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Abstract

We examine a particular kind of six-dimensional Cremonian universe featuring one dimension of space,
three dimensions of time and other two dimensions that cannot be ranked as either time or space. One of
these two, generated by a one-parametric aggregate of (straight-)lines lying on a quadratic cone, is more
similar to the spatial dimension. The other, represented by a singly-parametrical set of singular space
quartic curves situated on a proper ruled quadric surface, bears more resemblance to time. Yet, the two
dimensions differ profoundly from both time and space because, although being macroscopic, they are
not accessible to (detectable by) every Cremonian observer. This toy-model thus demonstrates that there
might exist extra-dimensions that need not necessarily be compactified to remain unobservable.

There are a number of features of the macroscopic physical world that still remain substantially
beyond grasp of theoretical physics. Among them, the non-trivial structure of time and the ob-
served dimensionality of the universe obviously represent a case in question. As we found [1,2]
and have repeatedly stressed [3–5], the two properties seem to be intimately intertwined and ask,
therefore, for a conceptually new approach to be properly understood. A (very promising) piece
of such a formalism is undoubtedly the concept/theory of Cremonian space-times [6–14].

The Cremonian picture of space-time is indeed remarkable in several aspects. The first, and
perhaps most notable, fact is that without employing any concept of metric (measure), this ap-
proach fundamentally distinguishes the time dimension(s) from spatial ones and, in its most trivial
form, it straightforwardly leads to their observed number (4) and respective ratio (1+3) as well
[6,7,9,10]. Second, it demonstrates that these dimensions are not primordial, but emerge from
more fundamental algebraic geometrical structures [13]. Third, it indicates that the universe with
the inverse signature might evolutionary be intimately connected with our universe [12]. And last,
but not least, when the observer (subject) is concerned, it qualitatively reproduces our ordinary
perception of time as well as a whole variety of altered/non-ordinary forms of mental space-times
[10,15]; moreover, every observer in this basic Cremonian universe is found to face an intricate 2+1
break-up among the space dimensions themselves [14].

In this paper, we introduce and examine a particular kind of a more complex, six dimensional
Cremonian universe whose spatio-temporal sector is still four dimensional, yet featuring three di-
mensions of time and just a single spatial coordinate. The character of other two dimensions
is neither that of space nor time; in addition, these dimensions are only conditionally observ-
able/accessible. This Cremonian universe sits in the 3-dimensional projective space over the fields
of the real numbers ℜ and is generated by the configuration of fundamental elements of a homa-
loidal web of cubic (i.e., third-order) surfaces that share a proper conic, Q̂, a (straight-)line, L̂,

incident with the conic and not lying in its plane, and three different non-collinear points, B̂i

(i=1,2,3), none of them incident with either L̂ or the plane of Q̂. The cubics of the web have

also two double points, D1 and D2, in common; both the points lie on L̂, the former being the
intersection of L̂ and Q̂ [16,17]. Selecting an allowable system of homogeneous coordinates z̆α

(α=1,2,3,4) in such a way that

L̂ : z̆1 = 0 = z̆2, (1)

Q̂ : z̆4 = 0 = −2z̆1z̆2 + z̆1z̆3 + z̆2z̆3 ≡ C, (2)

B̂1 : ̺z̆α = (0, a, b, c), a, c 6= 0, (3)

B̂2 : ̺z̆α = (f, 0, g, h), f, h 6= 0, (4)

B̂3 : ̺z̆α = (k, k, l, m), k, l, m 6= 0, (5)
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D1 : ̺z̆α = (0, 0, 1, 0), (6)

D2 : ̺z̆α = (0, 0, 0, 1), (7)

where ̺ is a non-zero proportionality factor, and assuming, without any substantial loss of gener-
ality, that

a

c
=

f

h
= 2

k(l − k)

lm
≡ −Θ, (8)

the web in question is given by

W(ηα) : η1z̆1z̆4

(
k(gz̆1 − f z̆3)

fl − gk
+ z̆2

)
+η2z̆2z̆4

(
z̆1 +

k(bz̆2 − az̆3)

al − bk

)
+η3z̆1D+η4z̆2D = 0, (9)

with

D ≡ −2z̆1z̆2 + z̆1z̆3 + z̆2z̆3 + Θz̆3z̆4 = C + Θz̆3z̆4, (10)

and ηα ∈ ℜ. This web generates the following Cremona transformation [16]

̺z̆′
1

= z̆1z̆4

(
k(gz̆1 − f z̆3)

fl − gk
+ z̆2

)
, (11)

̺z̆′
2

= z̆2z̆4

(
z̆1 +

k(bz̆2 − az̆3)

al − bk

)
, (12)

̺z̆′
3

= z̆1D, (13)

̺z̆′
4

= z̆2D, (14)

where z̆′α are the homogeneous coordinates of an allowable system in the second (“primed”) pro-
jective space.

Our forthcoming task is to find the fundamental elements of W(ηα). To begin with, we recall
[6,16] that the fundamental element of a Cremona transformation between two 3-dimensional
projective spaces is a curve, or a surface, in one space whose corresponding image in the other
space is a single point;1 the loci of fundamental elements of the same kind being mapped, in general,
into curves, i.e., one-dimensional geometrical objects, of the second space. Employing Eqs.(11)–
(14), it is quite a straightforward task to spot that in our present case the loci of such elements are

the plane of the conic Q̂, the three planes B̂iL̂, the quadric D=0 and the quadratic cone C=0, for
their images in the second space are indeed curves, namely lines (for the planes and the quadric)

and/or a twisted cubic (for the cone) [17]. To be more explicit, the plane of Q̂ host a pencil (i.e.,
linear, single parametrical set) of fundamental lines (ϑ1,2 ∈ ℜ)

L̃(ϑ1,2) : ϑ1z̆1 + ϑ2z̆2 = 0 = z̆4, (15)

whose point of concurrence is the point D1; a line from this pencil has for its primed counterpart
a point of the line sL̂′ : z̆′

1
= 0 = z̆′

2
, the latter being single (hence the superscript “s”) on the

surfaces of the inverse homaloidal web. The three planes B̂iL̂ contain each a pencil of fundamental
conics whose four base (i.e., shared by all the members) points are D1, D2, B̂i and Ki – the last

one being the point, not on L̂, in which the plane in question cuts the conic Q̂; in particular,

Q̃i=1(ϑ1,2) : z̆1 = 0 = ϑ1z̆4(bz̆2 − az̆3) + ϑ2z̆3(z̆2 + Θz̆4), (16)

Q̃i=2(ϑ1,2) : z̆2 = 0 = ϑ1z̆4(gz̆1 − f z̆3) + ϑ2z̆3(z̆1 + Θz̆4), (17)

Q̃i=3(ϑ1,2) : z̆1 − z̆2 = 0 = ϑ1z̆4(lz̆2 − kz̆3) + ϑ2(−2z̆2

2
+ 2z̆2z̆3 + Θz̆3z̆4). (18)

It is readily verified that a conic of Q̃i(ϑ1,2) corresponds to a point of the line dL̂′
i, where

dL̂′
i=1

: z̆′1 = 0 = z̆′3,
dL̂′

i=2
: z̆′2 = 0 = z̆′4, and dL̂′

i=3
: z̆′3 − z̆′4 = 0 = (l − gk/f)z̆′1 − (l − bk/a)z̆′2,

respectively; all these lines are double (“d”) on a generic homaloid of the inverse web. The intrinsic
structure and mutual coupling between these four pencils are depicted in Figure 1. If one compares
this configuration with the one introduced and studied in detail in [6], which is associated with a
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Figure 1: A schematic sketch of the structure of the configuration of the four “fundamental” pencils
defined by Eqs. (15)–(18). In each pencil, out of an infinite number of its members only several
are drawn. This configuration represents the space-time “sector” of the corresponding Cremonian
manifold, with three time dimensions (Q̃i) and a single space one (L̃).

homaloidal web of quadric surfaces and which reproduces what is macroscopically observed, one
finds that the two configurations are prefect inverses of each other; it was, among other things, also
this feature that motivated us to examine thoroughly this particular kind of Cremonian universe.

Now we turn to quadratic loci of fundamental elements. The quadric D=0, which is proper (i.e.,
non-composite) and ruled (i.e., containing infinity of lines), accommodates a single parametrical
aggregate of fundamental quartics, i.e., curves of order four,

F̃(ϑ1,2) : ϑ1z̆1

(
k(gz̆1 − f z̆3)

fl − gk
+ z̆2

)
+ ϑ2z̆2

(
z̆1 +

k(bz̆2 − az̆3)

al − bk

)
= 0 = D; (19)

these quartics share the five points B̂i (i=1,2,3), D1 and D2, and, in the primed space, they

correspond to the points of the line qL̂′ : z̆′
3

= 0 = z̆′
4
, the latter being of multiplicity four (“q”)

on the inverse homaloids. All the proper quartics in the set are singular, D2 being their common
double point, and, as it is also obvious from Figure 2, they are genuine space curves. There
are just three composite quartics within this aggregate, each comprising a pair of conics, namely
(ϑ ≡ ϑ2/ϑ1)

F̃(ϑ = 0) ≡ F̃⊙
0

: z̆1 = 0 = D ∪
k(gz̆1 − f z̆3)

fl − gk
+ z̆2 = 0 = D, (20)

F̃(ϑ = ∞) ≡ F̃⊙
∞ : z̆2 = 0 = D ∪ z̆1 +

k(bz̆2 − az̆3)

al − bk
= 0 = D, (21)

F̃(ϑ = ℘) ≡ F̃⊙
℘ : z̆1 − z̆2 = 0 = D ∪ agz̆1 + bf z̆2 − af z̆3 = 0 = D, (22)

where ℘ ≡ −f(al − bk)/a(fl − gk). Figure 2 illustrates the shape of this aggregate for a generic
case where each composite quartic comprises a pair of proper conics. (This property does not hold

in our constrained case (see Eq. (8)), where one of the conics of both F̃⊙
0

and F̃⊙
∞ is composite (a

line pair).)
1Equivalently, a fundamental element associated with a given homaloidal web of surfaces is, in general, any

curve/surface whose only intersections with a generic member of the web are the base (i.e., common to all the
members) elements of the latter [16].
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Figure 2: A schematic sketch of the structure of the singly-infinite set of quartics defined by Eq. (19)
for the generic case where the constraint imposed by Eq. (8) is relaxed. As in the previous figure,

only a few quartics are illustrated, including the composites F̃⊙
0

(dot-dashed), F̃⊙
∞ (dotted) and

F̃⊙
℘ (dashed).

In the case of the quadric cone, C=0, the fundamental elements are again lines, forming the
following singly-infinite family

L̃
C
(ϑ) : z̆1 − ϑz̆2 = 0 = (ϑ + 1)z̆3 − 2ϑz̆2, (23)

with the parameter ϑ running through all the real numbers and infinity as well; for substituting
the last equation into Eqs. (11)–(14) yields (ς 6= 0)

ςz̆′
1

= ϑ

(
ϑ(ϑ + 1)

gk

fl − gk
+ (ϑ + 1) − 2ϑ

fk

fl − gk

)
, (24)

ςz̆′
2

= ϑ(ϑ + 1) + (ϑ + 1)
bk

al − bk
− 2ϑ

ak

al − bk
, (25)

ςz̆′
3

= 2Θϑ2, (26)

ςz̆′
4

= 2Θϑ, (27)

which say that a generic line of L̃
C
(ϑ) corresponds indeed to a single point of the second projective

space. The structure of this aggregate can be discerned from Figure 3.
At this point we invoke our fundamental “Cremonian” postulate [6–10] which says that each

single parametrical sets of fundamental elements generates/represents a unique dimension of a
Cremonian universe, with pencil-borne aggregates having a special status of generating space (lines)
and time (conics). Hence, the Cremonian universe under discussion is six-dimensional, with three

dimensions of time (Q̃i), one dimension of space (L̃) and two additional dimensions (F̃ and L̃
C
) of

a different nature. It is these two extra-dimensions which are of our next concern.
It is obvious that the F̃ -dimension bears more resemblance to time, for its constituents are, like

conics, of non-linear character, whereas the L̃
C
-one, whose elements are lines, is more similar to the

spatial dimension. Yet, there exists a profound difference between the four pencil-dimensions and
these two “extra-”dimensions. This difference stems from the fact that the former are all planar

configurations, whereas the latter are both located on quadratic surfaces, and acquires its most
pronounced form when a particular Cremonian observer is concerned. For a Cremonian observer
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Figure 3: A schematic sketch of the structure of the singly-infinite set of lines “sweeping” the
quadric cone C=0. As in the previous two figures, only a finite number of lines are drawn.

is represented by a line [10,14,15], and whilst any line in a three-dimensional projective space is
incident with any plane (see, e.g., Refs. [18,19]), this is no longer the case for a pair comprising a
line and a non-composite quadric; given any non-composite quadric (whether proper, or a cone),
there exist an infinite number of lines incident with it, but also an infinity of lines which have no
intersection with this quadric. If we take this incidence relation as a synonym of the observer’s
awareness of the particular dimension, then we see that the four “planar” dimensions (i.e., time
and space) will be observed by (accessible to) every observer, while the two “quadratic” ones not!
In other words, for each of these two non-planar dimensions, there exist two distinct groups of the
observers; one comprising observers who perceive this dimension, the other those who do not. This
finding thus amounts to saying that these two extra-dimensions are observable only conditionally.

It is of crucial importance to realize here that the conditional observability of these extra-
dimensions has nothing to do with their length (compactification), as no concept of the mea-
sure/metric has so far been introduced into our model. Instead, it is of a purely algebraic geo-
metrical origin, based solely on the incidence relations between relevant geometrical objects and
intimately linked with the fact that the ground field of the background projective space, taken to
be that of the real numbers, is not algebraically closed; for the geometrical problem of finding the
common points of a line and a quadric in a 3-dimensional projective space defined over a given
ground field reduces to the algebraic one of solving/factoring a quadratic equation in the given
field, which is not always possible unless the field is algebraically closed (see, e.g., Ref. [20]). This
toy-model thus demonstrates that there might exist extra-dimensions that need not necessarily be
compactified/curled-up to remain unobservable. And this is a truly serious implication, especially
for cosmology and high energy particle physics.
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