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LARGE DEVIATIONS FOR THE CHEMICAL DISTANCE IN

SUPERCRITICAL BERNOULLI PERCOLATION

By Olivier Garet and Régine Marchand

University of Orléans and University of Nancy

The chemical distance D(x, y) is the length of the shortest open
path between two points x and y in an infinite Bernoulli percolation
cluster. In this work, we study the asymptotic behavior of this random
metric, and we prove that, for an appropriate norm µ depending on
the dimension and the percolation parameter, the probability of the
event

{

0↔ x,
D(0, x)

µ(x)
/∈ (1− ε,1 + ε)

}

exponentially decreases when ‖x‖1 tends to infinity. From this bound
we also derive a large deviation inequality for the corresponding
asymptotic shape result.

1. Introduction and statement of main results. The matter of this article
is the study of the asymptotic length of the shortest open path between two
points in an infinite Bernoulli percolation cluster.

Let us first recall the Bernoulli percolation model and its usual notation.
Consider the graph whose vertices are the points of Zd, and put a nonori-
ented edge between each pair {x, y} of points in Zd such that the Euclidean
distance between x and y is equal to 1: two such points are called neighbors,
and this set of edges is denoted by Ed.

Set Ω = {0,1}Ed
. We denote by Pp the product probability (pδ1 + (1 −

p)δ0)
⊗Ed

on the set Ω. For a point ω in Ω, we say that the edge e ∈ Ed is
open in the configuration ω if ω(e) = 1, and closed otherwise. The states of
the different edges are thus independent under Pp. In the whole paper, the
parameter p is supposed to satisfy p ∈ (pc,1], where pc = pc(d) is the critical
probability for Bernoulli bond percolation on Zd.

Received October 2005; revised September 2006.
AMS 2000 subject classifications. Primary 60K35; secondary 82B43.
Key words and phrases. Percolation, first-passage percolation, chemical distance, shape

theorem, large deviation inequalities.

This is an electronic reprint of the original article published by the
Institute of Mathematical Statistics in The Annals of Probability,
2007, Vol. 35, No. 3, 833–866. This reprint differs from the original in pagination
and typographic detail.

1

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/009117906000000881
http://www.imstat.org
http://www.ams.org/msc/
http://www.imstat.org
http://www.imstat.org/aop/
http://dx.doi.org/10.1214/009117906000000881


2 O. GARET AND R. MARCHAND

A path is a sequence γ = (x1, e1, x2, e2, . . . , xn, en, xn+1) such that xi and
xi+1 are neighbors and ei is the edge between xi and xi+1. We will also
sometimes describe γ only by the vertices it visits γ = (x1, x2, . . . , xn, xn+1)
or by its edges γ = (e1, e2, . . . , en). The number n of edges in γ is called the
length of γ and is denoted by |γ|. Moreover, we will only consider simple

paths for which the visited vertices are all distinct. A path is said to be open

in the configuration ω if all its edges are open in ω.
The clusters of a configuration ω are the connected components of the

graph induced on Zd by the open edges in ω. For x in Zd, we denote by
C(x) the cluster containing x. In other words, C(x) is the set of points
in Zd that are linked to x by an open path. We write x ↔ y to signify
that x and y belong to the same cluster. For p > pc, there exists almost
surely one and only one infinite cluster. We denote by C∞ the random set:
C∞ = {k ∈ Zd : |C(k)|= +∞}, which is almost surely connected.

We introduce the chemical distance D(x, y)(ω) between x and y in Zd,
depending on the Bernoulli percolation configuration ω:

D(x, y)(ω) = inf
γ
|γ|,

where the infimum is taken on the set of paths whose ends are x and y and
that are open in the configuration ω. It is of course only defined when x
and y are in the same percolation cluster. Otherwise, we set by convention
D(x, y) = +∞. The random distance D(x, y) is thus, when it is finite, the
minimal number of open edges needed to link x and y in the configuration
ω, and is thus larger than ‖x − y‖1, where ‖ · ‖1 is the usual ℓ1 norm:
‖x‖1 =

∑d
i=1 |xi|.

Note that the chemical distance D(0, x) on the infinite Bernoulli cluster
with parameter p > pc can be seen as the travel time between 0 and x in
a first-passage percolation model where the passage times of the edges are
independent identically distributed random variables with common distri-
bution pδ1 + (1− p)δ+∞.

Antal and Pisztora [1] have proved that the chemical distance cannot
asymptotically be too large when compared with the usual distance ‖ · ‖1:
for each p > pc, there exists a positive constant ρ such that

lim sup
‖x‖1→+∞

lnPp(0↔ x,D(0, x) ≥ ρ‖x‖1)

‖x‖1
< 0.(1)

If we think of the chemical distance as a special travel time in a first-
passage percolation model, it is natural to expect that the term ρ‖x‖1 in (1)
could be replaced by a smaller term, depending on a directional functional.
Indeed, a good candidate exists, which has been defined in a previous paper
of the authors:
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Proposition 1.1 ([7]). Let p > pc and consider the chemical distan-

ce D(·, ·) for Bernoulli percolation with parameter p. There exists a norm µ
on Rd such that, almost surely on the event {0 ↔∞},

∀u ∈ Zd lim
n→∞

D(0, Tn,uu)

Tn,u
= µ(u),

where (Tn,u)n≥1 is the increasing sequence of positive integers k such that

ku ↔∞.

It is then natural to study the fluctuations around this limit, and to look
for exponential decay results analogous to the ones obtained, for instance by
Grimmett and Kesten [8], in first-passage percolation. Therefore, the main
objective of this work is to prove the following large deviation bound:

Theorem 1.2. Let p in the interval (pc,1] and denote by µ the norm

on Rd given by Proposition 1.1. Then,

∀ε > 0 limsup
‖x‖1→+∞

lnPp(0 ↔ x,D(0, x)/µ(x) /∈ (1− ε,1 + ε))

‖x‖1
< 0.

The proof of Theorem 1.2 is divided into two parts: the upper large devi-
ations and the lower large deviations, which are, respectively, dealt with in
Sections 3 and 4.

First, in Section 3, we prove an upper large deviations inequality or, more
precisely, the following exponential bound for the probability that the chem-
ical distance between two points x and y is abnormally large:

Theorem 1.3. For every p > pc(d) and every ε > 0, we have

limsup
‖x‖1→+∞

lnPp(0 ↔ x,D(0, x)≥ (1 + ε)µ(x))

‖x‖1
< 0.

The proof of this result strongly relies, through an appropriate renormal-
ization argument, on the fact that, when p is sufficiently close to one, the
chemical distance looks like the usual distance ‖ · ‖1.

Theorem 1.4. For each α > 0, there exists p′(α) ∈ (pc(d),1) such that

for every p ∈ (p′(α),1], the Bernoulli percolation with parameter p satisfies:

lim sup
‖x‖1→+∞

lnPp(0↔ x,D(0, x) ≥ (1 + α)‖x‖1)

‖x‖1
< 0.

We also obtain, as a corollary of this result, the continuity in p = 1 of the
map p 7→ µp, where µp denotes the norm associated to the chemical distance
in the Bernoulli percolation with parameter p:
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Corollary 1.5. limp→1 sup‖x‖1≤1 |µp(x)−‖x‖1|= 0.

In Section 4, we prove a lower large deviations inequality or, more pre-
cisely, the following exponential bound for the probability that the chemical
distance between two points x and y is abnormally small.

Theorem 1.6. For every p > pc(d) and every ε > 0, we have

limsup
‖x‖1→+∞

lnPp(0 ↔ x,D(0, x)≤ (1− ε)µ(x))

‖x‖1
< 0.

In its main lines, the proof follows the strategy used by Grimmett and
Kesten [8] to prove an exponential bound for an analogous quantity con-
cerning first-passage percolation along the first coordinate axis. However,
two types of extra difficulties arise in our context: we want to obtain an
exponential bound in every direction, not only along the first-coordinate
axis, and moreover we want this bound to be uniform with respect to this
direction. Thus, we first study in Lemma 4.2 the minimal number of open
edges needed to join the origin to hyperplanes with a given direction. Then
in Lemma 4.3 we study the minimal number of open edges needed to cross
a box oriented along the same direction. All estimates are done uniformly
in the direction, and, to conclude the proof of Theorem 1.6, we use a renor-
malization argument.

Let us discuss briefly the speed—in ‖x‖1—that appears in the previous
large deviations inequalities. Let us first look at the lower large deviations.
Choose an x∈ Zd, and then, by the classical FKG inequalities, we obtain

Pp(D(0, (m + n)x)≤ (1− ε)(m + n)µ(x))

≥ Pp(D(0,mx)≤ (1− ε)mµ(x),D(mx, (m + n)x)≤ (1− ε)nµ(x))

≥ Pp(D(0,mx)≤ (1− ε)mµ(x))Pp(D(0, nx)≤ (1− ε)nµ(x)).

Thus, the limit 1
n‖x‖1

lnPp(D(0, nx) ≤ (1 − ε)nµ(x)) exists as n goes to in-

finity, and is strictly negative by Theorem 1.6. Now, two distinct cases can
occur:

• Either µ(x) = ‖x‖1. This corresponds to the existence of a flat face in
the asymptotic shape and occurs for some x as soon as p >−→pc(d), critical
probability for oriented percolation on Zd (see [7]). In this case, because
of the inequality D(0, x) ≥ ‖x‖1, the asymptotic speed in the direction of
x is as fast as it is permitted by the geometry of the lattice: thus, we have

1

n
lnPp(D(0, nx)≤ (1− ε)nµ(x)) = −∞.
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• Or µ(x) > ‖x‖1. Then for any ε small enough to have (1− ε)µ(x) > ‖x‖1,
we can force a deterministic path with exactly n‖x‖1 edges with ends 0
and nx to be open, which implies that the chemical distance between 0
and nx is less than (1− ε)nµ(x):

Pp(D(0, nx)≤ (1− ε)nµ(x)) ≥ pn‖x‖1 ,

that is,
1

n‖x‖1
lnPp(D(0, nx)≤ (1− ε)nµ(x)) ≥ lnp > −∞.

Thus the exponential rate in Theorem 1.6 is optimal.
Turning to the upper large deviations, we can once again force a deter-

ministic path with exactly ⌊n(1 + ε)‖x‖1⌋+ 1 edges with ends 0 and nx to
be the only open path between 0 and nx, which implies that the chemical
distance between 0 and nx is larger than (1 + ε)nµ(x):

Pp(+∞ > D(0, nx)≥ (1 + ε)nµ(x)) ≥ (p(1− p)2d)⌊n(1+ε)‖x‖1⌋+1,

whence

lim inf
n→+∞

lnPp(+∞ > D(0, nx) ≥ (1 + ε)nµ(x))

n‖x‖1
≥ (1 + ε) ln(p(1− p)2d).

Once again, the exponential rate in Theorem 1.3 is optimal.
This phenomenon is quite different from what is expected of large devia-

tions in first-passage percolation with bounded passage times. Indeed, in the
context of first-passage percolation with bounded passage times, building a
bad configuration that forces the travel time between 0 and nx to be too
large should cost more that cn‖x‖1 . We expect then a speed in ‖x‖d

1; see [10]
and also [3]. On the other hand, building a configuration that allows the
travel time between 0 and nx to be too small should typically still need a
cost of order cn‖x‖1 , as it is sufficient to build one “too good” path. Thus
the speeds for upper large deviations and lower large deviations in classical
first-passage percolation could be different.

Finally, in Section 5, thanks to the uniformity with respect to the direction
provided by Theorem 1.2, we will also prove a large deviation inequality for
the asymptotic shape of the set Bt of points that are at a distance less or
equal to t from the origin:

Bt = {x ∈ Zd : 0↔ x,D(0, x) ≤ t}.
Since p > pc, we can condition the probability measure on the event that the
origin 0 is in an infinite cluster, which has positive probability:

Pp(A) =
Pp(A ∩ {0 ∈C∞})

Pp(0 ∈C∞)
.

In order to study the convergence of the random set Bt/t, we also introduce
the Hausdorff distance between two non empty compact subsets of Rd:
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1. For x ∈ Rd and r ≥ 0, Bµ(x, r) = {y ∈ Rd :µ(x− y)≤ r}.
2. The Hausdorff distance between two nonempty compact subsets K1

and K2 of Rd is defined by

D(K1,K2) = inf{r ≥ 0 :K1 ⊂K2 + Bµ(0, r) and K2 ⊂K1 + Bµ(0, r)}.
Note that the equivalence of norms on Rd ensures that the topology induced
by this Hausdorff distance does not depend on the choice of the norm µ. We
can now state the random set version of Theorem 1.2.

Theorem 1.7. For every p > pc(d), for every ε > 0, there exist two
strictly positive constants A and B such that

∀t > 0 Pp

(

D
(

Bt

t
,Bµ(0,1)

)

≥ ε

)

≤ Ae−Bt.

This result improves the following asymptotic shape result that was proved
by the authors in [7]: for every p > pc(d),

lim
t→+∞

D
(

Bt

t
,Bµ(0,1)

)

= 0, Pp a.s.

Let us begin now with the main notations and a reminder of some com-
mon useful results in supercritical percolation theory. We also include in the
following section a technical lemma to build bases of Rd that are adapted
to the proof of directional estimates.

2. Notations and preliminary results.

2.1. Norms, balls and spheres. On the space Rd, consider the canonical
basis (e1, . . . , ed). For every x ∈ Rd, define the three classical following norms:

‖x‖1 =
d
∑

m=1

|xi|, ‖x‖2 =

(

d
∑

m=1

|xi|2
)1/2

, ‖x‖∞ = max
1≤m≤d

|xi|.

For i ∈ {1,2,∞}, x ∈ Rd and r > 0, we define the following balls in Zd:

Bi(x, r) = {y ∈ Zd :‖y − x‖i ≤ r} and Si = {x ∈ Rd :‖x‖i = 1}.
Recall that

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√

d‖x‖2.

We also consider the norm µ given by Proposition 1.1. We recall the reader
that, for x ∈ Rd and r > 0, we chose to consider, for the norm µ, balls in Rd

rather than in Zd:

Bµ(x, r) = {y ∈ Rd :µ(y − x) ≤ r}.
We also introduce µinf = infy∈S1 µ(y), which is strictly positive. As µ is

invariant under the symmetries of the grid, we get the inequality

µinf‖x‖1 ≤ µ(x)≤ µ(e1)‖x‖1.
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2.2. Exponential inequalities. Let us rewrite the result of Antal and Pisz-
tora [1] in an appropriate form to further computations: there exist three
strictly positive constants A1, B1 and ρ, depending only on the dimension
d and on the percolation parameter p > pc(d), such that

∀x ∈ Zd Pp(0↔ x,D(0, x)≥ ρ‖x‖1) ≤A1e
−B1‖x‖1 .(2)

We also recall here some classical results concerning the geometry of the
clusters in supercritical percolation. Thanks to [2], we can control the radius
of finite clusters: there exist two strictly positive constants A2 and B2 such
that

∀r > 0 Pp(|C(0)| < +∞,0↔ ∂B1(0, r)) ≤A2e
−B2r.(3)

We can also control the size of the holes in the infinite cluster: there exist
two strictly positive constants A3 and B3 such that

∀r > 0 Pp(C∞ ∩B1(0, r) = ∅)≤ A3e
−B3r.(4)

When d = 2, this result follows from the large deviation estimates by Durrett
and Schonmann [6]. Their methods can easily be transposed when d ≥ 3.
Nevertheless, when d ≥ 3, the easiest way to obtain it seems to use [9] slab’s
result.

Note that in (3) and in (4), the choice of the norm ‖ · ‖1 is, of course,
irrelevant thanks to the norm equivalence.

2.3. Stochastic comparison. First, there is a natural partial order � on

Ω = {0,1}Ed
: for ω and ω′ in Ω, one says that ω � ω′ holds if and only if

ωe ≤ ω′
e for each e ∈ Ed. Consequently, we say that a function f :ω → R is

nondecreasing if f(ω) ≤ f(ω′) as soon as ω � ω′. An event A is said to be
nondecreasing if its indicator function 1A is nondecreasing.

Let us now recall the concept of stochastic domination: we say that a
probability measure µ dominates a probability measure ν if

∫

f dν ≤
∫

f dµ

holds as soon as f in an nondecreasing function. We also write ν � µ.
In the following, it will often be useful to compare locally dependent fields

with products of Bernoulli probability measures: remember that a family
{Yx, x ∈ Zd} of random variables is said to be locally dependent if there
exists k such that, for every a ∈ Zd, Ya is independent of {Yx :‖x−a‖2 ≥ k}.

Proposition 2.1 ([11]). Let d, k be positive integers. There exists a non-

decreasing function π : [0,1] → [0,1] satisfying limδ→1 π(δ) = 1 such that the
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following holds: if Y = {Yx, x∈ Zd} is a locally dependent family of random

variables satisfying

∀x ∈ Zd P (Yx = 1)≥ δ,

then PY � Ber(π(δ))⊗Zd
.

This is in fact a particular case, but sufficient for our purposes, of a more
general result given in [11].

2.4. Some consequences of the symmetry properties. Let us introduce
some notation: we denote by Sd the symmetric group on {1, . . . , d}. For
each x = (x1, . . . , xd) ∈ Rd, σ ∈ Sd and ε ∈ {+1,−1}d, we define

Ψσ,ε(x) =
d
∑

i=1

ε(i)xσ(i)ei.

Then O(Zd) = {Ψσ,ε :σ ∈ Sd, ε ∈ {+1,−1}d} is the group of orthogonal
transformations that preserve the grid Zd. Consequently, its elements also
preserve the norm µ.

When studying the chemical distance in a given direction x, we want to
find a basis of Rd adapted to the studied direction, that is, made of images
of x by elements of O(Zd). The next technical lemma gives the existence of
such a basis, and an extra uniformity property in the direction y:

Lemma 2.2. There exists a constant Cd > 0 such that, for each x ∈ Rd,

there exists a family (g1,x, g2,x, . . . , gd,x) ∈ (O(Zd))d with g1,x = IdRd and such

that the linear map Lx : Rd → Rd defined by

∀i∈ {1, . . . , d} Lx(ei) = gi,x(x)

satisfies

∀y ∈ Rd Cd‖y‖1‖x‖1 ≤ ‖Lx(y)‖1 ≤ ‖y‖1‖x‖1.(5)

If moreover, for each n ∈ S2, we set (n1, n2, . . . , nd) = (n, g2,n(n), . . . , gd,n(n)),
then we have

∀y ∈ Rd Cd

d3/2
‖y‖2 ≤

(

d
∑

m=1

〈y,nm〉2
)1/2

≤
√

d‖y‖2.(6)

Note that in dimension two, this construction is much simpler: if R denotes
the rotation with angle π/2, we can set

Lx(e1) = x and Lx(e2) = R(x).
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However, this is more intricate in higher dimension. For instance, in dimen-
sion three, if x = (1,1,1), none of the images of x by O(Zd) is orthogonal to
x. In particular, even if ‖x‖2 = 1, Lx may not be in O(Rd).

Proof of Lemma 2.2. Choose x ∈ Zd. Then, for every (g1, . . . , gd) ∈
(O(Zd))d, denote by Ax

g1,...,gd
the only linear map which satisfies

∀i ∈ {1, . . . , d} Ax
g1,...,gd

(ei) = gi(x).

Let y =
d
∑

i=1
yiei ∈ Rd: by linearity, we have

‖Ax
g1,...,gd

(y)‖1 =

∥

∥

∥

∥

∥

d
∑

i=1

yiA
x
g1,...,gd

(ei)

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

d
∑

i=1

yigi(x)

∥

∥

∥

∥

∥

1

≤
d
∑

i=1

|yi| × ‖Ax
g1,...,gd

(ei)‖1 =
d
∑

i=1

|yi| × ‖x‖1 = ‖y‖1‖x‖1.

Now define, for each x ∈ Rd,

b(x) = max
(g2,...,gd)∈O(Zd)d−1

inf
y∈S1

‖Ax
Id,g2,...,gd

(y)‖1,

and define Lx to be an application Ax
g1,...,gd

which realizes the maximum in
the definition of b(x). Let us set

Cd = inf
x∈S1

b(x).

It is easy to see that, for every x ∈ Rd, Lx satisfies equation (5) and it only
remains to prove that Cd > 0.

Clearly, x 7→ b(x) is a continuous map. So, since S1 is a compact set, it
is sufficient to prove that b(x) 6= 0 for any x ∈ S1. Let then x 6= 0: there
exists i0 such that xi0 6= 0. Consider i ∈ {1, . . . , d}; we can find σ ∈ Sd with
σ(i) = i0. Now let h ∈ {−1,+1}d with h(i) =−1 and h(j) = 1 for i 6= j: then
one has Ψσ,(1,...,1)(x) − Ψσ,h(x) = 2xi0ei. It follows that the vector space

generated by {g(x) :g ∈ O(Zd)} is equal to Rd. Then, since x 6= 0, one can
find a family (g2, . . . , gd) ∈ (O(Zd))d−1 such that (x, g2(x), . . . , gd(x)) is a
basis of Rd. Thus, Ax

g1,...,gd
is a linear invertible map. This implies that

inf‖y‖1=1 ‖Ax
g1,...,gd

(y)‖1 > 0, and hence that b(x) > 0.
Let us prove inequality (6). If we define

B(x) =
d
∑

m=1

〈nm, x〉em,
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then we have
∑d

m=1〈x,nm〉2 = ‖B(x)‖2, and moreover, 〈B(ej), ei〉 = 〈ni, ej〉
= 〈Ln(ei), ej〉 = 〈L∗

n(ej), ei〉, which is equivalent to say that B = L∗
n. Equa-

tion (5) and the equivalence of norms imply then that

∀x∈ Rd ‖Ln(x)‖2 ≥
Cd

d3/2
‖x‖2.(7)

Let us denote by |‖A|‖2 = supx∈S2
‖Ax‖2. We have:

‖L∗
nx‖2 ≥

1

|‖(L∗
n)−1|‖2

‖x‖2.

It is clear from (7) that |‖L−1
n |‖2 ≤ d3/2

Cd
. Applying to A = L−1

n the classical
identity

|‖A|‖2 = sup
x∈S2

‖Ax‖2 = sup
x∈S2,y∈S2

〈Ax,y〉 = sup
x∈S2

‖A∗x‖2 = |‖A∗|‖2,

it follows that

∀x ∈ Rd

(

d
∑

m=1

〈x,nm〉2
)1/2

= ‖L∗
nx‖2 ≥

Cd

d3/2
‖x‖2,

which concludes the proof of the left-hand side. The right-hand side is ob-
vious. �

3. Upper large deviations: Proof of Theorem 1.3. The aim of this section
is to prove the upper large deviations estimate, Theorem 1.3, for the chemical
distance. First, we prove the exponential inequality for p close to 1 given by
Theorem 1.4, then we deduce Corollary 1.5 and finally, via a renormalization
argument, we prove the large deviations result for every p > pc.

3.1. Chemical distance for p close to 1: proof of Theorem 1.4. For this
proof, we also consider the ∗-topology on Zd: two points x, y ∈ Zd are ∗-
neighbors if and only if ‖x − y‖∞ = 1. A ∗-path is a sequence (x1, . . . , xn)
such that for every i ∈ {1, . . . , n− 1}, xi and xi+1 are ∗-neighbors. A set E
is ∗-connected if between any two of its vertices, there exists a ∗-path using
only vertices in E.

Given a configuration ω, say that a point x ∈ Zd is wired if each bond
e = (s, t) with ‖s − x‖∞ ≤ 1 and ‖t − x‖∞ ≤ 1 satisfies ωe = 1. Otherwise,
say that x is unwired. The wired points should be considered as the good
guys, whereas the unwired points are the bad ones. Let Yx = 1{x is unwired};
then x is wired if and only if Yx = 0.

Let us define V (x)(ω) to be the set of points y ∈ Zd such that there exists
a ∗-path of unwired vertices from x to y, which means that there exist
n ≥ 0 and x = x0, x1, . . . , xn = y, with Yxi = 1 for each i ∈ {0, . . . , n} and
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‖xi − xi+1‖∞ = 1 for each i ∈ {0, . . . , n− 1}. Note that V (x) = ∅ as soon as
x is wired. By definition, V (x) is always a ∗-connected set. For x ∈ Zd, we
define

V1(x) = V (x) + {−1,0,1}d and V2(x) = V1(x) + {−1,0,1}d.

Let us show that when p is large enough, V (x) is almost surely a finite
set. For each p ∈ [0,1], the field (Yx)x∈Zd is a locally dependent {0,1} valued
stationary field, with limp→1 Pp(Y0 = 1) = 1. It follows from Proposition 2.1
that there exists r1(p) with

(Pp)Y � Ber(r1(p))⊗Zd

and limp→1 r1(p) = 1. We can thus find p′1 ∈ (pc(d),1) such that for every
p > p′1,

(2d− 1)(1− r1(p)) < 1.(8)

By a classical counting argument, this ensures that V (x) is Pp almost surely
a finite set. Suppose for the sequel that p > p′1. Under this assumption, we
have the following result:

Lemma 3.1. Let x ∈ Zd. Suppose that s, t ∈ V1(x) with s ↔ t. Then,

there exists an open path from s to t which only uses vertices in V2(x).

Proof. Since V (x) is bounded, V (x)c has only finitely many ∗-connected
components and exactly one of them is of infinite size. Of course, a path from
s to t can meet one or more of these sets. We will prove that for every con-
nected component K of V (x)c and every open path β from s to t, the path β
can be modified to get an open path from s to t which never enters K\V2(x).

Suppose that β = (s = x0, x1, . . . , xn = t) and define i = min{k ≥ 0 :xk ∈
K} and j = max{k ≥ 0 :xk ∈ K}. Clearly i > 0 and j < n. Obviously, {xi, xj} ⊂
∂in
∗ (K), where ∂in

∗ (K) is the set of points x in K such that there exists
y ∈ Zd\K with ‖x − y‖∞ = 1. By part (ii) of Lemma 2.1 in [5], the set
∂in
∗ (K) is ∗-connected. Note that by definition of V (x), every point of ∂in

∗ (K)
is wired. But if a and b are ∗-neighbors, then b ∈ a + {−1,0,1}d. Since
a is wired, there exists an open path from a to b using only edges in
a + {−1,0,1}d. Then, there exists a open path from xi to xj which only
uses points in ∂in

∗ (K) + {−1,0,1}d ⊂ V1(x) + {−1,0,1}d = V2(x). �

We can now come back to the proof of the theorem. Let α > 0. Choose x
in Zd and let γ = (0 = x0, x1, . . . , xn = x) be a fixed path from 0 to x with
the minimal possible number of edges n = ‖x‖1. We let

V =
⋃

y∈γ

V (y).
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Now suppose that there exists an open path from 0 to x. Let us prove that
under this condition, we can find an open path from 0 to x which only uses
points in γ ∪ (V + {−2,−1,0,1,2}d).

Let i be the greatest integer in {0, . . . , n} such that there exists an open
path from 0 to xi which only uses points in γ∪ (V +{−2,−1,0,1,2}d). Note
that since 0↔ xi and 0↔ x, we have xi ↔ x. We want to prove that i = n.

Suppose by contradiction that i < n. The maximality of i implies that xi

can not be wired. So V (xi) ⊃ {xi}, therefore it is not empty, which allows
to define j = max{k ∈ {i + 1, . . . , n} :xk ∈ V (xi)}.
• If j = n, then xi and x belong to V (xi). Since xi ↔ x, it follows from the

previous lemma that there exists an open path from xi to x which only
uses vertices in V2(xi). Joint with the part of the path γ from 0 to xi,
this gives an open path from 0 to x which only uses points that are in
γ ∪ (V + {−2,−1,0,1,2}d), which is a contradiction.

• If j < n, let K be the connected component of V (xi)
c which contains x. On

one side, xi /∈ K, so there exists l ∈ {i+1, . . . , n} such that xl ∈ ∂in
∗ (K). On

the other side, xi /∈ K and x ↔ xi−1 by definition of i, thus there exists
z ∈ ∂in

∗ (K) such that x ↔ z. Since points in ∂in
∗ (K) are linked, xl ↔ z,

but x ↔ z and xi ↔ x so finally xi ↔ xl. Since {xi, xl} ⊂ V1(xi), by the
previous lemma we see that there exists an open path from xi to xl using
only points of V2(xi), which contradicts again the maximality of i.

Thus under the assumption that 0 and x belong to the same cluster, we
have constructed an open path from 0 to x which only uses points in γ ∪
(V + {−2,−1,0,1,2}d), and thus is not too far away from the deterministic
path γ.

Define, for every y ∈ Zd, the event

Fy =
⋃

z : ‖z−y‖∞≤2

{z is unwired}

and set Zy = 1Fy . Since (Zy)y∈Zd is locally dependent with limp→1 Pp(Zy = 1) = 0,
it follows from Proposition 2.1 that there exists r2(p) with

(Pp)Z � Ber(r2(p))⊗Ed

and limp→1 r2(p) = 0. Note that by definition of (Zy)y∈Zd , the open path
we built only uses points y that are in γ or satisfy Zy = 1. Moreover, if
we suppose now that D(0, x) ≥ (1 + α)‖x‖1, the length of this path is also
greater than (1 + α)‖x‖1.

The idea is now the following: if 0 ↔ x and D(0, x) ≥ (1 + α)‖x‖1, then
by the previous construction, there must exist an open path between 0 and
x with length larger than (1 + α)‖x‖1 and that contains only points in
γ∪(V +{−2,−1,0,1,2}d): this path must then contain at least α‖x‖1 points
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such that Zy = 1, which is unlikely when p is large enough. Let us turn this
crude argument into a rigorous proof via a counting argument.

Let Γ be the family of self-avoiding paths from 0 to x. Clearly, if β ∈ Γ,

Pp(∀y ∈ β\γ, Zy = 1) ≤ r|β|−|γ|,

where r = r2(p) and |β| denotes the number of edges in β. Remember that
limp→1 r2(p) = 0. We can thus find p′2(α) ∈ (pc(d),1) such that ∀p > p′2(α),
r = r2(p) satisfies

(2d− 1)r < 1 and (2d− 1)1+αrα < 1.(9)

It follows that

Pp(0↔ x,D(0, x) ≥ (1 + α)‖x‖1)

≤
∑

β∈Γ : |β|≥(1+α)|γ|

Pp(∀i ∈ β\γ,Zi = 1)

≤
∑

β∈Γ : |β|≥(1+α)|γ|

r|β|−|γ|

≤
+∞
∑

n=(1+α)|γ|

(2d)(2d − 1)n−1rn−|γ|

≤ 2dr−|γ|

(2d− 1)(1− (2d− 1)r)
((2d− 1)r)(1+α)|γ|

≤ 2d

(2d− 1)(1− (2d− 1)r)
((2d− 1)1+αrα)|γ|.

As |γ|= ‖x‖1, taking p′(α) = max{p′1(α), p′2(α)}—quantities respectively de-
fined in (8) and (9)—ends the proof of the theorem.

3.2. Continuity of µp at p = 1: Proof of Corollary 1.5. Let α > 0 and
x ∈ Zd. Using the Borel–Cantelli lemma and Theorem 1.4, we obtain for
p > p′(α):

lim sup
n→+∞

1{nx↔0}
D(0, nx)

n
≤ (1 + α)‖x‖1, Pp a.s.

By the very definition of µp, the left-hand side is equal to µp(x). Using
moreover the fact that µp(x) ≥ ‖x‖1, we have proved

∀α > 0, ∀p > p′(α), ∀x∈ Zd ‖x‖1 ≤ µp(x) ≤ (1 + α)‖x‖1.

By homogeneity and continuity of µp and ‖·‖1, we obtain the same property
for x ∈ Qd, and next for x∈ Rd:

∀α > 0, ∀p > p′(α), ∀x ∈ Rd ‖x‖1 ≤ µp(x)≤ (1 + α)‖x‖1,

which ends the proof.
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3.3. Upper large deviations: proof of Theorem 1.3. We can now prove
the upper large deviations result Theorem 1.3 for the chemical distance for
every p > pc.

Step 1. Choice of constants.
Let p > pc(d) and ε > 0 be fixed.
As µ is a norm, it is bounded away from 0 on the compact set S1, and we

can choose η > 0 small enough to have

∀x̂∈ S1

(

1+
3η

2ρ

)

(1+η)2µ(x̂)+2η < (1+ε)µ(x̂) and η <
8

9
ρ,(10)

where ρ has been defined in (2). Note also

α =
η

2ρ
.(11)

From now on, let us denote by M a fixed integer which is such that

M ≥ d
η max(µ(e1)

2 , ρ
3Cd

), where Cd is the constant given by Lemma 2.2.

For every x̂ ∈ Rd∩S1, there exists r̂ ∈ 1
M Zd∩S1 such that ‖x̂− r̂‖1 ≤ d

2M .
Then, by the previous choice of M , one has

‖x̂− r̂‖1 ≤
d

2M
≤ Cdα

3
and |µ(x̂)− µ(r̂)| ≤ µ(e1)‖x̂− r̂‖1 ≤ η.(12)

Intuitively, r̂ is a rational direction that approaches the “real” direction x̂.
Note that the result in Theorem 1.3 is uniform in the direction, and the
proof of this uniformity will use the fact that 1

M Zd ∩ S1 is a finite set.
Step 2. Renormalization.
For x ∈ Zd and N ∈ Z+, let us define the following set around Nx:

IN
x = {y ∈ B1(Nx,

√
N) :y ↔ ∂B1(Nx,N)},

where ∂B1(Nx,N) = {y ∈ Zd :‖Nx − y‖1 = N}. We define the related ran-
dom variable IN

x by

IN
x =

{

Nx, if IN
x = ∅,

inf IN
x , otherwise,

where inf IN
x denotes the point in IN

x which is the closest to Nx. If there
are several, use for instance the lexicographic order on the coordinates to
choose a unique point. Note that:

• the random variable IN
x only depends on the states of the edges in B1(Nx,N).

• ‖Nx− IN
x ‖1 ≤

√
N .

Since IN
x is close to Nx, the chemical distance D(IN

0 , IN
x ) should be of the

same order as Nµ(x). This is rigorously proved in the following lemma:

Lemma 3.2. The following results hold Pp almost surely :
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• For each x ∈ Zd, IN
x ↔∞ for large N .

• The sequence (IN
0 )N≥1 is convergent.

• For each x ∈ Zd,

D(IN
0 , IN

x )

N
→ µ(x).

Proof. • The first assertion easily follows from Borel–Cantelli argu-
ments. At first, it follows from the exponential decay of the radius of finite
clusters—see equation (3)—that Pp almost surely, IN

x = B(Nx,
√

N) ∩ C∞

for large N . The fact that B(Nx,
√

N)∩C∞ is Pp almost surely nonempty
for large N is now a consequence of (4).

• Let us denote by H the smallest element of C∞, that is, the point in
C∞ which is the closest to 0 and among these points if there are several, the
one which is the smallest for the lexicographic order on the coordinates. For
large N , we have H ∈ B(0,

√
N), so (IN

0 )N≥1 converges to H .
• If x = 0, there is nothing to prove. Suppose then that x 6= 0. By the

previous point, the sequence with general term D(IN
0 , IN

x )/N has the same
asymptotic behavior as the sequence with general term D(H,IN

x )/N . It was
proved in Lemma 5.7 of [7] that for every ε > 0,

Pp

( ∃M > 0 ∀y ∈ Zd

(‖y‖1 ≥M and y ↔ 0) =⇒ |D(0, y)− µ(y)| ≤ ε‖y‖1

∣

∣

∣

∣

0 ↔∞
)

= 1.

By taking M = |C(0)| when 0 6↔ ∞, we can remove the conditioning and
obtain

Pp

( ∃M > 0 ∀y ∈ Zd

(‖y‖1 ≥M and y ↔ 0) =⇒ |D(0, y)− µ(y)| ≤ ε‖y‖1

)

= 1.

Using translation invariance, this implies

Pp

( ∀x ∈ Zd ∃Mx > 0 ∀y ∈ Zd

(‖y‖1 ≥ Mx and y ↔ x) =⇒ |D(x, y)− µ(y)| ≤ ε‖y‖1

)

= 1.

This implies

lim
N→∞

D(IN
0 , IN

x )− µ(IN
x )

‖IN
x ‖1

= 0, Pp a.s.

Since ‖Nx−IN
x ‖1 ≤

√
N , one has |Nµ(x)−µ(IN

x )| ≤
√

Nµ(e1) and ‖IN
x ‖1 ∼

N‖x‖1; the desired result follows. �

We can now introduce a macroscopic percolation: in order to study the
chemical distance in the direction r̂, we are going to build a large grid, with
mesh NM , whose axes are adapted to Mr̂: the large grid is the image by
NLMr̂ of the grid Zd, where LMr̂ is given in Lemma 2.2 (see Figure 1). The
macroscopic edge e = {x, y} has macroscopic ends x and y that correspond
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Fig. 1. The macroscopic grid NLMr̂(Z
d) adapted to the direction r̂. The vertex x̄

of the macroscopic grid has coordinates NLMr̂(x̄) in the microscopic grid. It is sur-

rounded by a small ball with radius
√

N which contains a black point, denoted by

IN
LMr̂(x), which is the point of the infinite cluster that is the closest to NLMr̂(x̄) in

the microscopic grid. The macroscopic edge between x̄ and ȳ is said to be open if

D(IN
LMr̂(x), I

N
LMr̂(y)) ≤ NMµ(r̂)(1 + η), which happens with a probability going to 1 as

N goes to infinity. As the states of the macroscopic edges are locally dependent, by choos-

ing N large enough, the chemical distance in the macroscopic grid can be made very close

to the l1-distance.

in the microscopic graph to the points NLMr̂(x) and NLMr̂(y); for instance,
the macroscopic vertex with coordinates (1,0, . . . ,0) corresponds to the ver-
tex NMr̂ in the microscopic lattice. By construction of LMr̂, we expect the
chemical distance between neighborhoods of the microscopic ends of any
macroscopic edge to have a value of order NMµ(r̂). If this event occurs, we
say that the corresponding macroscopic edge e is open, which should happen
with high probability.

Lemma 3.3. For each r̂ ∈ 1
M Zd ∩ S1, for each positive integer N , we

define a field (RN,r̂
e )e∈Ed : if e = {x, y},

RN,r̂
e = 1

GN,r̂
e

and GN,r̂
e = {D(IN

LMr̂(x), I
N
LMr̂(y)) ≤NMµ(r̂)(1 + η)}.

Then there exists a function p :Z+ → [0,1], independent of the choice of

r̂ ∈ 1
M Zd ∩ S1 such that

lim
N→+∞

p(N) = 1 and PRN,r̂ � Ber(p(N))⊗Ed
,

where PRN,r̂ denotes the law of the field (RN,r̂
e )e∈Ed on {0,1}Ed

.
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Proof. Our aim is to apply once again the comparison result of Propo-
sition 2.1.

Note that for any choice of r̂ ∈ 1
M Zd ∩ S1, and any edge e = {x, y}, the

macroscopic event GN,r̂
e only depends on states of the microscopic edges in

the ball B1(NLMr̂(x),NM(2+(1+η)µ(e1))). Note also that, by Lemma 2.2,
we have

‖y − x‖1 >
2

Cd
(2 + (1 + η)µ(e1))

⇒‖LMr̂(y − x)‖1 > 2M(2 + (1 + η)µ(e1))

⇒‖NLMr̂(y)−NLMr̂(x)‖1 > 2NM(2 + (1 + η)µ(e1)).

The field (RN,r̂
e )e∈Zd is locally dependent, for some constant k that does not

depend on N , nor on the choice of r̂ ∈ 1
M Zd∩S1, nor on M . Since (RN,r̂

e )e∈Ed

is invariant under translations and symmetries of the grid Zd, we only have
to prove that

lim
N→+∞

Pp(G
N,r̂
e ) = 1

uniformly in r̂ for the edge e = (0, e1). But the set 1
M Zd ∩S1 is finite, so it is

sufficient to prove this limit for any r̂ ∈ 1
M Zd ∩ S1. By applying Lemma 3.2

to x = LMr̂(e1) for a given r̂ ∈ 1
M Zd ∩ S1 and using the fact that almost

sure convergence implies convergence in probability, we end the proof of
Lemma 3.3. �

Choose now N large enough to be sure that p(N) given by Lemma 3.3
satisfies

p(N) > p′
(

1 + 3α

1 + 2α
− 1

)

> pc(d),(13)

where p′(·) is defined in Theorem 1.4 and α has been defined in (11). For
each r̂ ∈ 1

M Zd ∩ S1, we can construct a macroscopic percolation with mesh

NM : we say that the edge e ∈ Ed is open in the macroscopic percolation

associated to r̂ if the event GN,r̂
e occurs, and closed otherwise. This induces

a dependent percolation model on the macroscopic edges: all vertices in
the macroscopic lattice will be denoted by an overlined letter, the infinite
cluster of this macroscopic will be denoted C∞, while the chemical distance
in this macroscopic lattice will still be denoted by D. The previous lemma
compares this locally dependent macroscopic percolation with i.i.d. Bernoulli
percolation, and the choice we made for N allows us to use the result of
Theorem 1.4.

The strategy is now the following: for a large x ∈ Zd, choose a r̂ whose
direction is close to the one of x and build the macroscopic percolation
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associated to r̂. Use Theorem 1.4 to find a macroscopic path from a point
not too far from 0 to a point not too far from x, and whose length is well
controlled. Then come back to the initial microscopic percolation, and verify
that the existence of this macroscopic path implies, on the event 0↔ x, the
existence of an open microscopic path whose length is also well controlled.

Step 3. Construction of the macroscopic and microscopic paths.
From now on, we suppose, without loss of generality, that x∈ Zd satisfies

‖x‖1 ≥
8
√

N

α
.(14)

We emphasize that the constants α and N have been defined in (11) and
(13) before any choice of x.

Then, we associate to x̂ = x/‖x‖1 an approximate r̂ ∈ 1
M Zd∩S1 satisfying

equation (12).
We build the macroscopic percolation associated to r̂ and denote by

x̄ = ⌊‖x‖1/(NM)⌋e1(15)

the vector in the coordinates of the macroscopic grid that approximates x,
where ⌊t⌋ denotes the integer part of the real number t.

Remember that, thanks to Lemma 2.2, the application LMr̂ maps e1 to
Mr̂ and satisfies

∀i ∈ {1, . . . , d} µ(LMr̂(ei)) = Mµ(r̂) and ‖LMr̂(ei)‖1 = M

and ∀r̂ ∈ 1

M
Zd ∩ S1 ∀t∈ Rd CdM‖t‖1 ≤ ‖LMr̂(t)‖1 ≤M‖t‖1.(16)

For each z ∈ Zd and each r > 0, we define the annulus

A(z, r) = {y ∈ Zd : r/2≤ ‖y − z‖1 ≤ r}
and consider the following “good” event of {0,1}Ed

in the macroscopic per-
colation:

G =

{∃a ∈A(0, α‖x‖1)∃b ∈A(x,α‖x‖1) such that
a↔ b and D(a, b)≤ (1 + 3α)‖x‖1

}

.

Note that for the complementary set of G, we have

Gc ⊂ {A(0, α‖x‖1)∩C∞ = ∅} ∪ {A(x,α‖x‖1)∩C∞ = ∅}
∪

⋃

a∈B1(0,α‖x‖1)

b∈B1(x,α‖x‖1)

{a↔ b,D(a, b) > (1 + 3α)‖x‖1}

⊂ {A(0, α‖x‖1)∩C∞ = ∅} ∪ {A(x,α‖x‖1)∩C∞ = ∅}

∪
⋃

a∈B1(0,α‖x‖1)

b∈B1(x,α‖x‖1)

{

a↔ b,D(a, b) >
1 + 3α

1 + 2α
‖b− a‖1

}

.
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As G is an increasing event, we have by Lemma 3.3

PRN,r̂(Gc)≤ Ber(p(N))⊗Ed
(Gc).

It follows that

PRε,N (Gc) ≤ 2Pp(N)(B1(0, α‖x‖1)∩C∞ = ∅)

+
∑

a∈B1(0,α‖x‖1)

b∈B1(x,α‖x‖1)

Pp(N)

(

a↔ b,D(a, b) >
1 + 3α

1 + 2α
‖a− b‖1

)

.

By the choice (13) we made for N , the inequality p(N) > pc(d) is satisfied,
so, by equation (4),

Pp(N)(B1(0, α‖x‖1)∩C∞ = ∅)≤A3e
−B3α‖x‖1 .

Moreover, our choice of N in (13) was intended to apply Theorem 1.4: thus,
there exist two strictly positive constants A and B such that

∀a∈ B1(0, α‖x‖1), ∀b ∈ B1(x,α‖x‖1)

Pp(N)

(

a↔ b,D(a, b) >
1 + 3α

1 + 2α
‖a− b‖1

)

≤Ae−B‖b−a‖1 .

Thus we obtain

PRε,N (Gc)

≤ 2A3e
−B3α‖x‖1 + (Cα‖x‖1)

2dAe−B(1−2α)‖x‖1

≤ 2A3e
−B3α‖x‖1/NM + (Cα(‖x‖1/NM + 1))2dAe−B(1−2α)‖x‖1/NM ,

where C is a constant depending only on the dimension of the grid Zd.
So, with a probability tending to 1 exponentially fast with ‖x‖1, there ex-

ists a path in the macroscopic percolation from a point in the set A(0, α‖x‖1)

to a point in the set A(x,α‖x‖1) which uses only edges e such that GN,r̂
e

holds and whose length is smaller or equal to (1 + 3α)‖x‖1. This implies
the existence of a microscopic open path from some microscopic vertex S ∈
NLMr̂A(0, α‖x‖1) + B1(0,

√
N) to some microscopic vertex T ∈NLMr̂A(x,

α‖x‖1) + B1(0,
√

N), and whose length, by Lemma 3.3, is smaller than
(1 + 3α)‖x‖1(1 + η)NMµ(r̂) ≤ (1 + 3α)(1 + η)2‖x‖1µ(x̂) by the choice of
r̂ in (12) and the definition (15) of x.

Step 4. It remains now to link the ends S and T of this microscopic path
to 0 and x respectively, and to prove that with high probability, these links
are very short.
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Thanks to the definition of the annuli and to equations (16) and (14), one
has

3

8
Cdα‖x‖1 ≤

Cdα‖x‖1

2
−
√

N ≤ ‖S‖1 ≤ α‖x‖1 +
√

N ≤ 9

8
α‖x‖1,

3

8
Cdα‖x‖1 ≤

Cdα‖x‖1

2
−
√

N ≤ ‖T − ‖x‖1r̂‖1 ≤ α‖x‖1 +
√

N ≤ 9

8
α‖x‖1.

It follows that the distance between S and T is at least

‖x‖1 − 2( 9
8α‖x‖1)≥ (1− 9

4α)‖x‖1.

So, by equation (3), we have

Pp(S ↔ T, |C(S)|< +∞)

≤
∑

(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

Pp(s↔ ∂B(s, (1− 9
4α)‖x‖1), |C(s)| < +∞)

≤ (1 + 2× 9
8α‖x‖1)

dA2e
−B2(1−(9/4)α)‖x‖1 .

So with a probability tending to 1 exponentially fast with ‖x‖1, S and T
belong to the infinite cluster. Now,

Pp(S ↔ 0,D(0, S) ≥ η‖x‖1)

≤
∑

(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

Pp(0↔ s,D(0, s)≥ η‖x‖1)

≤
∑

(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

Pp(0↔ s,D(0, s)≥ ρ‖s‖1)

≤
∑

(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

A1e
−B1‖s‖1

≤ (1 + 2× 9
8α‖x‖1)

dA1e
−B1(3/8)Cdα‖x‖1 .

The second inequality is due to the choice (10) for η, the third to the result
of Antal and Pisztora (2). We have

‖x− T‖1 ≤ ‖x−‖x‖1r̂‖1 + ‖‖x‖1r̂ − T‖1

≤
(

Cd

3
+

9

8

)

α‖x‖1 ≤ 2α‖x‖1 =
η

ρ
‖x‖1,

and thus, similarly,

Pp(T ↔ x,D(x,T )≥ η‖x‖1)

≤ Pp(T ↔ x,D(x,T )≥ ρ‖x− T‖1)

≤
∑

(3/8)Cdα‖x‖1≤‖t−‖x‖1r̂‖1≤(9/8)α‖x‖1

Pp(x ↔ t,D(x, t)≥ ρ‖x− t‖1)
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≤
∑

(3/8)Cdα‖x‖1≤‖t−‖x‖1r̂‖1≤(9/8)α‖x‖1

A1e
−B1‖x−t‖1

≤ (1 + 2× 9
8α‖x‖1)

dA1e
−B1(1/24)Cdα‖x‖1 ,

where the last inequality follows from the estimate

‖x− t‖1 ≥ ‖‖x‖1r̂ − t‖1 −‖x− ‖x‖1r̂‖1 ≥
Cd

24
α‖x‖1.

Denote by G̃ the event G seen not as an event in the macroscopic per-
colation, but as a set of configurations of the microscopic percolation. Note
that the event

G̃∩ {|C(S)| = +∞}∩ {S ↔ 0,D(0, S) ≤ η‖x‖1} ∩ {T ↔ x,D(x,T )≤ η‖x‖1}
is included in

{

0 ↔ x,D(0, x) ≤
((

1 +
3η

2ρ

)

(1 + η)2µ(x̂) + 2η

)

‖x‖1

}

.

Thus, using equation (10) for η, and collecting all our previous estimates,
we obtain

Pp(0↔ x,D(0, x) > µ(x̂)(1 + ε)‖x‖1)

≤ Pp

(

0↔ x,D(0, x) >

((

1 +
3η

2ρ

)

(1 + η)2µ(x̂) + 2η

)

‖x‖1

)

≤ Pp(G̃
c) + Pp(S ↔ T, |C(S)|< +∞) + Pp(S ↔ 0,D(0, S) ≥ η‖x‖1)

+ Pp(T ↔ x,D(x,T )≥ η‖x‖1)

≤ 2Ae−(B/(NM))α‖x‖1 +

(

1 +
Cα

NM
‖x‖1

)2d

Ae−(B/(NM))(1−2α)‖x‖1

+

(

1 + 2× 9

8
α‖x‖1

)d

A2e
−B2(1−(9/4)α)‖x‖1

+ 2

(

1 + 2× 9

8
α‖x‖1

)d

A1e
−B1α‖x‖1/2,

which ends the proof of the theorem.

4. Lower large deviations. The aim of this section is to prove the lower
large deviations estimate for the chemical distance given by Theorem 1.6.
First, we introduce some definitions linked to the convexity of the asymp-
totic shape Bµ(0,1). Then, in Lemma 4.2, we study the minimal number of
open edges needed to reach a given hyperplane at distance r of the origin,
and, in Lemma 4.3, the minimal number of open edges needed to cross a
parallelepipedic box. Finally, we prove the lower large deviations results.
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4.1. Definitions. For each y ∈ Rd\{0}, the ball Bµ(0, µ(y)) is a convex
set, so one can find a vector ny ∈ S2 such that the linear form φy defined by

∀x∈ Rd φy(x) = 〈ny, x〉
satisfies to φy(y)≥ 0 and to

∀x∈ Rd (µ(x)≤ µ(y)) =⇒ (φy(x)≤ φy(y)).(17)

Note that the choice of ny is not necessarily unique. Using the fact that
the norms µ and ‖ · ‖2 are homogeneous, it is possible to choose the vector
ny in such a way that for each y ∈ Rd\{0} and each r > 0, one has nry = ny.
In the following, we associate to every y ∈ Rd\{0} a unique ny satisfying
these properties. We also introduce the hyperplane Hy = kerφy = (ny)

⊥:
geometrically speaking, y + Hy is a support hyperplane of the convex set
Bµ(0, µ(y)) at the point y.

For y ∈ Rd\{0} and r ∈ R+\{0}, note

S0
y = {x ∈ Rd :φy(x) < φy(y)} and S∞

y = {x ∈ Rd :φy(x) > φy(y)}.

Then S0
y—respectively, S∞

y —is the open half-space, delimited by the support
hyperplane y + Hy of Bµ(0, µ(y)) at the point y, containing—respectively,
not containing—the origin (see Figure 2).

The aim of the next lemma is to obtain, uniformly in y ∈ S2, a bound on
the norm of points in the half-plane S∞

ry :

Lemma 4.1. There exist two constants cd, c
′
d > 0 such that for every

y ∈ S2, we have:

• 〈y,ny〉 ≥ cd.

• For every r > 0, inf{‖z‖2, z ∈ S∞
ry} ≥ cdr.

• For every r > 0, inf{‖z‖1, z ∈ S∞
ry} ≥ c′dr.

Proof. As µ is a norm, it is equivalent to ‖ ·‖2, so there exists K1,K2 ∈
(0,+∞) such that

∀x ∈ Rd K1‖x‖2 ≤ µ(x)≤ K2‖x‖2.

Note cd = K1
K2

. Choose y ∈ S2 and set x = cdny. We have µ(x) ≤ K2‖x‖2 =

K2cd = K1 ≤ µ(y). It follows that φy(x)≤ φy(y), or equivalently

cd = 〈x,ny〉 ≤ 〈y,ny〉.
Now, let z ∈ S∞

ry : we have

‖z‖2 ≥ 〈z,nry〉 = φry(z) > φry(ry) = 〈ry,nry〉= r〈y,ny〉 ≥ cdr.

The last point is clear by the norm equivalence. �
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Fig. 2. Support hyperplane of the convex set Bµ(0, µ(y)) at the point y: the hyperplane

Hy may not be orthogonal to y.

4.2. Passage-time from a point to a hyperplane. Choose a direction y ∈
S2. Define then for r > 0

by(r) = inf{D(0, z) : z ∈ S∞
ry}.

This quantity is analogous to the usual passage time between the origin
and a hyperplane orthogonal to the first-coordinate axis at distance r of the
origin. In this special case, y = (1,0, . . . ,0), and thanks to the symmetries of
the grid, the direction of the support hyperplane of Bµ(0, µ(y)) at the point
y is orthogonal to y. But in a general direction y, the relevant hyperplane
for the growth of the set Bt of wet vertices at time t in the direction y is Hy,
which does not need to be orthogonal to y (see Figure 2). As in the paper
by Cox and Durrett [4], we can study this quantity by using the asymptotic
shape result given in [7]: for every p > pc(d),

lim
t→+∞

D
(

Bt

t
,Bµ(0,1)

)

= 0, Pp a.s.(18)

and obtain the following lemma:

Lemma 4.2.

sup
y∈S2

∣

∣

∣

∣

by(r)

r
− µ(y)

∣

∣

∣

∣

→ 0, Pp a.s.

Proof. As we work under Pp, we restrict ourselves to the event {0 ↔
∞}.

Let ε > 0. By the asymptotic shape result (18), there Pp a.s. exists a
random T such that

∀t≥ T
Bt

t
⊂ (1 + ε)Bµ and Bµ ⊂ Bt

t
+Bµ(0, ε).(19)

For every r > 0, for every y ∈ S2, there exists a point zy
r ∈ S∞

ry such that
by(r) = D(0, zy

r )≥ ‖zy
r ‖1. Note that, by the previous lemma, we have ‖zy

r ‖1 ≥
inf{‖z‖1 : z ∈ S∞

ry} ≥ c′dr, and thus, as soon as c′dr ≥ T , we have

∀y ∈ S2
zy
r

by(r)
∈

Bby(r)

by(r)
⊂ (1 + ε)Bµ.
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This implies, by definition of Hy and by convexity of Bµ, that 1
by(r)

〈zy
r ,ny〉

〈y,ny〉
y ∈

(1 + ε)Bµ and thus Pp a.s., for all r large enough,

∀y ∈ S2
r

by(r)
≤ 1 + ε

µ(y)
.

On the other hand, by definition of by(r), we have S∞
ry ∩Bby(r)−1 = ∅, or,

in other words, Bby(r)−1 ⊂ S0
ry. By dilatation, we obtain

Bby(r)−1

by(r)− 1
⊂ S0

ry/(by(r)−1),

and by definition of Hy, this leads to:

Bby(r)−1

by(r)− 1
+Bµ(0, ε) ⊂ S0

(r/(by(r)−1)+ε)y.

Using (19), we obtain, as soon as c′dr − 1≥ T ,

∀y ∈ S2 Bµ ⊂
Bby(r)−1

by(r)− 1
+ Bµ(0, ε),

and thus Bµ ∩ S∞
(r/(by(r)−1)+ε)y = ∅, leading to

µ

((

r

by(r)− 1
+ ε

)

y

)

=

(

r

by(r)− 1
+ ε

)

µ(y) > 1.

Finally, we get Pp a.s., for all r large enough,

∀y ∈ S2
r

by(r)− 1
≥ 1

µ(y)
− ε,

which ends the proof. �

4.3. Crossings of parallelepipedic boxes. We want first to find d directions
(y1 = y, y2, . . . , yd) with yi ∈ S2 such that the asymptotic time constants are
the same along all these directions and such that the directions of the support
hyperplanes of Bµ in these directions are linearly independent.

For y ∈ S2, consider the vector ny ∈ S2 orthogonal to a support hyperplane
of Bµ in the direction y as defined previously, and the isometries (gny ,2, . . . ,

gny ,d) ∈ (O(Zd))d−1 given by equation (6) in Lemma 2.2 and set

(n1, n2, . . . , nd) = (ny, gny ,2(ny), . . . , gny,d(ny)),

(y1, y2, . . . , yd) = (y, gny,2(y), . . . , gny ,d(y)).

For k ∈ Zd, α ∈ (R∗
+)d, we define boxes adapted to study the travel times

in the directions y1, y2, . . . , yd; they are analogous to the rectangular boxes
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introduced to estimate the travel time in the first-coordinate axis in classical
first-passage percolation.

T(y)(k,α) =

{

v ∈ Zd : ∀m∈ {1, . . . , d}km ≤ 〈v,nm〉
〈ym, nm〉 < km + αm

}

,

∂m
− T(y)(k,α) =



































v ∈ Zd\T(y)(k,α) :

•∀j ∈ {1, . . . , d}\{m}kj ≤
〈v,nj〉
〈yj, nj〉

< kj + αj

• 〈v,nm〉
〈ym, nm〉 < km

•∃w ∈ T(y)(k,α)‖w − v‖1 = 1



































,

∂m
+ T(y)(k,α) =



































v ∈ Zd\T(y)(k,α) :

•∀j ∈ {1, . . . , d}\{m} kj ≤
〈v,nj〉
〈yj, nj〉

< kj + αj

• 〈v,nm〉
〈ym, nm〉 ≥ km + αm

•∃w ∈ T(y)(k,α)‖w − v‖1 = 1



































.

We can now define, using the same terminology as in first-passage percola-
tion, the crossing time of the box T(y)(k,α) in the mth direction:

tm(y)(k,α) = inf







|γ|, where γ is an open path from
a point in ∂m

− T(y)(k,α) to a point in ∂m
+ T(y)(k,α)

included but its ends in T(y)(k,α)







.

The next lemma gives a convergence in probability, uniformly in the direc-
tion y, of these minimal crossing times of boxes:

Lemma 4.3. Let α = (α1, . . . , αd) ∈ (0,+∞)d. Then for every ε > 0 we

have

∀m∈ {1, . . . , d} lim
r→+∞

sup
k∈Zd

sup
y∈S2

Pp(t
m
(y)(k, rα) ≤ (µ(y)− ε)rαm) = 0.

Proof. Fix α = (α1, . . . , αd) ∈ (0,+∞)d and ε > 0. Choose

η =
Cdε

6ρd5/2

(

min
1≤m≤d

αm

)

> 0,(20)

where Cd is given in Lemma 2.2 and ρ is the constant introduced by Antal
and Pisztora—see equation (2); set τ = ηr.

Choose k ∈ Zd and y ∈ S2.
We introduce the following partition of Zd into boxes of size τ , which tends

to infinity when r goes to infinity, but will still be small when compared to
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r: for every x ∈ Zd, and every A⊂ Zd

R(y)(x) =

{

v ∈ Zd : ∀m ∈ {1, . . . , d}xmτ ≤ 〈v,nm〉
〈ym, nm〉 < (xm + 1)τ

}

,

R(y)(A) = {x ∈ Zd : R(y)(x)∩A 6= ∅}.
Then R(y)(∂

m
− T(y)(k, rα)), which plays the role of an approximation at a

larger scale of ∂m
− T(y)(k, rα), is ∗-connected and a simple estimation leads

to

|R(y)(∂
m
− T(y)(k, rα))| ≤

(

2 +
1

ηr

)

∏

1≤j≤d
j 6=m

(

2 +
αj

η

)

.

The partition into boxes with size τ was introduced to obtain this estimate:
while |∂m

− T(y)(k, rα)| is of order rd−1, the cardinal |R(y)(∂
m
− T(y)(k, rα))| of its

approximation with large boxes remains bounded when r goes to infinity. If
v ∈ ∂m

− T(y)(k, rα), then there exists a unique xv ∈R(y)(∂
m
− T(y)(k, rα)) such

that v ∈ R(y)(xv). We define

W(v) = {x∈R(y)(∂
m
− T(y)(k, rα)) :‖x− xv‖∞ = 2} 6= ∅.

If R(y)(x)∩C∞ 6= ∅, then define c(x) as the point in R(y)(x)∩C∞ which is
the closest to τ(x+(1/2, . . . ,1/2)) (use the lexicographic order if necessary).
Remember that the box R(y)(x) has size τ , which tends to infinity with r, and
thus as r goes to infinity, we expect the probability that R(y)(x) ∩C∞ 6= ∅

to go to 1.
Now, in the following inequality, we approximate the event {tm(y)(k, rα)≤

(µ(y)− ε)rαm} by the event in (21), and the three last terms correspond to
the difference between them, and are expected to be small:

Pp(t
m
(y)(k, rα) ≤ (µ(y)− ε)rαm)

(21)

≤ Pp















•∀x ∈R(y)(∂
m
− T(y)(k, rα))R(y)(x)∩C∞ 6= ∅

•∀v ∈ ∂m
− T(y)(k, rα) (v ↔ ∂m

+ T(y)(k, rα)⇒ v ↔∞)
•∃v ∈ ∂m

− T(y)(k, rα) such that
∃w ∈ ∂m

+ T(y)(k, rα)D(v,w) ≤ (µ(y)− ε)rαm

∃x ∈W(v)D(v, c(x)) < ρ‖v − c(x)‖1















+ Pp(∃x∈R(y)(∂
m
− T(y)(k, rα))R(y)(x)∩C∞ = ∅)(22)

+ Pp(∃v ∈ ∂m
− T(y)(k, rα)v ↔ ∂m

+ T(y)(k, rα), v 6↔∞)(23)

+ Pp





•∀x ∈R(y)(∂
m
− T(y)(k, rα))R(y)(x)∩C∞ 6= ∅

•∃v ∈ ∂m
− T(y)(k, rα)∀x ∈W(v)

D(v, c(x))≥ ρ‖v − c(x)‖1



 .(24)

Let us estimate the three error terms first.
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Estimate for (22). Let x ∈ Zd, and let us prove that R(y)(x) contains a
ball for the norm ‖ · ‖2 with radius proportional to τ . Let us introduce first
the point ax ∈ Rd, which represents the center of R(y)(x), such that

∀m∈ {1, . . . , d} 〈ax, nm〉
〈ym, nm〉 =

(

xm +
1

2

)

τ.

Then we have, with cd given by Lemma 4.1,

R(y)(x) =

{

v ∈ Zd : ∀m∈ {1, . . . , d} − τ

2
≤ 〈x− ax, nm〉

〈ym, nm〉 <
τ

2

}

⊃
{

v ∈ Zd : ‖x− ax‖2 ≤
τcd

2

}

.

Thus the box R(y)(x) contains the ball B2(ax, τcd/2); this radius does not
depend on the direction y.

Using then equation (4), we get

(22) ≤ |R(y)(∂
m
− T(y)(k, rα))| sup

z∈Zd

Pp(B2(z, τcd/2) ∩C∞ = ∅)

≤
(

2 +
1

ηr

)

∏

1≤j≤d
j 6=m

(

2 +
αj

η

)

A3 exp

(

−B3cdηr

2
√

d

)

,

which tends to 0 when r goes to infinity, uniformly in the direction y ∈ S2.
Estimate for (23). Note that if v ∈ ∂m

− T(y)(k, rα) and w ∈ ∂m
+ T(y)(k, rα),

then, by definition of the box, we have
∣

∣

∣

∣

〈w − v,nm〉
〈ym, nm〉

∣

∣

∣

∣

≥ rαm.

By Lemma 4.1, we have
√

d‖w − v‖1 ≥ ‖w − v‖2 ≥ |〈w − v,nm〉| ≥ cdrαm,

and thus, using translation invariance and equation (3),

(23) ≤ |∂m
− T(y)(k, rα)|Pp

(

|C(0)| ≥ cd√
d
rαm,0 6↔∞

)

≤ Kαrd−1A2 exp

(

−B2
cd√
d
rαm

)

,

which tends to 0 when r goes to infinity, uniformly in the direction y ∈ S2.
(Kα is a constant depending only on the dimension and α.)

Estimate for (24). Let v ∈ ∂m
− T(y)(k, rα) and x ∈W(v) such that R(y)(x)∩

C∞ 6= ∅. Then by construction,

max
1≤m≤d

∣

∣

∣

∣

〈v − c(x), nm〉
〈ym, nm〉

∣

∣

∣

∣

≥ τ.
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But then, using Lemma 4.1, we obtain

‖v − c(x)‖1 ≥
1√
d
‖v − c(x)‖2 ≥

1√
d

max
1≤m≤d

|〈v − c(x), nm〉|

≥ cd√
d

max
1≤m≤d

∣

∣

∣

∣

〈v − c(x), nm〉
〈ym, nm〉

∣

∣

∣

∣

≥ cdτ√
d

.

Using Antal and Pisztora’s result (2), one has the following bound:

(24) ≤ |∂m
− T(y)(k, rα)| × 5d−12dA1 exp

(

−B1
cdηr√

d

)

,

which tends to 0 when r goes to infinity, uniformly in the direction y ∈ S2.
Estimate for (21). Let v ∈ ∂m

− T(y)(k, rα) and x ∈W(v) such that R(y)(x)∩
C∞ 6= ∅. Then by construction,

max
1≤m≤d

∣

∣

∣

∣

〈v − c(x), nm〉
〈ym, nm〉

∣

∣

∣

∣

≤ 3τ.

But then, using equation (6) in Lemma 2.2, we have

‖v − c(x)‖1 ≤
√

d‖v − c(x)‖2 ≤
d2

Cd
‖v − c(x)‖(ni),2

≤ d5/2

Cd
max

1≤m≤d
|〈v − c(x), nm〉|

≤ d5/2

Cd
max

1≤m≤d

∣

∣

∣

∣

〈v − c(x), nm〉
〈ym, nm〉

∣

∣

∣

∣

≤ 3d5/2τ

Cd
.

We obtain

(21) ≤ Pp















∃x ∈R(y)(∂
m
− T(y)(k, rα)) such that

•R(y)(x)∩C∞ 6= ∅,
•∃w ∈ ∂m

+ T(y)(k, rα)

D(c(x),w) <
3ρd5/2ηr

Cd
+ (µ(y)− ε)rαm















.

By the choice (20) we made for η, we obtain that

(21) ≤ |R(y)(∂
m
− T(y)(k, rα))|

× sup
x∈Zd

Pp





•R(y)(x)∩C∞ 6= ∅,

•∃y ∈ ∂m
+ T(y)(k, rα), D(c(x), y)≤

(

µ(y)− ε

2

)

rαm





≤
(

2 +
1

ηr

)

∏

1≤j≤d
j 6=m

(

2 +
αj

η

)

Pp

(

bym(αmr)≤
(

µ(y)− ε

2

)

αmr

)



LARGE DEVIATIONS FOR THE CHEMICAL DISTANCE 29

which tends to 0 when r goes to ∞ by Lemma 4.2. Note that this convergence
is uniform in k ∈ Zd and y ∈ S2. �

4.4. Lower large deviations: proof of Theorem 1.6. We essentially follow
the main lines of the proof in the classical case by Grimmett and Kesten [8]:
A “too short” path should cross “many” boxes in a “too short” time, and by
the previous result and a counting argument, this probability can be made
exponentially small. The two main difficulties are to deal with geometric
problems due to the fact that we want large deviations not only along the
coordinate axes, but in all directions and the uniformity we require in this
direction.

Step 1. Definition of boxes adapted to direction y.
Choose M and N large enough, that will be fixed later.
For k = (k1, . . . , kd) ∈ Zd, we define

S(y)(k) =

{

v ∈ Zd : ∀m ∈ {1, . . . , d}Nkm ≤ 〈v,nm〉
〈ym, nm〉 < N(km + 1)

}

,

T(y)(k) =







v ∈ Zd :∀m ∈ {1, . . . , d}
Nkm −M ≤ 〈v,nm〉

〈ym, nm〉 < N(km + 1) + M







.

The S(y)(k)’s are large “twisted square” boxes, adapted to the studied direc-
tion of progression y and its conjugates (y2, . . . , yd), that induce a partition
of Zd, and the T(y)(k)’s are still much larger boxes centered in the S(y)(k)’s.

In T(y)(k), the small box S(y)(k) is surrounded by 2d boxes of the type
(1 ≤ m≤ d):

B+
(y),m(k) =



























v ∈ Zd :

∀j 6= mNkj −M ≤ 〈v,nj〉
〈yj , nj〉

< N(kj + 1) + M,

N(km + 1)≤ 〈v,nm〉
〈ym, nm〉 < N(km + 1) + M



























B−
(y),m(k) =



























v ∈ Zd :

∀j 6= mNkj −M ≤ 〈v,nj〉
〈yj , nj〉

< N(kj + 1) + M,

Nkm −M ≤ 〈v,nm〉
〈ym, nm〉 < Nkm



























.

We define the inside border and the outside border of the box B−
(y),m(k),

relatively to T(y)(k):

∂inB
−
(y),m(k) = {v ∈ T (k)\B−

(y),m(k) :∃w ∈ B−
(y),m(k)‖v −w‖1 = 1},
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∂outB
−
(y),m(k) =

{

v ∈ T(y)(k1, . . . , km−1, km − 1, km+1, . . . , kd)\T(y)(k) :

∃w ∈B−
(y),m(k)‖v −w‖1 = 1

}

,

and the borders of the other boxes can be defined in the obvious analogous
manner.

The point is that a path, visiting S(y)(k) and exiting from T(y)(k), has to

cross one of these 2d boxes surrounding S(y)(k) in T(y)(k) from a point in

its inside border to a point in its outside border, say B+
(y),m(k), for instance.

And, roughly speaking, the fastest way to cross it is to follow the ym direc-
tion, and this should take an amount of steps of order µ(ym)M = µ(y)M if
M is large. We can easily estimate the size of borders of boxes:

Lemma 4.4. There exist a strictly positive constant Kd depending only

on the dimension d and not on y ∈ S2 such that for every k ∈ Zd, for every

m ∈ {1, . . . , d},
1

Kd
(N + 2M)d−1 ≤ |∂inB

+
(y),m(k)| ≤ Kd(N + 2M)d−1,

1

Kd
(N + 2M)d−1 ≤ |∂outB

+
(y),m(k)| ≤ Kd(N + 2M)d−1.

The same is also true for the borders of B−
(y),m(k)’s.

Step 2. Construction of crossings.
The construction is exactly the same as the one in [8]. We thus only give

the way to adapt it.
Let r > 0 large enough and let γ = (v(0), . . . , v(ν)) be a path from 0

to a point in S∞
ry . We associate to γ the following two sequences. First

set k(0) = 0 and a(0) = 0. Let then v(a(1)) be the first vertex along γ to
be outside T(y)(k(0)), and let k(1) be the coordinates of the small box of
type S containing v(a(1)): v(a(1)) ∈ S(y)(k(1)), and build the two sequences
recursively, to obtain (a(1), . . . , a(τ(γ))) and (k(0), . . . , k(τ(γ))) such that:

1. 0 = a(0) < a(1) < · · ·< a(τ(γ)) ≤ ν,
2. v(a(i)) ∈ S(y)(k(i)),
3. a(i + 1) is the smallest integer a larger than a(i) such that v(a) /∈

T(y)(k(i)).

The final terms satisfy

∀a(τ(γ)) ≤ j ≤ ν v(j) ∈ T(y)(k(τ(γ))).

Note that the portion γ(i) of γ between v(a(i− 1)) and v(a(i)) has to cross
one of the 2d boxes of type B(y),m(k(i − 1)) surrounding S(y)(k(i − 1)) in
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T(y)(k(i−1)) from a point in its inside border to a point in its outside border.
We are interested in these crossings and the amount of steps they use.

But first, by the process of loop removal described in [8], remove the
double points from Γ = (k(0), . . . , k(τ(γ))), and obtain

Γ̃ = (l(0), . . . , l(σ(γ))),

where l(a) = k(ja) and 0 < j0 < · · ·< jσ(γ) ≤ τ(γ). Note that although we can
have jσ(γ) < τ(γ), it is always true that k(jσ(γ)) = k(τ(γ)). By construction,

∀m∈ {1, . . . , d} ∀j ∈ {0, . . . , τ(γ)− 1}
∣

∣

∣

∣

〈nym , k(j + 1)− k(j)〉
〈nym , ym〉

∣

∣

∣

∣

≤ M

N
+ 1,

and this property is preserved by the loop removal process in the following
sense:

∀m ∈ {1, . . . , d} ∀j ∈ {0, . . . , σ(γ)− 1}
∣

∣

∣

∣

〈nym , l(j + 1)− l(j)〉
〈nym, ym〉

∣

∣

∣

∣

≤ M

N
+ 1.

Step 3. Coloring of crossings.
Consider the portion γ(i) of γ between v(a(i−1)) and v(a(i)), and define:

L(i) = max
m∈{1,...,d}

∣

∣

∣

∣

〈nym , v(a(i)) − v(a(i− 1))〉
〈nym, ym〉

∣

∣

∣

∣

.

By construction, M ≤L(i)≤ M +N for 1≤ i≤ τ(i). Now, for i ∈ {1, . . . , σ(γ)},
consider the portion γ(ji) between the two boxes S(y)(k(ji−1)) and S(y)(k(ji))
and give to the vector l(i) = k(ji) the color white if

γ(ji) is open and |γ(ji)| ≤ (µ(y)− 2ε)L(ji),

and in black otherwise. Denote by w(γ) the number of white points in the
sequence (l(1), . . . , l(σ(γ))) of crossings associated to γ. The next lemma
corresponds to Lemma 3.5 in the paper by Grimmett and Kesten [8]:

Lemma 4.5. Suppose that ε, r, M and N satisfy the following:

1. ε is small : 0 < ε < min{µ(z) : z ∈ S2},
2. M/N is large: ∀z ∈ S2 M(µ(z)− 3ε) ≥ (M + N)(µ(z)− 4ε),
3. r is large: ∀z ∈ S2 rε≥ (M + 2N)(µ(z)− 4ε).

Then for any y ∈ S2, an open path γ, traveling from 0 to S∞
ry and whose

length |γ| is less or equal to r(µ(y)− 5ε), satisfies

w(γ) ≥ εσ

2µ(e1)
and σ(γ) ≥ r

M + N
− 1.
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Proof. The proof for a fixed y ∈ S2 is exactly as in [8]. The only differ-
ence is the uniformity in y ∈ S2, that can be obtained because µ is a norm
and is bounded away from 0 and bounded away from infinity on the compact
set S2. �

Note that the event {l(i) is white} in contained in the event

E(y),i =







a vertex in S(y)(k(ji)) is joined to a vertex
outside T(y)(k(ji)) by a path using
less than (M + N)(µ(y)− 2ε) steps







.

To conclude the proof by a counting argument, as these event are only locally
dependent, it only remains to prove the following lemma:

Lemma 4.6. Let 0 < ε < µinf = min{µ(z) : z ∈ S1}. Then

p(M,N,ε) = sup
k∈Zd

y∈S2

Pp

(∃v ∈ S(y)(k), ∃w /∈ T(y)(k),
v ↔ w,D(v,w) ≤ (M + N)(µ(y)− 2ε)

)

goes to 0 when M and N go to infinity, provided that M ≥ 2N
ε supx∈S2

µ(x).

Proof. Note that M ≥ 2N
ε supx∈S2

µ(x) implies (M + N)(µ(y)− 2ε) ≤
M(µ(y) − ε) and use Lemma 4.3 on the time needed to cross a box:

p(M,N,ε) ≤ 2d sup
k∈Zd

sup
y∈S2

sup
1≤m≤d

Pp(t
m
(y)(k,αr)≤ (µ(y)− ε)αmr).

�

5. Large deviations for the set of wet vertices: Proof of Theorem 1.7. We
can now prove Theorem 1.7, which follows quite naturally from the uniform
estimates in Theorem 1.3 and Theorem 1.6.

Let p > pc(d) and ε > 0. Let us note first that, for every t > 0,

Pp

(

D
(

Bt

t
,Bµ(0,1)

)

≥ ε

)

≤ Pp

(

Bt

t
6⊂ Bµ(0,1 + ε)

)

+ Pp

(

Bµ(0,1) 6⊂ Bt

t
+ Bµ(0, ε)

)

.

Let us now estimate each term separately.
Step 1. In the first term, we estimate the probability that the random set

Bt grows too fast, which corresponds to the existence of a point x whose
distance D(0, x) from the origin is shorter than expected. Thus

Pp

(

Bt

t
6⊂ Bµ(0,1 + ε)

)

= Pp

(

∃x∈ Zd D(0, x) ≤ t, µ

(

x

t

)

> 1 + ε

)
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= Pp

(

∃x∈ Zd D(0, x) <
1

1 + ε
µ(x), µ(x) > (1 + ε)t

)

≤
∞
∑

k=(1+ε)t/µ(e1)

∑

‖x‖1=k

Pp

(

D(0, x) <
1

1 + ε
µ(x)

)

≤
∞
∑

k=(1+ε)t/µ(e1)

∑

‖x‖1=k

Ae−B‖x‖1 with Theorem 1.6

≤
∞
∑

k=(1+ε)t/µ(e1)

Ckd−1Ae−Bk ≤ A′tde−Bt.

Step 2. In the second term, we estimate two types of discrepancies between
Bt/t and Bµ: on the one hand the probability that the random set Bt grows
too slowly, which corresponds to the existence of a point x whose distance
D(0, x) from the origin is larger than expected and on the other hand, the
probability that the random set Bt contains abnormally large holes. By
definition,

Pp

(

Bµ(0,1) 6⊂ Bt

t
+Bµ(0, ε)

)

= Pp(∃x∈ Rd µ(x)≤ t, Bµ(x, εt) ∩Bt = ∅).

Note that, as soon as t is large enough, one has

∀x ∈ Bµ(0, t) ∃y ∈ Zd such that

3ε

4
t ≤ µ(y)≤

(

1− 3ε

4

)

t and Bµ

(

y,
εt

8

)

⊂Bµ(x, εt),

and so we obtain

Pp

(

Bµ(0,1) 6⊂ Bt

t
+Bµ(0, ε)

)

≤ Pp

(

∃y ∈ Zd 3ε

4
t ≤ µ(y)≤

(

1− 3ε

4

)

t,Bµ

(

y,
εt

8

)

∩Bt = ∅

)

≤
∑

(3ε/4)t≤µ(y)≤(1−3ε/4)t

Pp

(

Bµ

(

y,
εt

8

)

∩Bt = ∅

)

.

If the event Bµ(y, εt
8 )∩Bt = ∅ occurs, then either Bµ(y, εt

8 ) contains no point
of the infinite cluster, or it contains a point of the infinite cluster whose
distance from the origin is larger than t:

Pp

(

Bµ

(

y,
εt

8

)

∩Bt = ∅

)

≤ Pp

(

Bµ

(

y,
εt

8

)

∩C∞ = ∅

)

+ Pp

(

∃z ∈ Bµ

(

y,
εt

8

)

t < D(0, z) < ∞
)

.
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By equation (4), the first term is less than A3 exp(− B3εt
8µ(e1)). Note also that

if z ∈ Bµ(y, εt
8 ), then µ(z) ≤ µ(y) + εt

8 ≤ (1− 5ε
8 )t. Thus

Pp

(

∃z ∈ Bµ

(

y,
εt

8

)

t < D(0, z) < ∞
)

≤
∑

z∈Bµ(y,εt/8)

Pp

((

1− 5ε

8

)−1

µ(z) < D(0, z) < ∞
)

.

For such z, we have µ(z) ≥ µ(y)− εt
8 ≥ 5ε

8 t, and by Theorem 1.3, there exist
two positive absolute constants A,B such that

Pp

(

∃z ∈ Bµ

(

y,
εt

8

)

t < D(0, z) <∞
)

≤ A(εt)de−Bεt.

And we finally obtain

Pp

(

Bµ(0,1) 6⊂ Bt

t
+Bµ(0, ε)

)

≤
∑

(3ε/4)t≤µ(y)≤(1−3ε/4)t

A3 exp

(

− B3εt

8µ(e1)

)

+ A(εt)de−Bεt

≤Ctd
(

A3 exp

(

− B3εt

8µ(e1)

)

+ A(εt)de−Bεt
)

,

which ends the proof of the theorem.
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