accurate the
strain evaluation. However, the gain between p = 6 and p = 7 is minimal. If one increases
p too much, then one averages over a larger surface the displacement. The measurement of
fluctuations with respect to an average field is limited (e.g., in tension/compression tests).
Consequently, a good compromise in this example is given by p = 6. Lastly, for images such
that the maximum distance of horizontal or vertical centers of ZOIs is of the order of 1024,
a maximum measurable strain is equal to 3 x 2P~'2, which is of the order of 0.05 when p = 6.

It can be noted that small strain levels can be accurately measured by using a sub-pixel

algorithm. An additional cross-correlation is performed. A sub-pixel correction of the dis-
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placement dw is obtained by determining the maximum of a parabolic interpolation of the
correlation function. The interpolation is performed by considering the maximum pixel and
its eight nearest neighbors. Therefore, one obtains a sub-pixel value. By using the ‘shift-
modulation’ property of Fourier transform, which is nothing but a phase change, the de-
formed ZOI can be moved by an amount —dw. Since an interpolation is used, one may
induce some (small) errors requiring to re-iterate by considering the new ‘deformed’ ZOI
until convergence. The procedure used checks whether the maximum of the interpolated
correlation function increases as the number of iterations increases. Otherwise, the iteration
scheme is stopped.

In order to limit the influence of edge effects, a windowing of the ZOI can be performed
16]

ZOI = Z0I x® Y (10)

where ZOT denotes the windowed ZOI , ® the dyadic product and x the one-dimensional

modified Hanning window

L [1 — COS ( iml )] when 0< 7T <2°72

;

20 — 1
when 2P°2< ] <3x 2P 2 (11)

N| =

2» —1

vl
[1—005( T )] when 3 x2P72<[J<2P—1.

\

The value 22 is optimal to minimize the error due to edge effects and to have a sufficiently
large number of data unaltered by the window. In the following, a second window is intro-
duced. It consists in constructing a periodic ZOI, Z/\OI, by averaging the pixels on the edges

of the initial ZOI (i.e., ‘blurring’ the edges)

ZOI =W ZOIW (12)
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where the matrix W is equal the identity matrix apart from the four ‘corners’, which are
equal to 1/2. The effect of the two windows on the accuracy of the strain measurement will
be tested later on. The procedure, CORRELI*™” | is implemented in MATLAB™ [28]. The
sub-pixel procedure allows for strain levels less than 10~* to be measured accurately with an
8-bit camera [16, 29]. For many materials (e.g., metals and alloys, composites), a strain range
varying between 10" and 5 x 1072 is sufficient to analyze tension/compression tests. How-
ever mineral wool or polymers can experience strain levels greater than the previous levels.
The aim of the following developments is to increase the maximum detectable displacement
without altering the intrinsic sensitivity of the sub-pixel correlation procedure. To achieve

this goal, a multi-scale approach is now developed.

B. Definition of image and displacement scales

To increase the maximum measurable displacement between two pictures, two major steps
are added. Contrary to adaptative local window shifting techniques [30, 31], in the present
approach, different scales are introduced: the finer scale is that of the original picture (i.e.,
typically 0.5 to 1 Mpixels with classical CCD cameras). It will be referred to as scale no. 0
(Fig. 4). In this image, the ROI is a smaller part of it: it defines the region over which the
multi-scale procedure will be applied. This corresponds to scale no. 1 (Fig. 4). Let dy; denote
the vector joining the origin of the ROI to that of the image frame. If no rigid body rotations
are assumed, the displacement field u(xy) in a homogeneous deformation test is expressed
as

u(xy) = Azo+a (13)
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with

A= (14)
0 A,

where A is an in-plane tensor that characterizes the average deformation (in the present
case, FF = A), and a a constant displacement vector. The right Cauchy-Green deformation
tensor can be written as

C =A%, (15)

and hence, in this particular case, the tensor A is nothing but the nominal strain tensor,
E=A.
In the frame of the ROI where a current point is located by the vector &, = xq — dp1,

the previous displacement is written as

’U,(CL'l) = A:L'1 + (a + Ad01) . (16)

One determines the largest values P and @ of the sub-ROI of size 2 x 29 centered and
inscribed in the ROI. This sub-ROI is adapted to FFT algorithms and defines scale no. 2
(Fig. 4). Let d;5 denote the vector joining the origin of the sub-ROI to that of the ROI. In

the frame of the sub-ROI (xy = @; — d;2), one has

u(xy) = Axy +[a+ A (dy + dio)]. (17)

From scale no. 3 on, each scale transition is characterized by the definition of super-pixels
(Fig. 4). The super-pixels are defined recursively from one scale to the next by averaging the
gray levels of 2 x 2 neighboring pixels. Alternatively, one could use the Fourier transform

images to filter them. Both procedures should give comparable results, and in the following

13



the real-space coarse-graining super-pixels are used. On scale no. n > 3, the displacement

field is now expressed as
’U,(CL'n) = Amn + 22—n [0, + A (d01 + d12)] . (18)

Equations (13), (16), (17) and (18) show that any scale transition leaves the magnitude of
strain unchanged whereas the average displacement decreases starting from scale no. 3. In
Fig. 4, the different notations used are summarized. A reference sub-ROI is shown and two
super-images on coarser scales. This procedure is carried out until the minimum size of the
sub-image is equal to 128 pixels. The size of the ZOI is such that p = 5 on scales no. 2 to
n. On scale no. 1, the user chooses the size of the ZOIs. An iterative correlation algorithm
is now applied on each scale. The aim is to first evaluate interpolated displacements (i.e., A
and a) on the higher scales down to scale no. 1 for which the displacement amplitude may
be greater than the size of the ZOI on scale no. 1.

The maximum detectable displacement amplitude is denoted by Awmax /= 3 x 2P~2
pixels (see Section 3.A). This value is independent of the scale considered. It is an intrinsic
property of the correlation procedure. It follows that the maximum measurable strain F; =

max(Azz, Ayy) on scale no. 1, when no multi-scale procedure is used, is expressed as

AWmax

Pr= s

(19)

where N is the maximum number of horizontal or vertical centers of ZOIs. If (N —1)d ~ 512
pixels, then four scales can be defined so that the size of the ROI on scale no. 4 is: Ly = 128

pixels. Consequently, the maximum detectable strain F, on scale no. 4 is

AW ax
FEy =
4 L4 )

(20)
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which can be of the order of four times the value on scale no. 1. Since the strain tensor A
remains unaltered by any of the considered scale transitions, this result shows the benefit of
using a multi-scale approach. The strain resolution is unaltered when a sub-pixel procedure
is used and the maximum value doubles for each scale transition n > 3. Furthermore, an
iterative scheme will improve the assessment for large displacements as discussed in the next

section.

C. Multi-scale correlation algorithm

The multi-scale correlation algorithm is summarized in the flow chart of Fig. 5. Starting on
the highest (i.e., coarser) scale, for which the sub-image size is at least equal to 128 super-
pixels, a first correlation is performed. From this first computation, the displacement field is

interpolated according to Eq. (18) as

u,(x,) = B, x, + b, (21)

where B,, and b,, are first estimates of the strain tensor (of the form given in Eq. (14)) and
rigid body displacement on scale no. n, respectively. To check this first estimate, the center
of each ROI of the ‘deformed’ image is relocated according to these first estimates. A new
correlation is performed and corrections to the previous displacement field are evaluated.
The iterations are stopped as soon as there is no new correction between two iterations
for any ZOI analyzed. This iterative procedure was implemented to make the displacement
evaluation more robust. This robustness is a key to the success of the procedure. If ever
the displacement is not properly evaluated on higher scales, there is no chance of getting
a good final result: see Section 4. Consequently, the first evaluations have to be performed
very carefully.

15



When the iterative procedure stops on scale no. n, it proceeds to scale no. (n — 1).
Having identified a first estimate of the displacement field, it is used to position the ZOIs
on scale no. (n — 1), according to the transformation rules inverted from those developed in
the previous section. The same iterative scheme is followed for scales no. (n — 1) to 2. In
practice, the user can choose between a first evaluation that is very fast since it remains on
the pixel (or super-pixel) level, and an accurate evaluation requiring several iterations. On
scale no. 1, the user selects either a pixel or a sub-pixel sensitivity of the displacement by
following the above described sub-pixel procedure, thereby allowing for the measurement of
small levels of strains as well as large levels that will be evaluated in the following sections.

When a sequence of more than two images is analyzed, two routes can be followed.
The first one consists in considering the same reference image. It follows that the errors are
not cumulated but there exists a maximum strain level above which the method fails (see
Section 4). The second one considers that the reference image is the deformed image of the
previous step (i.e., updating procedure). Under these hypotheses, there is no real limitation,
apart from the fact that the errors are now cumulated. Strains of the order of 1 and more are

routinely observed in a full-field assessment even with a conventional DIC technique [16].

D. Control of the displacement estimate

The previous procedure has to be further improved to account for severe texture variations
(see Section 5.B). In practice, small variations always occur but they are usually limited in
magnitude. However, a compressive test dealing with mineral wool samples requires to treat
explicitly this effect. Two different tests are therefore added.

First, it can be noted that, if the gray level is constant over a given ZOI, then a displace-

16



ment estimation based on a correlation technique is impossible (the signal derivative is the
key to minimizing the functional (2)). Consequently, the standard deviation of any ZOI has
to be greater than one gray level. It can be noted that on the images of Fig. 6, this condition
is not satisfied in the lower part. When the standard deviation is less than the chosen limit,
the interpolated displacement obtained by the multi-scale procedure is used instead of any
other estimate. This is true on any scale considered.

Second, to check that the correlation procedure was successful, an error indicator, which
is independent of the correlation product or its normalized counterpart, is introduced. The

following indicator

MEAN(ZOI) MEAN(ZOIuy)
_ _ MEAN(ZOT,o)MEAN(ZO14. 29
MEAN(ROILe) MEAN(ROIy) v (Z01er) (20%eer)  (22)

n

turned out to be satisfactory, where the subscript ¢ refers to the reference image and 4¢¢ to
the deformed image when convergence was obtained. Hence, a second test associated with 7 is
added: when 1 > 4 gray levels for 8-bit pictures, the correlation is considered as unsuccessful
and the correlated displacement is again preferred. This indicator allows for the correction
due to the average intensity change during a test and is expressed in terms of gray levels

thanks to the square root part.

4. Test on artificially deformed images

In this section, the reference image of Fig. 1 is used to evaluate the intrinsic performances of
the algorithm. The images are again deformed artificially with the same procedure as that
used to obtain the results of Fig. 3. Figure 4 shows the sub-ROT of the reference image and
the corresponding super-images for scales nos. n = 3,4. When a strain of 0.05 is applied and
a sub-pixel evaluation is chosen with no iteration, the effect of windowing can be discussed.
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When no window is used, an average strain of 0.0493+0.0001! is obtained. When the modified
Hanning window (Eq. (11)) is implemented, an average strain of 0.0494+0.0001 is measured.
Finally, when the edge-blurring procedure (Eq. (12)) is preferred, the average strain is equal
to 0.0496 & 7 x 107°. The last measurement is the most accurate. The other ones are also
acceptable thanks to the multi-scale procedure.

Figure 7 shows the results obtained by the multi-scale procedure for a nominal strain
of 0.35 when p = 4 and § = 16 pixels. The predicted value is 0.3501 + 0.0001 when the
sub-pixel option is used and 0.3496 4+ 0.0001 when the pixel option is used. For the sub-pixel
option, the standard deviation ranges between 0.13 and 0.26 pixel (average value: 0.2 pixel)
and is less than the prescribed limit. It follows that all the measurements are considered
to be accurate. This case is completely out of reach for a conventional DIC technique (see
Section 3.A). Because the prescribed and interpolated displacement fields are both bi-linear,
the present approach allows for displacement amplitudes greater than the size of the ZOI. In
the example, the displacement amplitude (i.e., 120 pixels) is 7.5 times greater than the ZOI
size (i.e., 16 pixels). The limitation is now given by the highest scale (i.e., n) as opposed to
scale no. 1 in the conventional DIC technique (in the present case, n = 4). Figure 8 shows
how the average strains evolve during the iterations on each scale. It can be seen that even
though the first estimate is only about one half of the actual solution, it is sufficient to get
a good result at the end of the computation. In this particular example, the iterations are
needed and convergence is not obtained otherwise. The benefit of the multi-scale procedure
is clearly shown as well as the iterative scheme for each scale.

A nominal strain of 0.5 is now considered. This amplitude is too large for the procedure

!when a number = is written as = #+ £, & corresponds to the standard error
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described above: it fails in one step with no additional treatment. Two different strategies

are used to measure that strain:

e first, only the reference and deformed pictures are considered. However, the user is
allowed to give a reference length Ly and ‘deformed’ lengths Lo+ AL for the deformed
pictures. This information is used to evaluate a first displacement field on scale no. n =
4. The average strain is equal to 0.503 4+ 0.001 and the maximum error is equal to 2.1

gray levels (the average is equal to 0.6 gray level),

e second, an intermediate picture is added (its deformation corresponds to 0.25) and
the reference picture is updated. This alternative is also successful (average strain:
0.502 £ 0.001) since strains of the order of 0.3 are measured without any problem with
a good accuracy (the maximum error is here equal to 0.8 gray level and the average

equals 0.2 gray level).

This simulation shows that, even though errors are cumulated when using more than one
deformed image in an updating procedure, the second strategy is more robust than the first
one. This is due to the fact that a 0.5 deformation is too high locally: the basic hypothesis of
a constant local displacement is no longer valid. These two strategies will also be investigated

in the following section devoted to the analysis of actual experiments.

5. Experiments on mineral wool samples

The above tests are quite satisfactory. However, by construction, there is no noise in the
signal, and more importantly, the basic hypothesis (1) is met with b(.) = 0. However, in real

cases, this assumption is only roughly satisfied, in particular when the images are obtained
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in a transmission mode. There is always a slight shift in contrast and in light intensity which
may affect the overall efficiency. Furthermore, by construction, CCD cameras produce noise.
Finally, the interpolated and prescribed displacements had the same shape. Therefore it is
important to test the method by using realistic images for which strain heterogeneities occur.
Compression experiments on stone and glass wool samples are analyzed below. Reflection

and transmission illuminations are considered.

A. Images in reflection

The first part deals with a series of pictures of three deformed stages of a 60 x 200 x 200
mm? stone wool sample, the last deformed image is shown in Fig. 9 as well as the reference
one. Since the product is crimped, the fibers are no longer oriented along a preferential
direction. The density of the material studied herein is equal to 80 kg/m?®. The images
are obtained in reflection. It follows that the corrections due to intensity variations are not
needed in this first case. However, they are still used to check whether any bias is introduced.
The pictures are taken by using a standard CCD camera (336 x 751 pixels, 8-bit coding).
Deformed picture no. 1 corresponds to an apparent strain of -0.083, which is evaluated by
measuring the distance variation between upper and lower platens. Apparent strains of the
order of -0.113 and -0.2 are obtained for pictures no. 2 and 3, respectively. It can be noted
that the upper platen is not necessarily in contact with the sample for the reference picture,
thereby inducing an uncertainty in the evaluation of the reference length Ly. Consequently,
the chosen ROI does not include the two platens (Fig. 9). Even though these apparent strains
are only orders of magnitude of the actual strain levels experienced by the stone wool sample,

the maximum measurable strain for a gauge length of 7 x 32 = 224 pixels is of the order of 0.1
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when p = 5. Consequently, a direct computation with no updating or additional information
will fail a priori; a posteriori it did for the last picture (for which the actual average strain
is of the order of —0.13). The two strategies introduced in Section 4. are also used in the
present case.

Figure 10 shows the deformed mesh as well as contours of the error defined in Eq. (22)
for the third deformed image. The first strategy leads to a maximum error equal to 10.7
gray levels (average: 1.2) that is greater than that given by the second (i.e., updating)
strategy (average: 0.7 and maximum: 7.2 gray levels). The same tendency as that observed
in Section 4 is found. The average strain level is equal to —0.034 +0.0008 for the first picture
(to compare with an apparent strain of —0.083). For the second image, the average is equal
to —0.056 £ 0.001 (to relate with an apparent strain of —0.113) and for the third image,
—0.128 + 0.005 (to compare with an apparent strain of —0.2). These results show that a
simple measurement based on apparent strains is not able to evaluate average strains in
the sample. This difference is probably due to the evaluation of the reference gauge length
Ly: the reference picture does not correspond to the point where the upper platen is in full
contact with the sample (dark zones close to the platens in Fig. 9-a that disappear later, see
Fig. 9-b). In practice, this moment is very difficult to determine. With the present results, it
is possible to evaluate the gauge length by using the measured average strains and by keeping
the measured separations of the platens for the deformed images. It follows that, for the two
first images, a value of 283 &= 1 pixels is predicted. This reference length is drawn in Fig. 9-a
and seems reasonable. For the third image, a value of 271 pixels is found. This presumably
indicates that the test is no longer homogeneous as shown in Fig. 10. This hypothesis is
confirmed by estimating the coefficient of variation (i.e., ratio of the standard deviation to
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the average strain) for the three stages: -0.025, -0.027 and -0.035, respectively.

In the present example, the multi-scale procedure allows for values of p as small as 4.
However, with this ZOI size, six analyzed points had a standard deviation of texture less
than the prescribed limit. A conventional correlation technique would have required at least
p = 7, thereby limiting the information concerning the strain heterogeneity in this kind of
experiment. This corresponds to a second gain of the multi-scale approach when compared
to classical DIC techniques. The results presented here are obtained in less than one minute

for 3 x 184 ZOIs (p = 5, = 32 pixels) on a Pentium II PC.

B. Images in transmission

The second case used to test the method is a 140 x 200 x 50 mm? sample of light glass
wool (i.e., 6 kg/m? in the present case), which in its deformed state is uniaxially compressed.
Images are obtained in transmission with no special preparation (Fig. 6). Moreover, due to
the structure of the medium, the displacement field is essentially along the main contraction
axis, and hence it is well-suited to the multi-scale analysis proposed in this study. Because of
its low density, this material is used for its thermal insulation properties. For the same reason,
it is severely compressed (i.e., more than 90%) and stored under high strains. The material
must be able to recover most of its initial thickness after decompression to provide the
required thermal insulation performances. The experimental procedure consists in applying
a maximum displacement to the upper platen and to measure the residual strain when the
displacement is removed. A sequence of 11 deformed states is considered.

At the end of the sequence, the apparent residual strain (i.e., AL/Lyg, see Fig. 6) is of

the order of —0.25. This value should make it possible to perform a direct measurement
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between the reference and deformed images shown in Fig. 6. However, the texture variation
during the experiment prevents this approach to be successful. Again, the two strategies of
Section 4 are used. First, when the user is allowed to give a reference and deformed gauge
length, the computation can be carried out in one step. However, a lot of points have their
error greater than 4 gray levels, thereby limiting the analysis of the fluctuations of strains.
An average strain of 0.2417 + 0.0002 is obtained and a corresponding standard deviation of
0.0377. The average strain is consistent with a direct observation of the apparent strain. The
average error is equal to 9.7 gray levels (maximum value: 71 gray levels). It follows that the
displacements of numerous ZOIs are set to the interpolated value because the estimate is
not accurate enough. Consequently, the estimate of the average strain is likely to be correct,
but the fluctuations are not completely captured.

Since a sequence of 11 pictures is taken, an updating procedure can be followed. The
ROI contains 840 ZOIs so that 9240 analyses on scale no. 1 are carried out (in less than two
minutes when no iterations are used on each scale, and less than 5 minutes when iterations
are allowed). An average strain of —0.250140.0004 is obtained and a corresponding standard
deviation of 0.0470. The average error is equal to 2.5 gray levels (maximum value: 22 gray
levels). This second set of results is more accurate than the first one. This is important when
considering the fluctuations. Even though errors are cumulated when using the updating
procedure, it is more robust because of texture variations. The change of the average strain
and corresponding standard deviation for the whole sequence is shown in Fig. 11. When the
maximum applied strain decreases, the average residual strain decreases and the correspond-
ing standard deviation increases. Apart from the initial stages of compression, the standard
deviation can be shown to increase in proportion to its mean value. More importantly, the
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volume elements which display a large (respectively small) residual strain as compared to the
average, are the same in the sequence of images, thus revealing that weak (or strong) spots
in the material remain weak (or strong) for all applied strains, and hence their mechanical
performance is presumably due to a given microstructure.

When a sub-pixel procedure is used on scale no. 1, an average strain of —0.2505+ 0.0004
and a corresponding standard deviation of 0.0529 are measured. The average error is equal to
2.5 gray levels. The reference and deformed meshes are shown in Fig. 11. Figure 12 compares
the deformed meshes for the final image of the sequence. First, the result obtained with an
analysis of one image. The fluctuations are minimal as explained above (Figure 12-a). Second,
Figure 12-b shows the results when no iterations are allowed in an updating procedure. The
average strain is equal to —0.257340.0004 and the average error is equal to 2.5 gray levels. In
this particular example, the iterations are not necessarily needed to get a reasonable estimate
for the strain field. This is due to the fact that the strain variation between two pictures
does not exceed 0.05. The effect of discarding the test on the error to keep a displacement
estimate is shown in Fig. 12-c. The fluctuations increase since the standard deviation now
equals 0.0601 for an average strain of —0.2572+0.0004 and an average error of 2.5 gray levels.
In this case the fluctuations are higher, but still on the same order as a sub-pixel procedure.
Finally, Fig. 12-d shows the effect of considering analyses for which the standard deviation of
the ZOI can be very small. Few additional artifacts can be observed and lead to an increase
of the standard deviation (i.e., 0.0607) for an average strain equal to —0.2557+0.0004 and an
average error of 2.5 gray levels. Altogether, these four results are consistent with each other.
Yet, if the strain fluctuations are sought, the two additional tests introduced in Section 3.D
are very useful.
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6. Conclusions

An improved procedure is introduced to determine displacement fields from the comparison
of two images. It is based on a multi-scale approach of a homogeneous strain field in a tension
or compression test. When a sub-pixel procedure is used, strains of the order of 0.0001 can be
measured. The multi-scale approach enables the user to measure strain levels that are more
important than with a conventional technique; the more the number of scales, the higher the
maximum measurable strain. Furthermore, the texture variation is considered by checking
the standard deviation of the zones of interest and introducing an error indicator, which is
independent of the correlation procedure.

The method has been tested on two cases. A first artificial example where an actual
texture has been deformed numerically, and a second based on real pictures of compressed
glass wool samples. The first case gives accurate estimates of the displacement field when
compared to a known displacement. Strain levels as high as 0.35 (or as low as -0.26) can be
measured when only two images are considered and no strain fluctuations occur. For higher
strain levels, the updating procedure is very robust, even though the errors are cumulated.
In this example, it is also shown that the iteration procedure used on each scale is beneficial
to the overall performance of the algorithm.

The second example shows a first situation dealing with stone wool samples for which
the images are obtained in reflection. In this case, fluctuations occur and are measured with
the multi-scale approach. In particular, it is shown that the higher the applied strain, the
higher the corresponding standard deviation. The updating strategy turned out to be the

most reliable because the region of interest was not too large (the number of scales involved
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did not allow for a direct measurement). The correlation technique yields a local information
regarding the strains that can be compared to the local texture. The second situation, which
is more complicated, corresponds to a glass wool sample compressed at different levels. Here,
the images were obtained in transmission. Consequently, severe texture variations occur.
Again, the updating procedure was the most robust strategy. It was possible to correlate the
average permanent strain with the corresponding standard deviation.

Finally, it can be noted that the measurement of displacement and strain fields in ex-
periments on mineral wool samples are only possible, up to now, thanks to digital image
correlation. When large strains occur, which is usually the case, and/or texture variations,
robust techniques are needed. Otherwise, the evaluation of the strain fluctuations cannot be
estimated. The iterative multi-scale strategy was successful in the examples studied herein. It
was also used to analyze multiaxial experiments on elastomers (e.g., PET) for which strains

as high as 0.3 were measured between two images [32].
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List of Tables

1 Average nominal strain E,, and corresponding standard deviation ﬁyy for dif-
ferent sizes of ZOIs (§ = 16 pixels) predicted by a conventional DIC technique.

A pixel procedure is used. The prescribed strain Ey, is equal to 0.05.
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Table 1. Average nominal strain Eyy and corresponding standard deviation fyy for
different sizes of ZOIs (6 = 16 pixels) predicted by a conventional DIC technique.

A pixel procedure is used. The prescribed strain £, is equal to 0.05.

1l

Eyy

p=4|0.0014 | 0.003

p =5 || 0.0419 | 0.0006

p =6 || 0.0456 | 0.0004

p =71 0.0470 | 0.0001
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Fig. 10. Reference and deformed meshes of a stone wool sample predicted by using
two strategies of the multi-scale approach and corresponding error contours: (a)
no image update, (b) with two image updates. The black square depicts one ZOI

(p =5, = 32 pixels).
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32 pixels). Four different options
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Fig. 12. Comparison of reference and deformed meshes at the end of the sequence
are used in the multi-scale approach: (a) no image update, (b) with image update
Hild et al.

and no iteration, (¢) with image update and no limitation on 7 and (d) with image

update and no test on the local texture fluctuations.

of a compressed glass wool sample (p = 5,0



