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Extremal eigenvalues of the Laplacian in a

conformal class of metrics : the ”conformal

spectrum”

Bruno Colbois and Ahmad El Soufi

Abstract

Let M be a compact connected manifold of dimension n endowed
with a conformal class C of Riemannian metrics of volume one. For
any integer k ≥ 0, we consider the conformal invariant λc

k(C) defined
as the supremum of the k-th eigenvalue λk(g) of the Laplace-Beltrami
operator ∆g, where g runs over C.

First, we give a sharp universal lower bound for λc
k(C) extending

to all k a result obtained by Friedlander and Nadirashvili for k = 1.
Then, we show that the sequence {λc

k(C)}, that we call ”conformal
spectrum”, is strictly increasing and satisfies, ∀k ≥ 0, λc

k+1(C)n/2 −
λc

k(C)n/2 ≥ nn/2ωn, where ωn is the volume of the n-dimensional
standard sphere.

When M is an orientable surface of genus γ, we also consider the
supremum λ

top
k (γ) of λk(g) over the set of all the area one Riemannian

metrics on M , and study the behavior of λ
top
k (γ) in terms of γ.
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1 Introduction and statement of results

Let M be a closed connected differentiable manifold of dimension n ≥ 2.
Given a Riemannian metric g on M , let

spec(g) = {0 = λ0(g) < λ1(g) ≤ λ2(g) · ·· ≤ λk(g) ≤ · · ·}

be the spectrum of the Laplace-Beltrami operator defined by g.
One of the main topics in spectral geometry is the study of the variational

properties of the functional g 7−→ λk(g) and the finding out of extremal ge-
ometries for λk. Problems of this kind were first studied in the setting of
Euclidean domains where many Faber-Krahn type inequalities have been es-
tablished (see [He] for a recent survey). In the case of closed manifolds which
interests us here, the first result was obtained by Hersch [H]: on the 2-sphere
S2, the standard metric gs maximizes λ1 among all the Riemannian metrics
of the same area. Moreover, gs is, up to isometry, the unique maximizer.

Recall that the behavior of λk under scaling of the metric is given by
λk(cg) = λk(g)/c. Hence, a normalization is required. The metric invariant
usually considered for this normalization is the volume V (g). Therefore, we
denote by M(M) the set of all Riemannian metrics of volume one on M and,
for any g ∈ M(M), we set

[g] = {g′ ∈ M(M) | g′ is conformal to g} .

It is well known that if M is of dimension n ≥ 3, then, ∀k ≥ 1, λk is
not bounded on M(M) (see [CD]). On the other hand, Korevaar [K] showed
that in dimension 2, λk is bounded on M(M) and that, in all dimensions, the
restriction of λk to any conformal class of metrics of fixed volume is bounded.
Hence, for any natural integer k and any conformal class of metrics [g] on
M , we define the conformal k-th eigenvalue of (M, [g]) to be

λc
k(M, [g]) = sup

g′∈[g]

λk(g
′) = sup

{

λk(g
′)V (g′)2/n | g′ is conformal to g

}

.

The sequence {λc
k(M, [g])} constitutes the conformal spectrum of (M, [g]).

In dimension 2, one can also define a topological spectrum by setting, for
any genus γ and any integer k ≥ 0,

λtop
k (γ) = sup {λk(g) | g ∈ M(Mγ)} ,

Mγ being an orientable compact surface of genus γ.
The aim of this paper is to emphasize some properties of the conformal

and topological spectra. Let us first recall some of the known results. Ac-
tually, most of them concern only the first positive eigenvalue. Indeed, the
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result of Hersch mentioned above reads: λtop
1 (0) = λ1(gs) = 8π, where gs

is the standard metric normalized to volume one. For genus one surfaces,
Nadirashvili [N1] showed that λtop

1 (1) = λ1(ge) = 8π2/
√

3, where ge is the
flat metric induced on the 2-torus from an equilateral lattice of R2. For ar-
bitrary genus, Yang and Yau [YY] proved the following inequality (see also
[EI1]):

λtop
1 (γ) ≤ 8π[

γ + 3

2
],

where [ ] denotes the integer part, and Korevaar [K] showed the existence of
a universal constant C such that, ∀k ≥ 0,

λtop
k (γ) ≤ C(γ + 1)k.

In higher dimension, Korevaar also obtained in [K] the estimate :

λc
k(M, [g]) ≤ C([g])k2/n

for some constant C([g]) depending on n and on a lower bound of Ric d2,
where Ric is the Ricci curvature and d is the diameter of g or of another
representative of [g].

Regarding the conformal first eigenvalue, the second author and Ilias [EI2]
gave a sufficient condition for a Riemannian metric g to maximize λ1 in its
conformal class [g]: if there exists a family f1, f2, · · ·, fp of first eigenfunc-
tions satisfying

∑

i dfi ⊗ dfi = g, then λc
1(M, [g]) = λ1(g). This condition is

fulfilled in particular by the metric of any homogeneous Riemannian space
with irreducible isotropy representation. For instance, the first conformal
eigenvalues of the rank one symmetric spaces endowed with their standard
conformal classes [gs], are given by

• λc
1(S

n, [gs]) = nω
2/n
n , where ωn is the volume of the n-dimensional Eu-

clidean sphere of radius one,

• λc
1(RP n, [gs]) = 2

n−2

n (n + 1)ω
2/n
n ,

• λc
1(CP d, [gs]) = 4π(d + 1)d!−1/d,

• λc
1(HP d, [gs]) = 8π(d + 1)(2d + 1)!−1/2d,

• λc
1(CaP 2, [gs]) = 48π( 6

11!
)1/8 = 8π

√
6( 9

385
)1/8.

On the other hand, Ilias, Ros and the second author [EIR] proved that if
Γ = Ze1 + Ze2 ⊂ R2 is a lattice such that |e1| = |e2|, then the corresponding
flat metric g

Γ
on T2 satisfies λc

1(T
2, [g

Γ
]) = λ1(gΓ

). A higher dimensional
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version of this result was also established in [EI3]. Neverthless, the authors
[CE] have showed that when the length ratio |e2|/|e1| of the vectors e1 and
e2 is sufficiently far from 1, then λc

1(T
2, [g

Γ
]) > λ1(gΓ

), that is, g
Γ

does not
maximize λ1 on [g

Γ
].

Finally, the following relationship between λc
1(M, [g]) and the conformal

volume Vc(M, [g]) is due to Li and Yau [LY] in dimension 2, and to the second
author and Ilias [EI2] in all dimensions:

λc
1(M, [g]) ≤ nVc(M, [g])2/n.

Our first result states that among all the possible conformal classes of
metrics on manifolds, the standard conformal class of the sphere is the one
having the lowest conformal spectrum.

Theorem A For any conformal class [g] on M and any integer k ≥ 0,

λc
k(M, [g]) ≥ λc

k(S
n, [gs]).

Although the eigenvalues of a given Riemannian metric may have non-
trivial multiplicities, the conformal eigenvalues are all simple: the conformal
spectrum consists on a strictly increasing sequence, and, moreover, the gap
between two consecutive conformal eigenvalues is uniformly bounded. Pre-
cisely, we have the following theorem:

Theorem B For any conformal class [g] on M and any integer k ≥ 0,

λc
k+1(M, [g])n/2 − λc

k(M, [g])n/2 ≥ λc
1(S

n, [gs]) = nn/2ωn,

where ωn is the volume of the n-dimensional Euclidean sphere of radius one.

An immediate consequence of these two theorems is the following explicit
estimate of λc

k(M, [g]):

Corollary 1 For any conformal class [g] on M and any integer k ≥ 0,

λc
k(M, [g]) ≥ nω2/n

n k2/n.

Note that, for k = 1, this last inequality has been recently proved by
Friedlander and Nadirashvili [FN] (see also [CE]). However, our method is
more general and simpler.

Of course, in the particular case of the n-sphere Sn endowed with its
standard conformal class [gs], the equality holds in this inequality for k =
1. The equality also holds for k = 2 on S2 as it was recently proven by
Nadirashvili [N2], i.e. λc

2(S
2, [gs]) = 8π.

4



Combined with the Korevaar estimate quoted above, Corollary 1 gives

nω2/n
n k2/n ≤ λc

k(M, [g]) ≤ C([g])k2/n.

Corollary 1 implies also that, if the k-th eigenvalue λk(g) of a metric g is

less than nω
2/n
n k2/n, then g does not maximize λk on its conformal class [g].

In particular, we have the following (negative) answer to a question of Yau
concerning S2 (see [Y], p. 686):

Corollary 2 For any integer k ≥ 2, the standard metric gs of S2 does
not maximize λk, that is there exists a metric gk of volume one on S2 such
that

λk(gk) > λk(gs).

Indeed, λk(gs) = 4π[
√

k]([
√

k]+1), where [
√

k] is the integer part of
√

k, while
λc

k(S
2, [gs]) ≥ 8πk. The same calculations show that, on S3, for any k ≥ 2,

we have λk(gs) < 3ω
2/3
3 k2/3, and then the k-th eigenvalue does not achieve

its maximum on [gs] at gs.
On the other hand, in any dimension we have, λc

1(S
n, [gs]) = λ1(gs) =

λ2(gs) = · · · = λn+1(gs). Consequently, ∀k ∈ [2, n + 1], the standard metric
gs of Sn does not maximize λk in its conformal class.

In [EI3] (see also [EI4] and [N]), Ilias and the second author studied the
property for a Riemannian metric to be critical (in a generalized sense) for
the functional g 7−→ λk(g). A consequence of their results is that, if a metric
g is extremal for λk under conformal deformations, then the multiplicity of
λk(g) is at least 2, which means that λk(g) = λk+1(g) or λk(g) = λk−1(g).
Combined with Theorem B, this fact yields:

Corollary 3 If a Riemannian metric g maximizes λ1 on its conformal
class [g], then it does not maximize λ2 on [g]. More generally, a Riemannian
metric g cannot maximize simultaneously three consecutive eigenvalues λk,
λk+1 and λk+2 on [g].

Applying Theorem B to an orientable surface Mγ of genus γ, we obtain
the following result concerning the topological spectrum.

Corollary 4 For any fixed genus γ and any integer k ≥ 0,

λtop
k+1(γ) − λtop

k (γ) ≥ 8π,

and
λtop

k (γ) ≥ 8(k − 1)π + λtop
1 (γ) ≥ 8kπ.

Our last result answers the following question: how does λtop
k (γ) behave

as γ increases?
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Theorem C For any fixed integer k ≥ 0, the function γ 7−→ λtop
k (γ) is

increasing, that is

λtop
k (γ + 1) ≥ λtop

k (γ).

Recently, Brooks and Makover [BM] proved that, if C is the Selberg
constant, then, for any ε > 0, there exists an integer N such that any compact
orientable surface of genus γ ≥ N admits a hyperbolic metric g with λ1(g) ≥
C − ε. As the area of such a hyperbolic surface is equal to 4π(γ − 1), it
follows that λtop

1 (γ) ≥ 4(C − ε)π(γ − 1). Although the Selberg conjecture
”C = 1/4” is still open, it has been proved that C ≥ 171/784 > 1/5 ([LRS]).
Hence, for sufficiently large γ, λtop

1 (γ) ≥ 4
5
π(γ − 1) and then, ∀k ≥ 0,

λtop
k (γ) ≥ 4

5
π(γ − 1) + 8π(k − 1).

2 Preliminary results

Roughly speaking, the proof of the two theorems A and B lies on the follow-
ing idea, also used in [FN]: locally, a Riemannian manifold (M, g) is almost
Euclidean, and, consequently, almost conformal to the sphere endowed with
its standard metric gs. Then, given a metric h in the conformal class of the
standard metric of the sphere, it will be possible to construct a conformal
deformation of (M, g) around a point to make this neighborhood arbitrar-
ily close (in some sense) to (Sn, h). To make these points precise, we will
establish some preliminary results and recall some facts from literature.

Let (M1, g1) and (M2, g2) be two compact Riemannian manifolds of the
same dimension n ≥ 2. Let us suppose that there exists, for each i ≤ 2,
a point xi ∈ Mi such that the metric gi is flat in a neighborhood of xi.
Therefore, for sufficiently small ε > 0, the geodesic balls B1(x1, ε) ⊂ M1 and
B2(x2, ε) ⊂ M2 are both isometric to a Euclidean ball. If Φε : ∂B1(x1, ε) →
∂B2(x2, ε) is an induced isometry between their boundaries, then we obtain
a new closed manifold Mε by glueing M1\B1(x1, ε) to M2\B2(x2, ε) along Φε.
Let {λk(ε); k ≥ 0} be the spectrum of the natural Laplacian ∆ε of Mε (see
[A]) associated to the piecewise smooth metric gε which coincide with gi on
Mi\Bi(xi, ε), and let {Λk; k ≥ 0} be the reordered union of the spectra of
(M1, g1) and (M2, g2). Then we have the following:

Lemma 2.1 For all k ∈ N, we have

lim
ε→0

λk(ε) = Λk.
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This Lemma is a direct consequence of the min-max principle and the results
of [A]. Indeed, let {µk(ε); k ≥ 0} (resp. {νk(ε); k ≥ 0}) be the reordered
union of the spectra of M1\B1(x1, ε) and M2\B2(x2, ε) with the Dirichlet
(resp. Neumann) boundary condition. The following inequalities are direct
consequences of the min-max principle:

νk(ε) ≤ λk(ε) ≤ µk(ε).

On the other hand, for each i ≤ 2, the spectrum of Mi\Bi(xi, ε) with the
Dirichlet or the Neumann boundary condition, converges, as ε → 0, to the
spectrum of the closed manifold (Mi, gi) (see [A]).

We also have a similar result in the case where we deform the metric on
M2 so that it collapses to a point. Indeed, by changing the scale of the metric
g2 if necessary, we may assume that the radius one geodesic ball B2(x2, 1)
of (M2, g2) is contained in the flat neighborhood of x2. Now, if we replace
on M2 the metric g2 by g2(ε) = ε2g2, then the geodesic ball B1(x1, ε) of
(M1, g1) becomes isometric to the ball B2(x2, 1) of (M2, g2) endowed with
the new metric g2(ε). Again, we consider the manifold Mε obtained by
glueing M1\B1(x1, ε) to M2\B2(x2, 1) and endow it with the metric gε which
coincide with g1 on M1\B1(x1, ε) and with g2(ε) on M2\B2(x2, 1). When ε
goes to zero, Takahashi [T] proved that the spectrum of (Mε, gε) converges
to the spectrum of (M1, g1).

Lemma 2.2 ([T]) For all k ∈ N, we have

lim
ε→0

λk(Mε, gε) = λk(M1, g1).

Notice that, in dimension n ≥ 3, this result can also be derived from a
theorem of Colin de Verdière [CV].

The proof of the theorems will also use the fact that the spectrum of
a Riemannian metric does not change much when we replace this latter by
a quasi-isometric one with a quasi-isometry ratio close to one. Recall that
two Riemannian metrics g1 and g2 on a compact manifold M are said to be
α-quasi-isometric, where α ≥ 1, if, for any tangent vector v ∈ TM , v 6= 0,

1

α2
≤ g1(v, v)

g2(v, v)
≤ α2.

The spectra of g1 and g2 are then related by the following inequalities (see
[D]): ∀k ∈ N∗,

1

α2(n+1)
≤ λk(g1)

λk(g2)
≤ α2(n+1),
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while their volumes satisfy

1

αn
≤ V (g1)

V (g2)
≤ αn.

The two following immediate observations will be useful in the sequel:

O1 If g1 and g2 are α-quasi-isometric, then, for any positive smooth func-
tion f on M , the conformal metrics f 2g1 and f 2g2 are also α-quasi-
isometric.

O2 If f1 and f2 are two positive functions on M such that α−1 ≤ f1(x)
f2(x)

≤ α,

then, for any metric g on M , the metrics f 2
1 g and f 2

2 g are α-quasi-
isometric.

Lemma 2.3 Let (M, g) be a compact Riemannian manifold and let x0 be a
point of M .

(i) For any positive δ, there exists a Riemannian metric g
δ

which is flat
in a neighborhood of x0 and (1 + δ)-quasi-isometric to g on M .

(ii) If, in addition, g is conformally flat in a neighborhood of x0, then the
metric g

δ
can also be chosen to be conformal to g.

Proof: (i) In a normal coordinates system centered at x0, we have

gij(x) = δij + O(| x |2).

Hence, it is clear that one can construct an adequate g
δ

by choosing it equal
to δij in a geodesic ball B(x0, rδ) of sufficiently small radius rδ, and equal to
g in M\B(x0, 2rδ).

(ii) In the case where g is conformally flat in a neighborhood of x0, we
have the local expression

gij = f 2(x)δij ,

where f is a smooth function defined in a neighbourhood of x0 and such that
f(x0) = 1. Thus, it suffices to take g

δ
= ϕ

δ
g, where ϕ

δ
is a positive smooth

function on M such that ϕ
δ

= f−2 in a sufficiently small ball B(x0, rδ), and
ϕ

δ
= 1 in M\B(x0, 2rδ).

3 Proof of the theorems

Let us start with the following elementary construction which will be useful
in the sequel.
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Construction: Recall that the standard metric gs of the sphere Sn is ex-
pressed (via the stereographic projection with respect to the north pole) by

g(x) =
4

(1 + ‖x‖2)2
geuc,

geuc being the Euclidean metric, while, given a positive number R, the metric

gR(x) =











4
(1+‖x‖2)2

geuc if ‖x‖ ≤ R

4R4

(1+R2)2‖x‖4 geuc if ‖x‖ ≥ R

corresponds to a metric on Sn which is flat in a ball around the north pole N ,
and coincide with gs outside this ball. The radius of this latter depends on R
and an easy calculation shows that the set {‖x‖ ≥ R}, endowed with gR, is
isometrically equivalent to an Euclidean ball Dε(R) of radius ε(R) = 2R

(1+R2)
.

Now, for a metric h conformal to gs, we may consider a positive smooth
function f , with f = 1 on {‖x‖ ≥ R}, so that the metric f 2(x)gR represents
h outside the flat ball Dε(R). Moreover, up to a scaling of the variable x, it is
possible to prescribe the radius of the flat ball. Indeed, it suffices to consider,
for any positive ρ, the metric

gf,R,ρ(x) = f 2(
Rx

ρ
)gR(

Rx

ρ
) =















f 2(Rx
ρ

)R2

ρ2

4

(1+ R2

ρ2
‖x‖2)2

geuc if ‖x‖ ≤ ρ

4R2ρ2

(1+R2)2‖x‖4 geuc if ‖x‖ ≥ ρ

Note that if ‖x‖ = ρ, then the metric at x is ε2(R)
ρ2 geuc.

Before going further into the proof, let us note that the conformal eigen-
values are not necessarily achieved by smooth metrics, so that we will always
work with smooth Riemannian metrics whose eigenvalues are almost extremal
for the problem we study, and then pass to the limit.

Proof of Theorem A: Let (M, g) be a n-dimensional compact Rieman-
nian manifold of volume 1 and let k be a positive integer. Let us fix a positive
real number δ.

On the sphere Sn, consider a Riemannian metric h ∈ [gs] of volume one
satisfying

λk(h) ≥ λc
k(S

n, [gs]) − δ.

As it belongs to the standard conformal class [gs], the metric h is locally con-
formally flat and, applying Lemma 2.3 (ii), there exists a metric hδ, conformal
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to gs, flat in the geodesic ball Drδ
⊂ Sn of radius rδ and (1+δ)-quasi-isometric

to h. In particular, hδ satisfies

λk(hδ)V (hδ)
2/n ≥ (1 + δ)−2(n+2)λk(h)V (h)2/n

≥ (1 + δ)−2(n+2)(λc
k(S

n, [gs]) − δ).

On the other hand, let gδ be a metric on M satisfying the conditions of
Lemma 2.3 (i). We multiply g

δ
by a constant C2

δ so that the geodesic ball
B(x0, 2) becomes flat. Now, as explained in the construction above, for any
positive ε < rδ, there exists on M a metric f 2

ε gδ conformal to C2
δ gδ such that

- The closed ball B̄(x0, 1) ⊂ M endowed with f 2
ε gδ becomes isometric to

(Sn\Dε, hδ).

- The metric f 2
ε gδ coincide with ε2C2

δ gδ on M\B(x0, 1).

Hence, we may identify the manifold (M, f 2
ε gδ) to the manifold Mε of Lemma

2.2 above obtained by glueing M\B(x0, 1) to Sn\Dε. Lemma 2.2 tells us that
λk(gε) converges, as ε → 0, to λk(hδ). It is also clear that the volume V (gε)
of (M, gε) converges to the volume of (Sn, hδ). Therefore, there exists ε > 0
such that

λk(gε)V (gε)
2/n ≥ λk(hδ)V (hδ)

2/n − δ ≥ (1 + δ)−2(n+2)(λc
k(S

n, [gs]) − δ) − δ.

Now, using classical density results and the observation O2 above, we
may find a smooth function f̄ε on M so that the smooth metric ḡε = f̄ 2

ε g
δ

is (1 + δ)-quasi-isometric to gε = f 2
ε g

δ
. As g

δ
is (1 + δ)-quasi-isometric to

g, the observation O1 above tells us that the metric g′
ε = f̄ 2

ε g is in fact
(1 + δ)2-quasi-isometric to gε. Therefore, we have

λk(g
′
ε)V (g′

ε)
2/n ≥ (1 + δ)−4(n+2)λk(gε)V (gε)

2/n

≥ (1 + δ)−6(n+2)(λc
k(S

n, [gs]) − δ) − δ(1 + δ)−4(n+2)

= λc
k(S

n, [gs]) − O(δ),

with O(δ) → 0 as δ → 0. Since g′
ε is conformal to g, it follows, according the

definition of λc
k(M, [g]),

λc
k(M, [g]) ≥ λc

k(S
n, [gs]) − O(δ).

As δ can be chosen arbitrarily small, we get the desired inequality:

λc
k(M, [g]) ≥ λc

k(S
n, [gs]).

2
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Proof of Theorem B: Let (M, g) be a n-dimensional compact Riemannian
manifold of volume 1. Let k be a positive integer and ρ a positive real number.
We endow S

n with the metric

hρ =
nω

2/n
n

λc
k(M, [g]) + ρ

gs,

so that its first positive eigenvalue becomes equal to λc
k(M, [g]) + ρ (recall

that λ1(gs) = nω
2/n
n ), and consider a metric gρ ∈ [g] on M such that

λk(gρ) ≥ λc
k(M, [g]) − ρ/2.

Let δ be a sufficiently small positive real number so that

(1 + δ)2(n+1)λc
k(M, [g]) ≤ (1 + δ)−2(n+1)(λc

k(M, [g]) + ρ).

We apply Lemma 2.3 to get a metric gρ,δ on M , a metric hρ,δ ∈ [gs] on Sn,
and a constant rδ > 0 such that

- gρ,δ is (1 + δ)-quasi-isometric to gρ and hρ,δ is (1 + δ)-quasi-isometric
to hρ,

- ∀ ε ∈ (0, rδ), the geodesic balls B(x0, ε) ⊂ (M, gρ,δ) and D(x1, ε) ⊂
(Sn, hρ,δ) are isometric to a Euclidean ball, where x0 and x1 are two
given points of M and Sn respectively.

As in the proof of Theorem A, we notice that, for any ε ∈ (0, rδ), the closed
ball (B̄(x0, ε), gρ,δ) is conformally equivalent to (Sn\D(x1, ε), hρ,δ), and that
there exists a piecewise smooth function fε on M which is equal to 1 on
M\B(x0, ε) and such that (B̄(x0, ε), f

2
ε gρ,δ) is isometric to (Sn\D(x1, ε), hρ,δ).

Now, the manifold (M, gε = f 2
ε gρ,δ) is identified to the manifold Mε of Lemma

2.1 obtained by glueing (M\B(x0, ε), gρ,δ) to (Sn\D(x1, ε), hρ,δ). According
to this lemma, the spectrum of (M, gε) converges, as ε goes to 0, to the
reordered union of the spectra of (M, gρ,δ) and (Sn, hρ,δ). From the construc-
tion, we have the following inequalities:

λk(gρ,δ) ≤ (1 + δ)2(n+1)λk(gρ) ≤ (1 + δ)2(n+1)λc
k(M, [g]),

and

λ1(hρ,δ) ≥ (1 + δ)−2(n+1)(λ1(hρ) ≥ (1 + δ)−2(n+1)(λc
k(M, [g]) + ρ).

Hence, from the smallness condition above satisfied by δ, we have

λk(gρ,δ) ≤ λ1(hρ,δ).
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Consequently, the lowest (k + 2) eigenvalues in Spec(gρ,δ) ∪ Spec(hρ,δ) are:

λ0(hρ,δ), λ0(gρ,δ), λ1(gρ,δ), λ2(gρ,δ), · · ·λk(gρ,δ).

Thus,
lim
ε→0

λk+1(gε) = λk(gρ,δ).

On the other hand, the volume of (M, gε) converges, as ε → 0, to
V (gρ,δ) + V (hρ,δ). Since gρ,δ and hρ,δ are (1 + δ)-quasi-isometric to gρ and hρ

respectively, we have

λk(gρ,δ) ≥ (1 + δ)−2(n+1)λk(gρ) ≥ (1 + δ)−2(n+1)(λc
k(M, [g]) − ρ/2),

and

V (gρ,δ) + V (hρ,δ) ≥ (1 + δ)−n(V (gρ) + V (hρ))

= (1 + δ)−n(1 +
nn/2ωn

(λc
k(M, [g]) + ρ)n/2

).

Therefore, there exists a positive ε such that

λk+1(gε)
n/2V (gε) ≥ (1 + δ)−n(n+2) ×

×(λc
k(M, [g]) − ρ)n/2(1 +

nn/2ωn

(λc
k(M, [g]) + ρ)n/2

).

As in the proof of Theorem A, we use the observations O1 and O2 to get a
smooth metric ḡε conformal to g and (1 + δ)2-quasi-isometric to gε. Hence,

λc
k+1(M, [g])n/2 ≥ λk+1(ḡε)

n/2V (ḡε) ≥ (1 + δ)−2n(n+2)λk+1(gε)
n/2V (gε),

and then,
λc

k+1(M, [g])n/2 ≥

≥ (1 + δ)−3n(n+2)(λc
k(M, [g]) − ρ)n/2(1 +

nn/2ωn

(λc
k(M, [g]) + ρ)n/2

),

which gives, as δ → 0 and, then, ρ → 0,

λc
k+1(M, [g])n/2 ≥ λc

k(M, [g])n/2 + nn/2ωn.

2
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Proof of Theorem C: Let Mγ be a compact orientable surface of genus
γ and let k be a natural integer. Given a positive real number δ, let g

δ
be a

Riemannian metric of area one on Mγ such that

λk(gδ
) > λtop

k (γ) − δ/2.

Let us attach to Mγ a ”thin” handle of radius ε > 0 and length l > 0 as
described in [A]. After smoothing, we get a compact surface Mγ+1 of genus
(γ + 1) endowed with a Riemannian metric gδ,ε,l such that, when ε goes to
zero,

- the spectrum of the Laplacian of gδ,ε,l converges to the reordered union
of the spectrum of (Mγ , gδ

) and the spectrum of the segment [0, l] for
the Laplacian with Dirichlet boundary condition.

- the area V (gδ,ε,l) of gδ,ε,l converges to 1,

Choosing l sufficiently small, one can suppose that the first Dirichlet
eigenvalue of [0, l] is greater than λtop

k (γ). Hence, the lowest (k+1) eigenvalues
in Spec(Mγ , gδ

) ∪ Spec([0, l]) are:

λ0(gδ
), λ1(gδ

), λ2(gδ
), · · ·λk(gδ

),

and then
lim
ε→0

λk(gδ,ε,l) = λk(gδ
).

Therefore, there exist two positive constants ε and l such that

λk(gδ,ε,l) ≥ λk(gδ
) − δ/2 > λtop

k (γ) − δ

and
V (gδ,ε,l) > 1 − δ.

Consequently

λtop
k (γ + 1) ≥ λk(gδ,ε,l)V (gδ,ε,l) ≥ (λtop

k (γ) − δ)(1 − δ).

In conclusion, we have
λtop

k (γ + 1) ≥ λtop
k (γ).

2
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