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SUMMARY

It is proposed to determine damage parameters in two dimensions (surface of a material) or three
dimensions (in the bulk of a solid) by using full-field displacement measurements. A finite-element
approach is developed to evaluate piece-wise constant elastic parameters modeled by an isotropic
damage variable. Two sets of examples are discussed. The first series deals with mechanical fields
obtained by finite element simulations to assess the performance of the approach. The second series is
concerned with displacement measurements performed during a biaxial test on a composite material.
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 1

1. INTRODUCTION

The current development of reliable displacement field measurement techniques enables
one to better characterize the behavior of materials and the response of structures to
external loadings. Homogeneous materials under complex load histories or heterogeneous
microstructures induce kinematic fields that require full-field analyses to understand the
interactions between the material microstructure and the external loading. To bridge the gap
between experiments and numerical simulations, full-field measurement techniques and model

identification can be utilized.

Among different measurement techniques [1, 2, 3, 4, 5], digital image correlation is one of
the most appealing in solid mechanics. It is fast, sensitive and versatile so that sub-minute
runs on conventional PCs give access to displacement fields with more than 1000 measurement
“points”. The rapid development of reasonably cheap CCD cameras allows the user to acquire
good quality images (namely, high pixel count, large dynamic range) and achieve sub-pixel
resolution that are needed in many applications [6]. For instance, the possibility to resolve
strain heterogeneities, and thus to determine complete displacement maps becomes highly
desirable (e.g., experiments on heterogeneous materials [3], detection of crack initiation [7] or

strain singularities [8], and analysis of strain localization [9]).

Full-field measurements often need inversion techniques to determine the mechanical
properties field of the materials. Updating techniques based upon the constitutive equation
error [10, 11, 12] have been used in the analysis of vibrations [13], the determination of damage
fields [14] or to study heterogeneous tests (e.g., Brazilian test [15]). An alternative to the
previous approach is, for instance, the so-called virtual field method that has been used to
identify homogeneous properties of composites [16, 17] (i.e., in anisotropic elasticity). Another
procedure is based upon the reciprocity gap [18] that can also be used to determine the local

elastic field or to detect cracks in elastic media [19].

In this paper, we propose another method that only needs displacement field data. In the
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2 D. CLAIRE, F. HILD AND S. ROUX

present case, the in-plane displacements are measured on surfaces of samples by digital image
correlation. It therefore consists in identifying elastic property fields on the surface of a sample.
The practical applications discussed herein are restricted to plane stress hypotheses. However,
with the use, for instance, of X-Ray (micro)tomography [20], 3D maps of density variations
can be reconstructed. A full 3D displacement field is therefore measurable by correlating
density maps at different stages of an experiment and the same identification procedure may be
applicable to these situations. Section 2 is devoted to the discussion of continuum and discrete
formulations of the problem. In Section 3, the implementation is discussed when a piece-wise
constant property field is sought. A non-conventional finite element formulation is derived,
which is consistent with the available information (i.e., the measured displacement field).
Different error indicators are introduced in Section 4. Section 5 deals with cases where the input
data (i.e., displacement field) is obtained via a classical FE computation. Its role is to assess
the intrinsic properties of the identification procedure when dealing with uniform, layered or
random damage fields. In Section 6, a heterogeneous test is analyzed and the conditions for

crack inception are examined by using an isotropic description of damage.

2. MECHANICAL ANALYSIS

In the following, an identification formulation is derived in which the displacements u(x) are
known and the elastic properties are unknown. This problem setting is unconventional in the
sense that classical FE formulations assume known mechanical properties and try to determine

the displacement field for different types of boundary conditions.

2.1. Continuum Case

Let us consider a structure €. In the absence of body forces, equilibrium is described by

div[e(u)] = 0, (1)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 3

where o is the Cauchy stress tensor that depends on the known displacement w. In the sequel,
the heterogeneity of the elastic field is reduced to a scalar and isotropic damage field D(x) [21].
For this type of damage description, the Poisson’s ratio is unaffected and the Lamé’s coefficients
can be written as A(z) = [l — D(x)] and p(x) = po[l — D(x)], where the subscript o refers

to reference quantities. In this case, when D(x) is less than 1, Eqn. (1) becomes

[2po€e(u) + Aotr{e(u)}1] grad[ln(l — D)] + div[2upe(u) + Aotr{e(u)}1] = 0, (2)

where €(u) is the infinitesimal strain tensor. By introducing the bare stress field, 3(u) =

2uoe(u) + Aotr{e(u)}1 as if D =0, the above equation can be written as

Y (u)grad[In(l — D)] + div[X(u)] =0 (3)

and hence, in a generic case where det[X(u)] # 0, the above relation can be inverted to give

grad[ln(1 — D)] = =3~ (u)div[Z(u)]. (4)

Let us note from this expression that, starting from an estimate of the displacement field u
from which e(u) and then X (u) are computed, it is not guaranteed that the r.h.s. of Eqn. (4)
derives from a scalar field In(1 — D). A necessary and sufficient condition for the existence of

such a field is that

curl {27! (u)div[E(u)]} = 0. (5)

Equation (5) is a compatibility condition comparable to the classical Beltrami kinematic
compatibility condition. Therefore, the information provided by the displacement field is
redundant. There exist also cases where Eqn. (2) cannot be inverted to determine grad[ln(1 —
D)]. It corresponds to cases where (at least) one eigenvalue of the bare stress tensor is 0.
However, in generic cases, this condition will apply only at discrete points, or along a free
boundary. The former case can be handled easily, because of the isolated nature of these points.
The latter is a priori more difficult, however, even though the component of grad[ln(1 — D)]

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0

Prepared using nmeauth.cls



4 D. CLAIRE, F. HILD AND S. ROUX

normal to the free surface cannot be determined, the tangential component may be sufficient to
have access to 1 — D. Thus, along such a boundary, the above equation is no longer redundant,
and it may be a signal calling attention to the fact that the determination of damage close to
a free surface may be less accurate than the bulk determination.

It may also be noted that the redundant character of this equation results from the
assumption of a single isotropic scalar damage parameter. If for instance, A and p were
experiencing variations from places to places, without a fixed ratio as in the present problem,
the redundant nature of the equation is lost, but the problem is still solvable (i.e., well-posed)
at least by sub-domains separated by curves through which jumps in the elastic constants could
exist [22]. In the latter case, the well-posedness could re-emerge if one takes into account an
extraneous condition such as the smooth variation in the elastic constants (what may or may
not be legitimate). This subtle question is however irrelevant for the case of an isotropic scalar
damage field. Thus the compatibility equations can be used as a measure of the soundness of
the initial hypotheses, and provided they are satisfied, the damage field can be estimated by
integration of the gradient field. We also note that because no information on the loading is
incorporated in the present formulation, the (1 — D)-field is determined up to a multiplicative
constant.

Lastly, an approximate evaluation of the damage field D leads to the existence of body force

residuals f,

£, (D) = [2poe(u) + Aotr{e(u)}1] grad[In(1 — D)] + div[2ue(u) + Aotr{e(u)}1], (6)

so that a weak form of an identification procedure of a damage field would lead to the

minimization of the body force residuals over a given domain ()

: A 112
min || f,.(D)llg (7)
where ||.||o denotes any suitable norm taken over a domain  (e.g., an “energy norm”).
Consequently, the present procedure is referred to as equilibrium gap method.
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 5

2.2. Discontinuous Case

The previous analysis is valid for continuous and differentiable property (i.e., damage) fields.
When the considered medium is assumed to have damage discontinuities, a more suitable
setting is needed, i.e., Eqn. (1) now corresponds to a continuity of the stress vector across a

surface of normal n

[o.n] =0, (8)

where [x] denotes the jump of the quantity . For a normal n = e, under plane strain

conditions, Eqn. (8) becomes

[(1 = D){Ao(ezz + Eyy) +2p0€221] = 0, [(1— D)Noawy]] =0, 9)

(the corresponding plane stress condition could be written in similar terms). As mentioned
earlier, the evaluation of the field (1 — D) is obtained up to a multiplicative constant, since no

force measures are considered.

2.3. FE Approach

The jump conditions (9) are directly applied to a FE formulation. Contrary to classical
settings, the nodal displacements are inputs whereas elastic coefficients are unknown. The
potential energy theorem allows for a weak formulation of the equilibrium equations (1), which
is linearly dependent on the displacements and elastic properties. Since most measurement
techniques yield data on a regular mesh of points, the same hypothesis is made for the
identification procedure. Consequently, quadratic square elements are considered for which
each node corresponds to a measurement point. This hypothesis allows us to derive a specific
formulation in which only middle nodes are considered. When the damage parameter D, is
constant for a given element e occupying a domain 2., the elementary stiffness matrix can be
written as

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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6 D. CLAIRE, F. HILD AND S. ROUX

[Kme](De) = (1 - De)[KmeO] (].0)

where [K 0] is the elementary stiffness matrix of an undamaged element. Similarly, the strain

energy Ep. can be written as

Epe(De,{uc}) =

o e K el e, ()

where {u.} is the nodal displacement column vector and ¢ the matrix transposition. In the

absence of external load on the considered nodes, the equilibrium conditions (8) can be

rewritten for each middle node ‘+’ of two neighboring elements ‘-’ and ‘+’
OBmt b pt (- - + +
dus (De, D {ue } = {uy} {ul} = {uz}) =0, (12)
with
Em+(D,, DS {u, },{uf}) = Eme(D, , {u, }) + Eme(D{, {ud}), (13)

where w4 is the displacement vector of the considered middle node ‘+’, D, D} are the damage
variables in elements ‘—’ and ‘+’, respectively. In Eqn. (12), the equilibrium condition is written
when the nodal displacements {u; } and {u}} are equal to the corresponding measurements
{u;.} and {u} }. By considering this condition for each middle node, one ends up with a linear
system in which the unknowns are the damage parameters assumed to be piece-wise constant
and the known quantities are all the measured nodal displacements. If Eqn. (12) is not strictly

satisfied, then a residual force F', arises

OFE,, , OFEn,

Fr(f)e_af):’{ur_n}’{uﬁ}) = ﬁ(De_a{ur_n}) + E(ﬁj’{u;}): (14)

where D and D} are trial values of the unknown damage variables. The aim of the following
section is to propose a practical setting for the identification of a damage field from the
knowledge of displacement fields by minimizing the residuals F',.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 7

It is worth mentioning that the present approach is close, in its initial setting (i.e., based on
weak equilibrium conditions), to the virtual field method [16]. In the present case, the shape
function associated to middle nodes of finite elements corresponds to a particular choice of the
trial (or virtual) displacement field. However, the input is the measured displacement field as
opposed to the strain field needed in the virtual field method and the constitutive equation

error approach [14]. It can be noted that the latter can also use displacement fields [15].

3. PRACTICAL FORMULATION

Since damage is assumed to be isotropic, a more appropriate setting can be used. The k!

equilibrium condition becomes

gr({un )1 = D7) = gr({ui, N1 - DY), (15)

where g and § are generic functions depending on the nodal displacements (see Appendix A).

By considering all the equilibrium equations, the following global system is obtained

[G){D} = {g} with {D}!={D; D, ... Dy}, (16)

where [G] and {g} are known and contain the nodal displacements. The advantage of this

setting is that it can be written in a logarithmic form

In(1-D7)—In(1—DF) =In|gs({uy})| —In|ge({uz})]- (17)

Equation (17) automatically satisfies the requirement D < 1. However, this type of formulation
can only be used for middle points. When corner nodes are concerned with (generally) four
damage unknowns associated to the connecting elements, the same logarithmic form [Eqn. (17)]
cannot be used. However, the original setting corresponding to the equilibrium condition
[Eqn. (12)] can be written for corner nodes and would also lead to a linear system similar
to Eqn. (15) generally containing four unknowns per equation.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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8 D. CLAIRE, F. HILD AND S. ROUX

The system to solve is

[M]{d} = {q}, (18)

where {d} is defined by

{d}={In(1-D;) In(1—Dy) ... In(1 - Dy)}, (19)

[M] an assembled matrix corresponding to all the conditions (17) and only depends on the
topology of the mesh (i.e., it is independent of the displacement measurements) whereas {q}
is a vector that depends upon the measured displacements.

At this level, we can make the connection with the discussion of Section 2.1. The
compatibility equation introduced in the continuum case has a natural counterpart in
the discretized version. Since one has access to the differences between In(1 — D) defined
at neighboring elements, the summation of these differences along any closed loop (e.g.,
elementary loops are sufficient) has to be zero. Because of numerical uncertainty, or noise or
inappropriate hypotheses on the constitute equations, such sums may significantly differ from
0. First, this property can be used to measure the quality (i.e., consistency) of the approach.
Second, it constraints the numerical method used to cope with possible deviations from such
compatibility requirements.

The system (18) is over-determined (e.g., for a square mesh made of N elements, the number
of equations M is of the order of 4N, see Section 5). For a structure 2, the following norm is

minimized

T = IIM]{d} — {a}If3 (20)

with respect to {d}. A certain robustness can be expected thanks to the redundancy of
the equations. This point will be addressed when noise is added to the measurements (see
Section 5). The minimization produces the following linear system

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 9

(M) [M]){d} = [M]'{q}. (21)

A variant to this formulation is to introduce a positive weight matrix [W] to give more
importance in the least biased equations. This is equivalent to modifying the norm ||[.]||2
and considering the norm ||[.]||w. The higher the stress vector, the higher the weight. In the

linear system, we suggest to use [W] as a diagonal M x M matrix

(w0 0]
0 w2 ... 0
wi= oo : (22)
L 0 0 Wp ]
with
wi = |gr({ur}) + gr({uh D[ (23)

The power « is adjusted so that the test cases with known damage distributions lead to the

best results [23]. A value o = 1.5 has been obtained. The system to solve becomes

(M) W][M]){d} = ((M]'[W]){q}- (24)

For Eqn. (24), the matrix [M]{[W][M] has a zero eigen value and a corresponding eigen
vector {d}! = {1 1 ... 1} (i.e., this corresponds to a global rescaling of the local elastic
constants, or the (1 — D) field, by a fixed multiplicative factor which does not affect the
solution). Consequently, one can arbitrarily set one damage component of {d}. For simplicity,

let us choose the i{" component and consider the following initial condition

{d}y={00...0In(1-D);, 0 ... 0} (25)

and

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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10 D. CLAIRE, F. HILD AND S. ROUX

{6} = {d} —{d}o, (26)

one needs to solve over the (N — 1) degrees of freedom of 8, ¢ = 1,..., N and i # 4o. This
corresponds to omitting the i§® line and column of the [M]{[W][M] matrix. It is easy to see
from Eqn. (4) that the zero-eigenvalue is unique, and thus the resulting matrix is now positive

definite

(M W][M]){0} = (MT'[W]){q} — ((M]'[W][M]){d}o. (27)

This linear system can be solved by using different numerical methods. A conjugate gradient
technique [24] making use of the sparseness of the matrix ([M]/[W][M]) is used in all the

following applications.

4. ERROR INDICATORS

Different error indicators are now introduced. One of them, which is an error estimator, can be
used when the exact solution is known. The other ones can be utilized wether the exact solution
is known or not. When the damage field is known, the global quality of the identification can

be assessed by using the error estimator n

1 XN
2 _ Z 2
n = N Me > (28)
e=1
with
-0y, .|
2 — “elid
2t = -1, (29)
[(1 — De)pre ]

where the subscript py. denotes a prescribed quantity and ;g an identified one, and N the
number of unknowns. For this estimator, the average value (1 — D.)iq is renormalized to
obtain a unit average ratio (1 — D¢)iq/(1 — De)pre; this is possible since the identification is

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 11

obtained up to a multiplicative constant. From Eqn. (15), an error indicator can be defined

when the exact solution is unknown

M
W = [GHD) ~ {9} = 5 3 F2(h), (30)
k=1

where F,. corresponds to the residual associated with the k' equilibrium condition, and M
the number of middle nodes. The quantity x characterizes the average equilibrium residuals.
From this point of view, it is close to the indicator based on equilibrium residuals used to
assess the quality of a FE computation [25, 26, 27]. This value can be compared to the
configuration with a homogeneous damage distribution. The corresponding value, kg, is defined

when {D}§ ={11 ... 1}

M
5 = IGHDYo ~ {9} 1} = 17 D k), (31)

k=1

where F,o corresponds to the residual associated with the k' equilibrium condition for a

homogeneous distribution of damage. A local indicator can also be defined

F? & F2(n)
2 _ : 2 _
Ky = 3 with F7, = n; o (32)

so that Y p_, k2(k) = 1 [since Nk? = Y, F2(k)], where . measures the contribution of
each element e to the global quantity «, and n,, the number of middle points for the considered
element e (i.e., generally 4 for an inner element, 3 for edge elements and 2 for corner elements,
since the boundary conditions in terms of load are not accounted for). The factor 1/2 is put
to equally assign the residual to the two considered elements.

From their definition, the x and kg indicators correspond to a well-defined physical object,
with a continuum limit which quantifies the violation of equilibrium (i.e., integral of the
residual volume force density which has to be applied to restore the force balance as shown in
Section 2.1). When & is equal to 0, the exact solution is found. However, a simple dimensional
analysis shows that these quantities depend on the stress scale, which is exogenous to the
present problem (i.e., based solely on kinematic measurements). Therefore, even though the

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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12 D. CLAIRE, F. HILD AND S. ROUX

solution is defined up to a constant scale factor in (1 — D), k does depend on that factor.
Consequently, the absolute scale for « is meaningless. Only relative values can be utilized.
However, because of the previous stress scale sensitivity, it is of interest to introduce another
quantification of the suitability of a numerical solution to the posed problem. (Note however,
that the distinction between two contributions to a global error is not discussed, namely, 1)
one coming from the possible inconsistency of the input displacement field [i.e., violation of
Eqn. (5)] and ii) the numerical quality of the solution assuming no inconsistency.) Associated

to the n*™ middle node where the residual force is F',., the associated work W, is defined as

W (D7, DF iy}, {8 }) = [Fr (D7, DY {tn, }, {Gh,}) | (33)

where the displacements i+, {@,, }, {@, } are the measured displacements from which the

‘—> and ‘4’ has been removed. This filtering is important to

rigid body motion of elements
guarantee the objectivity of the indicator W,.. As a practical way of removing the rigid body
motion of the two elements ‘4’ and ‘-’, a least squares regression is performed over the twelve
nodes surrounding the considered ‘+’ middle node. If the measured displacement field is strain-
free, then %,,+ = 0. The magnitude of W, can be compared to the elastic energy FE,,+ in the

two considered elements ‘—’ and ‘+’ so that the following local indicator 8 no longer depends

on the unknown stress scale

W.(Dg, DF, {tip,}, {G,})

= . 3
EMi(D;:Dja{ﬁ;}a{ﬁ;}) ( )
An error per element can be defined as
_ R0
fo=> e (35)

n=1

Again, the factor 1/2 is put to equally assign the residual to the two considered elements. The

global integration over the entire mesh gives an average error indicator

1 M
0 =+ > o(m). (36)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 13

Similarly, a global indicator © can also be defined as

(37)

where W, is the total work done by the residuals and FE,, is the corresponding total
elastic energy. The two last indicators are independent of the stress scale factor. The above
“error” indicators are two examples of an infinite family of similar quantities based on the
local density 6(m), integrated over the considered domain with a measure w(m) based on
the local elastic energy density, as a homogeneous function of degree 0. Either w(m) =
ME,,+(D;,Df {a,}, {4} })/E,y and one recovers ©, or w(m) = 1 gives (§). The first weight
allows one to give less importance to regions of space where the stress level is low (i.e., more

sensitive to measurement uncertainties) and therefore where identification is less secure.

5. APPLICATIONS WITH “FE MEASURES”

A first series of computations considers a squared structure discretized with a X a quadratic
elements. Three edges are clamped and, in the middle of the fourth one, a point-force is
applied (Fig. 1-a). Three types of cases are considered. First, no damage at all exists (i.e.,
it will be referred to as homogeneous, abbreviation h). Second, a layered configuration is
analyzed in which the damage field only depends on y (abbreviation ). Third, a random
configuration (abbreviation r) with horizontal and vertical damage fluctuations. A uniform
damage distribution is chosen and varies between 0 and 0.9 (Fig. 1-b). Each configuration to
be studied is identified by three parameters a —b—abbreviation(h, 7, or ), where b?> denotes the
number of elements with a constant value of damage in a random configuration (r), and a x b
for a layered configuration (I). In the following examples, the first step consists in running
a conventional FE analysis. The nodal displacements (i.e., the “measurements”) are stored
and constitute the inputs to the damage identification procedure. The aim is to use the non-
standard FE formulation to recover the damage field.

The structure has 2a(a — 1) interior middle nodes and a?> damage unknowns. The conjugate

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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14 D. CLAIRE, F. HILD AND S. ROUX

gradient technique is well-adapted for systems with large dimensions [24]. In the present case,
the number of iterations was chosen such that a criterion based on dimensionless residuals is
less than 10715 (Fig. 2). Figure 3 compares the damage field used to get the “measurements”
and that obtained by the identification procedure for a 10 — 1 — [ configuration. In the initial
determination of the displacement field the prescribed damage field is layered. However, this
information is not imposed when the identification analysis is performed. We assume a priori
that the damage parameter may take a different value for each element. Yet the layering is
very accurately recovered. The error field 7, is also shown in Fig. 3. The estimator is less than
2% and the global value 5 is equal to 0.6%.

Figure 4 compares a prescribed damage field to a computed one when the damage parameter
is constant over 7 x 7 elements (i.e., 49 — 7 —r configuration). This information is not imposed
in the analysis. A complete 49 x 49 field of damage is searched for, and yet the macroscopic
checkerboard is obtained with a good accuracy. The only location where the results are less
accurate is close to the point where the force is applied thereby leading to a singularity that
is not fully captured with the regular mesh used in the simulations. The choice of the point
where a non-zero value of D is applied is arbitrary. Different points have been tested and a
very weak influence on the error ) was found. Furthermore, in Fig. 5, the three error fields 7.,
ke and 6, are compared. The three quantities lead to similar results in terms of distribution.
This constitutes a validation of the error estimators k. and 6, when the solution is unknown
(see following section).

One can note in Fig. 6 that the computed damage field is close to the prescribed values
with a random distribution (i.e., 49 — 1 — r configuration). The only deviation is obtained
close to the point force location where it is known that the “measurements” themselves are
not accurate. In this extreme random case the global error 7 is equal to 3.2%. The results
obtained for more than 2a? iterations in the conjugate gradient calculations require less than
one minute on a Pentium III PC.

In Table I, a first series of results is given for one realization of the damage fields. In all cases,
the error 5 remains equal to at most few percents, even though the complexity of the problem

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0-0
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A FINITE ELEMENT FORMULATION TO IDENTIFY DAMAGE FIELDS 15

is multiplied by 24 for the random configuration 49 — 1 — r when compared to 10 — 1 — 7.
No significant degradation of the error is noted as the size of the problem increases. A second
series of results corresponds to 10 realizations per studied configuration. The average error
(n) remains close to the reference series. These results show that the average error is still of
the order of a few percents. To characterize the sensitivity to a measurement noise, a white

noise is added to the *

‘measured” displacements (i.e., they contain modes at the scale of the
heterogeneities). For a noise amplitude on the displacement field corresponding to a strain
variation equal to 10% of the average strain in the structure, the average error 7 for 100
realizations is given in Table I. One may note that the order of magnitude is similar to that
obtained in the reference configurations with no noise. The robustness of the technique has
therefore been demonstrated for homogeneous, layered and random damage fields.

Moreover, the ratio x/kg is given in Table II. The lower the ratio, the more heterogeneous

the damage field, i.e., for the same structure

K K K
K0 / homogeneous Ko / 1ayered K0 / random

In Table II, the values of the two indicators () and © are also reported. It can be mentioned
that © is greater than (f) for a given configuration. The order of magnitude of the two
indicators is the same when the series with 100 and 2401 elements are analyzed. As already
noted, when the number of elements (i.e., unknowns) increases, the values of all the error

indicators increases too, but not as fast as the number of unknowns.

6. ANALYSIS OF A BIAXIAL EXPERIMENT ON A COMPOSITE MATERIAL

In this section actual displacement measurements are used. The studied material is a vinylester
matrix reinforced by E glass fibers. A quasi-uniform distribution of orientations leads to an
isotropic elastic behavior prior to matrix cracking and fiber breakage, which are the main
damage mechanisms [28]. A cross-shaped specimen is loaded in a multiaxial testing machine
(Fig. 7-a). The experiment is performed in such a way that the forces applied along two
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perpendicular directions are identical. By construction of the machine, the specimen center is
motionless, thereby avoiding spurious loads.

The displacements fields of Fig. 7-b are measured by digital image correlation [29]. Each
“measurement point” corresponds to the center of an interrogation window of size 64 x 64
pixels, equivalent to a surface of about 8 mm?. At this scale, the material is not homogeneous
(see Fig. 7-a). The shift between two neighboring measurement points is 32 pixels. A sub-pixel
algorithm is used. It enables for a displacement resolution of a few hundreds of one pixel for
8-bit pictures [30, 6]. To achieve a better robustness, an iterative and multi-scale version was
used [29, 31].

Figure 8 shows four damage fields computed from the measured displacement fields. From
the analysis of Fig. 7-b, a crack clearly appears on the top left corner for the last load level
before failure. This crack can be observed on the last damage map by the three dark elements.
On the two first load levels, one can note at least three different corners where the damage
value becomes significant. At this stage, crack inception is likely to have occurred in these
three corners. One of them subsequently became preeminent as can be seen on the third load
level. This type of analysis cannot be performed by only looking at the displacement field
measurements. It shows that the present approach is able to give additional ways of analyzing
experimental measurements.

In Fig. 8, the error indicators k. and 8, maps are also plotted for the four different load
levels. For the last load level, the errors become significantly altered in the vicinity of the
macrocrack, thereby indicating that the equilibrium conditions are no longer satisfied for a
discretized, yet continuous displacement field. This is important to note since a “continuum”
approach is used even in this extreme case. In the following analysis, the global error indicators
K, Ko, and © are used. Since the damage field is normalized in the same way during the whole
sequence, the error levels kK and k¢ can be compared during the history of loading. Figure 9-a
shows their change with the load level. The ratio k/ko remains constant until the last level.
This result indicates that the damage heterogeneity does not evolve significantly until the last
level. Two different regimes of the error x are observed: namely, a first gentle increase up to
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approximately 9 kN and then a steeper one up to failure. This trend indicates a change that can
be attributed to macrocrack initiation. Figure 9-b shows the change of the indicator © with the
applied load. Up to approximately 9 kN, the quality of the identification is identical. It starts
to degrade for 10 kN and strongly changes for 11 kN, thereby indicating that a continuum
description is no longer acceptable. These results show that the two sets of error indicators
are complementary and yield different information to analyze the experiments reported in the

present section.

7. CONCLUSIONS

An identification procedure was developed to identify damage fields by using kinematic fields.
A non-standard finite element formulation was derived in which the nodal displacements are
known and the elastic properties (or the damage field) are unknown. The latter are assumed
to remain uniform over each element, but vary from element to element. When considering
quadratic elements and only dealing with middle nodes, a linear system was derived in which
the unknown are written in logarithmic form. Error indicators have been introduced to assess
the quality of the identification.

When artificial measurements are used, a comparison could be performed with an a priori
prescribed damage field. An overall quality on the order of a few percents was achieved in all
the configurations tested herein. When some additional noise was considered, the error did not
change significantly. The example of a cross-shaped specimen loaded along two perpendicular
directions allowed us to analyze the multiple point inception of macrocracks prior to any visible
discontinuity on the measured displacement field. In this last case, the error indicators were a
useful tool when the actual solution is unknown.

The present method has the advantage of being directly applicable as a post-processor
to the current displacement field measurement techniques such as digital image correlation.
When coupled with the present analysis based on quadratic finite elements, it constitutes an
integrated approach to the determination of damage fields from displacement measurements.
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can be noted that up to now, only an isotropic damage description was used. In the future,

extension to more complex descriptions will be sought. This work is still in progress.
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APPENDIX

For a quadratic square element (i.e., with 8 displacement nodes), the strain energy is computed for
two neighboring elements. The sum of two energies is differentiated with respect to the corresponding
degrees of freedom so that two equations are obtained per considered middle node. The equilibrium

equation can be written as

g({u. N1 - D.) = g({uf (1 - D) (39)
where the superscript ~ corresponds to quantities relative to one element and T to the other one. Only
two different situations arise, namely, a vertical or a horizontal boundary. For a vertical boundary, the

projection of the equilibrium equation along the e, direction yields

Uy — Uz —8uy —uy +u; +8ug

i{ur) = =
vy +4vy, +vy —vg —4dvg — vy
+ 9
1—w (—34u; — 26u; — 8uy — 26u; — 34u; + 128ug
+
21/0 45
4 —bvy +4v; + v3_9— vy —4dvg + 5117_) (40)
and
+ 4t + + _ ot +
o —uy +uz +8uy +uy —u; —8u
ifuf)) = —HE TS T TR
—of —doF —of +of +4od +oF
+ 9
1—wy [(—26u) — 3dug + 128uf — 3du — 26u; — Sugy
+
21/0 45
+ —v{"—4v2‘+5v2‘9—5v§"+4v3‘+v.}") (41)

by using the numbering ¢ given in Fig. Al. Similarly, the projection along the e, direction yields

—Su; +4u, +uz —u; —4ug + Su;

qury) = -
—8v; —4v; + 8vy —4vy — 8v, + 16vg
+
9
1—wo (u; +4uy +ug —uy —4ug —uy
+
21/0 9
N —T7Tv;y —43v; + 56v; 243115_ —TTv; + 1841}8_> (42)
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and

—uf — 4ud + 5ud — 5uf +4dud +uf

Wulp = -
+ —4vf — 8vf + 16v] — 8vF — dvf + SuF
9
n 1—wo [—uf —dud —ud +uf +4ud +uf
21/0 9
N —43v — 7Tvf + 184vj4— TTvd —43v] + 561;;) (43)
For a horizontal boundary, the projection along the e, direction yields
= —8u; + 16u, —8uz —4uy; + 8ug —4u,
oucy) = e TSt m e S D S
—Sv; +5vy —4vy —vg +v; +4ug
+ 9
1—wvy (—TTu] +184u, — 77uz; —43ug + 56ugs — 43u;
+
21/0 45
4 vl_—vs_—4v4_zv5_+v7_—|—4v8_> (44)
and
. —4ut + 8ul — 4ut — 8ud + 16ut — Sut
dufy) = SIS ot T o — o
—vf + v + duf — 5u + buf — 4o
+ 9
1—vo [ —43uf + 56uf —43uf — 77uf + 184ul — 77uf
+
21/0 45
N —v{"+v§f‘+4v2’+v;—v;"—4v§'> (45)
9
and the projection along the e, direction yields
P U, — U3 —4uy —uy; +u; +4ug
afury) = Mte— ot T 2o
vy +8vy, +vy —wvg —8vg —vy
+
15
1—wo (—bui +5u; —4uy, —uy; +u, +4ug
+
21/0 9
+ —34v; + 128v, — 34v; — 26v; —8vg — 26w, (46)
45
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and

g{ul})

—uf +ud +4uf +ud —uf —dud

9
—vf —8vf —vf +of +8vf +vf
15
1—wvy (—ul +ud +4uf —5ud +5uf — dug
21/0 9
—2607 — 8vy — 260F — 34vF + 128vF — 34vF
45
7 6 5
8 4
1 2 3

Figure A1l. Node numbering of a quadratic element.
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Table I. Errors n for different configurations, () when 10 random selections are performed per

configuration, 77 when noise is added (100 random selections are sampled per configuration).

Configuration || 10—-1—h | 10—-1—-7 | 10—-1—7 || 49—-1—h | 49—-1—-1] | 49-1—7r
n 0.002 0.006 0.013 0.017 0.024(1) 0.032(1)
(n) - 0.007 0.007 - 0.023 0.039
7 0.015 0.016 0.026 0.020 0.032 0.051

() configurations of Fig. 1-b.
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Table II. Ratio k/ko, error indicators (§) and © for different types of configurations.

Configuration || 10-1-h 10-1-1 10-1-r 49-1-h | 49-1-10 | 49-1-r()
K/ Ko 0.86 3.4x107% | 2.2x1073 0.77 1.0x1072 | 4.7x1073

(6) 1.5x107* | 3.3x107* | 2.7x10™* || 6.4x107* | 1.3x1073 | 1.6x1073

0 2.0x107% | 1.4x1073 | 1.6x1073 || 6.3x1073 | 7.4x1073 | 4.5x1073

() configurations of Fig. 1-b.
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Figure 1. a-Considered structure. In the middle of one edge a point force F', is applied. b-Random

(49 — 1 — r configuration) or layered (49 — 1 — I configuration) damage field D.
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Figure 2. Norm of residual vector associated with the conjugate gradient technique versus iteration

number (49 — 1 — [ configuration).
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(1-D) prescribed (1-D) identified error Ne

Figure 3. Prescribed (a) and identified (b) damage fields for a 10 — 1 — r configuration. Corresponding
error field (c) 7e.
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Figure 4. Prescribed (a) and identified (b) damage fields for a 49 — 7 — r configuration. Corresponding
error field (c) 7e.
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r]e Ke ee

Figure 5. Error maps 7, ke and 8 for a 49 — 1 — [ configuration.
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Figure 6. Ratio of identified to prescribed damage versus ordinate y in a 49 — 1 — r configuration.
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Figure 7. a-Sample in the testing machine ASTREE and microstructure of the studied composite.

b-Displacement fields measured by digital image correlation for two load levels (failure load: 11.1 kN).
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Figure 8. Computed damage fields (1 — D) for 4 load levels and corresponding error fields k. and 6.
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Figure 9. Error indicators &, ko and © versus load level. From the analysis of the results, it is expected

that crack initiation occurred around 9 kN.
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