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Transport and vortex pinning in micron size superconducting Nb films
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We have carried out Hall measurements on thin films of Nb in the flux flow regime. The Hall bars
were several microns in scale. Oscillations with magnetic field in the tranverse and longitudinal
resistances between the depinning field Bd and the upper critical field Bc2 are observed below Tc.
The Hall effect may even change sign. The tranverse and longitudinal resistances are interpreted in
terms of current-driven motion of vortices in in the presence of a few impurities. Simulations from
time-dependent Ginzburg-Landau equations (TDGL) confirm this argument.

PACS numbers:74.25.Qt,74.78.Db,47.32.Cc,74.78.-w

The conductivity in the flux-flow regime of type-II

superconductors is determined by the dynamics of vor-

tices. Since vortex motion in an applied external mag-

netic field is intrinsically at least two dimensional, to

understand the transport the full conductivity tensor is

needed [1, 2, 3]. In past studies of vortex matter [4], the

current-voltage curves have been observed to have in-

teresting effects such as aging and memory phenomena.

Together with effects of hysteresis in the magnetization

curves, these have been interpreted as the consequences

of the motion of interacting vortices in a complex en-

ergy landscape with random potential. This provides a

general explanation of memory effects, slow relaxation

rates and sensitivity to initial conditions. In this pa-

per we present experimental evidence of similar memory

and pinning effects in Hall and resistance measurements

of type-II thin films, using samples of micron dimension

well below Tc. By relating these results to simulations

of the dynamics of vortices interacting with one another

and a vortex scattering potential, we will deduce a length

∗present address: DSV/DRDC Laboratoire Biopuces- Bât
4020, CEA-Grenoble, 17, rue des Martyrs, 38054 Grenoble,
email:ghenim@dsvsud.cea.fr
†email:fortin@lpt1.u-strasbg.fr

scale for the vortex pinning potential.

Up to now, observed anomalies in the Hall effect close

to Tc in bulk samples have been explained as being re-

lated to vortex motion damping [5] or plastic flow of the

vortex lattice [6]. As we diminish the sample size, one

would expect to reach a regime where the motion of a

finite number of vortices must be considered. In order to

simplify full vortex dynamics, in which one must consider

motions of the vortex lines, we have fabricated planar

samples with thickness Lz = 800 − 1000Å, comparable

to the coherence length ξ at 4K. In this case the vortex

core can be considered as a disk. We took a conventional

superconductor, Nb, with samples as pure as possible to

minimize pinning. Nb has the advantage that the bulk

vortex structure has been studied in detail by neutron

scattering [7] and microscopy [8]. The epitaxial samples

(100) were grown by DC magnetron sputtering on R-

plane sapphire at 600oC and the eight-lead Hall bars pro-

cessed by photolithography and reactive-ion etching (the

bar area is Lx×Ly = 50µm×5µm; the resistance probes,

which are micron wide, are separated by Lp = 10µm).

DC Hall resistance Rxy and magnetoresistance Rxx mea-

surements were made in the flux-flow regime with current

reversal in the B transverse configuration. To eliminate

the effects of contact misalignment, the Hall resistance
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was obtained by subtracting the positive and negative

magnetic field data. The films had Tc = 8.4K and a re-

sistive ratio ρxx(300K)/ρxx(10K) = 5.1 with a carrier

density ne ≃ 8.5 × 1022cm−3, obtained from the expres-

sion Rxy = B/eneLz for the Hall resistance in the nor-

mal phase. The low resistance contacts on the Hall bars

were made by Indium bonding. The measurements were

made with a Quantum Design Magnetic Property Mea-

surement System adapted for transport measurements,

giving high stability as a function of magnetic field and

temperature. Figure 1 shows magnetoresistance as a

function of magnetic field at T = 4K, well below Tc at

current I = 200µA. The resistance Rxx is zero for fields

below Bd, the depinning field for vortices, and then in-

creases to reach its normal state value at Bc2. From

the upper critical field experimental value Bc2(4K) ≃
1.3T, we use the Ginzburg-Landau theoretical expression

Bc2(T ) = φ0/(2πξ
2(T )), where φ0 is the flux quantum, to

deduce approximatively the zero temperature coherence

length ξ0 ≃ 115 Å. From the carrier density ne, the zero

temperature London penetration length can be estimated

using the expression λ0 =
√

me/µ0nee2, which gives

λ0 ≃ 180 Å, whereme is the electron mass, and we obtain

κ ≃ 1.6. The electronic mean free path le is computed

from the normal resistance Rxx at 4K using the Drude

formula le ≃ (1.264 × 104Ω)n
−2/3

e Lp/(RxxLzLy)[9]. The

value of the normal resistance at 4K is Rxx ≃ 1.7Ω,

based on Fig. 1 data, which gives le ≃ 76Å at this tem-

perature, of the same order as the cohence length. The

relatively large value of le for these thin films shows the

good quality of the samples. The transverse resistance

displays a more striking behaviour; it oscillates strongly

between the depinning field Bd and Bc2. Above Bc2 the

Hall resistance recovers the behavior of the normal state:

it is linear with field, with slope inversely proportional

to the Nb carrier density. In the field range where Rxy

oscillates, this resistance may even be negative. As seen

in Fig. 2, in general a minimum of Rxy corresponds to

a maximum of dRxx/dB . If Rxy were dominated by

a parasitic resistive component, this would tend to give

maxima in Rxy where the oscillating part of Rxx is maxi-

mal, ie where dRxx/dB is between extrema. Subtraction

of positive and negative magnetic field Hall data was im-

portant to avoid such parasitic effects. We note that

to observe the oscillations the magnetic field had to be

swept very slowly: typically at least 12 hours per scan

for a given temperature.
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FIG. 1: Resistances for a sample size Lp ×Ly=10µm×5µm,
T=4K, I=200µA. For convenience Rxx is scaled by a factor
10−3.
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FIG. 2: Comparison of Rxy and dRxx/dH . The parameters
are the same as for Figure 1.

Figure 3 shows Rxy versus B for 2 different tempera-

tures. As we heat the sample (from 4K) the oscillations

in Rxy diminish as T approaches Tc over the narrowing

field range between the depinning and the upper critical

fields. Measurements at different longitudinal currents

are shown in Fig. 4, from which we conclude that the

oscillations are a low current phenomena: at 800µA they

have almost disappeared. At low currents, the sign may

be inverted (compare the data for 100 and 200µA). In

fact we observe inverted curves in different field scans at

the same current (see insert of Fig. 4). Between these
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FIG. 3: Transverse resistance for different temperatures,
I=200µA.
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FIG. 4: Transverse resistance for different currents, T=4K.
In insert, different scans for the same current 200µA, showing
history dependence.

scans the sample is kept at low temperature but was sub-

ject to different currents and fields. What is surprising

is that while the oscillating part of the Hall conductivity

is inverted, the pattern is very similar. The sign inver-

sion invites comparison to the anomalous sign change

observed in the Hall resistance near Tc in the bulk [5],

described phenomenologically in terms of a vortex veloc-

ity which has a component opposite to the direction of

the superfluid flow. Zhu et al. [6] related the sign rever-

sal of the mixed-state Hall resistivity close to the critical

temperature to thermal fluctuations and vortex-vortex

interactions and associated this inversion of sign to in-

coherent motion of vortices, i.e. plastic flow of vortex

lattice. Here the sign reversal is of an oscillating trans-

verse Hall effect and is most visible at low temperatures

rather than as a smooth change of sign close to Tc, but

we retain from the comparison that it must be related

to the dynamics of interacting vortices. Periodic sharp

oscillations in the resistance have been observed in su-

perconducting Nb films with a square lattice of artificial

pinning centers and are associated with commensurabil-

ity of the vortex and antidots densities [10, 11]. Thus the

oscillations could be due to pinning. The inversions we

see indicate that for a fixed configuration of defects the

overall sign depends on the initial vortex configuration.

The two striking features of our results: sharp oscilla-

tions and sensitivity to initial conditions, lead us to pro-

pose a dynamical model including both vortex interaction

and a quenched pinning potential. In order to describe

the evolution in time of the local superconducting and

normal flows, and local induced magnetic field, we use

the TDGL equations [12, 13, 14, 15, 16, 17]. They are

time- and space- dependent nonlinear differential equa-

tions coupling the superconducting order parameter and

the vector potential and are useful to predict qualitative

effects of vortex dynamics in the mixed phase of type-II

material. The TDGL equations are derived from the ex-

tremum of the superconductor free energy in presence of

an external magnetic field Be perpendicular to the sam-

ple:

F =
a

2
|ψ|2 +

b

4
|ψ|4 +

1

2ms

∣

∣

∣

∣

(

h̄

i
∇− qsA

)

ψ

∣

∣

∣

∣

2

+
1

2µ0

B
2 − 1

µ0

Be.B (1)

ψ(r, t) is the order parameter of the superconducting

phase and we choose a gauge where the scalar potential

is zero. The coefficient a is proportional to (T − Tc) and

is negative in the superconducting region. b does not de-

pend on the temperature and is positive. ms = 2me and

qs = 2qe are the mass and charge of the Cooper pair. The

steady state solution in the mixed phase in the absence

of current is an Abrikosov vortex array. The interactions

between vortices are included inside the non linear terms

of the differential equations. Inside the vortex cores the

magnetic field is maximum and superconducting density

minimum. When a homogeneous current J is applied

to one direction the vortex array moves in the trans-
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verse direction in the absence of pinning. The current

is introduced as a boundary condition. It is the sum of

the contribution from the normal and superfluid compo-

nents: J = σ̂E + Js, Js = qs/msℜ
[

ψ̄ (−ih̄∇− qsA)ψ
]

.

The conductivity tensor σ̂ is the inverse of the classical

resistivity tensor ρ̂. The uniform equilibrium value of ψ

[Eq. (1)] in the absence of a magnetic field can be sim-

ply written as ψ0 =
√

−a/b, with a = −a′(1 − T/Tc),

a′ is a positive constant. a′ and b are related to the

zero temperature coherence and penetration lengths by

ξ0 = h̄/
√

2msa′ and λ2

0
= msb/(µ0q

2

sa
′). Within the do-

main of applicability of the TDGL theory, all material

parameters can be reduced to the following units:

lengths L → L/ξ0, (2)

temperature T → T/Tc,

magnetic field B → B/Bc2(0),

potential vector A → A/Bc2(0)ξ0

wavefunction ψ → ψ/ψ0

This allows one to study numerically general features

of Nb films with only a few dimensionless parameters

like κ or reduced temperature t = T/Tc. The time τ is

defined in units of τ0 = µ0κ
2ξ2

0
σnnn(T )/ne, where nn is

the normal electron density, and σn the normal regime

conductivity. The dimensionless equation of motion for

ψ reads:

∂ψ

∂τ
=

1

η

[

−
(

1

i
∇− A

)2

ψ + (1 − t)
(

1 − |ψ|2
)

ψ

]

, (3)

where η is a relaxation rate proportional to the product

of a dimensionless constant me/(κ
2h̄µ0σn) and a numer-

ical value. This numerical value can be estimated from

the Bardeen-Cooper-Schrieffer theory[18, 19]. Taking the

experimental values (see Table 1), the dimensionless con-

stant is close to 20. In references[15, 19, 20], η varies from

0.8 to 12, and we will choose its numerical value around

unity to optimize time convergence. From the Maxwell

equations we obtain:

∂A

∂τ
= ρ̂

(

−κ2∇× (∇× A)

+(1 − t)ℜ
[

ψ̄

(

1

i
∇− A

)

ψ

])

, (4)

where ρx,x = ρy,y = 1 and ρy,x = −ρx,y = αB are the

normal state components of the resistivity tensor in di-

mensionless units. The coefficient α = σnBc2/qene is

small (α ≃ 10−3 with the values of Table 1). In the

following, we choose κ = 2 (to be clearly type II and

close to the experimental value) and T= 0. Equations 3

and 4 are discretized on a grid of size Nξ0 × Nξ0 with

time step ∆τ = 0.04. It ensures that the equations

converge to a unique steady solution. Taking different

time steps around this value does not change the numer-

ical results. Instead of using a discretized version of the

vector potential Ai,j(τ), we consider the link variables

Uµ
i,j(τ) = exp(−iAµ,i,j(τ) aµ), µ = x, y, which preserve

the gauge invariance properties of the continuous model

[16, 21]. The resulting equations are accurate to second

order in space and time steps. From the time dependence

of the link variables, we obtain the instantaneous electric

fields and the time averaged resistances.

We calculate with an external field Be perpendicular to

the sample and a bulk current J along the x axis, in units

of J0 = qeh̄ns(T )/(2meξ0), with ns(T ) = ne − nn(T )

the superconducting electron density. At zero tempera-

ture, given the experimental values (Table 1), this gives

a current density J0 ≃ 6.85 × 1013Am−2. The wave-

function and magnetic field are periodic along the x axis

and ψ vanishes on boundaries of the transverse direc-

tion, where the magnetic field takes the values Be ±∆B,

∆B = JLy/2κ
2 being the contribution from the current

introduced here as a boundary condition. At the begin-

ning of the numerical simulation (t = 0 and Be = 0),

we take as initial conditions ψ = 1 in the bulk of the

sample and small random values around zero for the po-

tential vector components Ax and Ay. After an equili-

bration time, a few thousand time steps N0, we switch

on the current and measure the resistances, over a pe-

riod of time τ = Ntτ0 for each value of the external field

Be, where N0 and Nt are the number of iterations of the

equations. Every time we increase the external magnetic

field by a small amount, we let the system approach the

steady state during N0 time steps before recording the

resistance values.

We model the “defects” in the sample (grain bound-

aries, thickness variations, the specific geometry....) by

considering a square lattice of points where either the

wavefunction vanishes ψ ∼ 0, or it is fixed to a non-

zero value depending on the superfluid density ψ ∼
|1−B/Bc2|. In the first case the impurities decrease the

local condensate density and attract vortices while in the

second case they repel. Because the pinning potential is
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periodic, it is characterised by a distance between centers

denoted by Limp. Limp is the distance between vortex

scattering centers, to be distinguished from le which is

the distance between elastic scattering centers for elec-

trons. For simplicity, we choosed a periodic structure for

the impurities instead of a random one. This is in order

to study the influence of the impurity density, consid-

ered as a single parameter, on the voltage oscillations.

In the simulations Limp varies from 3.33 (36 impurities,

N = 20) to 12.5 (1 impurity, N = 25). In Fig. 5 we

show the simulations for two different impurity concen-

trations together with the zero impurity case, shown to

indicate the noise in the calculations. The oscillations

in the transverse resistance, which are similar for the

two forms of pinning potential, strongly resemble those

seen in the experiments. From the numerical data, and

from the range of system size studied (N=20-25 coherent

lengths), we can extract a characteristic period δB, or

equivalently a length Lc ≡ 1/
√
δB, and plot it as a func-

tion of Limp, as shown in the insert of Fig. 5. It is seen

to decrease with increasing Limp, i.e. δB increases with

increasing purity. From the dominant period of the ex-

perimental oscillations (Fig. 1) we can extract from the

insert of Fig. 5 an effective distance for vortex pinning

Limp ≃ 15 − 20ξ0 = 0.17 − 0.23µm. We use ξ0 = 115Å

and assume we can apply the numerically derived rela-

tion between Limp and Lc to our experimental sample.

Indeed, the curve Lc(Limp) depends on the parameters

of the equations 3 and 4, in particular κ, the temperature

and the ratio between the system size and the coherent

length. Strictly speaking, the TDGL theory may not be

accurate in the field range where we extracted Lc, but we

expect to obtain a reasonable estimate of Lc for κ around

the experimental value 1.6.

In Fig. 6 we calculate Rxy for two different currents:

just as in the experiment (Fig. 4) if the current increases,

the oscillation amplitude decreases. Furthermore we ob-

serve sign inversion due to differing initial conditions as

shown in Fig. 7. The simulations then reproduce the ex-

perimental observation of a strong memory effect: while

there is correlation in the positions of extrema, the nature

of each extremum (maximum or minimum) depends on

the initial condition at Bd, but is conserved through the

scan. These simulations, which do not have the geometric

features of the contacts, show that the effects seen exper-

imentally are properties of generic small devices, and are

not just an effect of the specific Hall bar geometry. It is
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B
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no impurity
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FIG. 5: Calculated transverse resistances for different impu-
rity densities. In insert is Lc versus Limp in units of the
coherence length ξ0. Parameters, whose definitions are in the
text, are N = 25, J = 0.03, Nt = 50000, and η = 0.5.
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FIG. 6: Calculated transverse resistances for 2 different cur-
rents. Parameters are: N = 20, 9 impurities, Nt = 50000,
and η = 0.8.

not excluded, however, that the boundaries of the device

contribute to the pinning potential.

In conclusion, we have shown that micron scale Hall

bars of thin films display strong oscillations in the trans-

port in the flux-flow regime, in particular in the Hall

voltage at low current. We have shown numerically that

these oscillations may be explained by the effects of pin-

ning potentials. The transverse voltage is proportional to

the average vortex velocity in the longitudinal direction,

which is much smaller than the velocity transverse to the
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FIG. 7: Sign inversion seen for different random initial con-
ditions A and B. Parameters are: N = 20, 4 impurities,
J = 0.03, Nt = 50000, and η = 0.8.

current (Rxy/Rxx ≃ 10−3). Rxy is therefore sensitive to

the presence of bulk impurities which act as scattering

centers for the vortices. As the transverse component

of the vortex velocity is much larger than the longitudi-

nal component, a small change in the velocity will have

a much larger relative effect on its longitudinal compo-

nent, hence Rxy. We explain the sign inversion seen ex-

perimentally (Fig. 4) and numerically (Fig. 7) by the

fact that each vortex can be scattered by an impurity in

two opposite directions, depending on its initial coordi-

nates. The effect is amplified by the collective behavior

of other vortices which tend to follow the same direction

due to the stiffness of the vortex array. The surprising

memory effect, that the inversion continues for the whole

field scan, is reproduced by our model of quenched im-

purities, at least for the lower field range B/Bc2
<∼ 0.6.

The abnormal Hall effect here is due to pinning of cor-

related vortices [22] and not to the dynamics of a single

vortex. Thus even potentials of short range, as used in

the simulations, are sufficient to influence the transport.

Low current transport measurements are then a useful

probe of vortex pinning potentials. These potentials are

responsible for the complex behavior, as seen here and in

other studies of bulk samples [4] that also showed aging

and memory phenomena in the current-voltage caracter-

istics for example. From the experimental oscillations

(Fig. 1) and assuming the caracteristic curve Lc versus

Limp is accurate for the samples studied, we extracted an

effective distance Limp ≃ 0.17−0.23µm between pinning

centers, for ξ0 = 115Å, coherent with the large ampli-

tudes seen. Our device is small enough and clean enough

that there are a small number of effective pinning cen-

ters. More generally we can argue that in micron and,

by extension, submicron superconducting devices, strong

oscillations in the transport are to be expected as generic

properties.
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Ghenim) thanks the Physics Department of the HK Uni-

versity of Science and Technology for hospitality.

Table 1

Parameters Experimental Values

Lx × Ly × Lz 50µm×5µm×1000Å

Tc 8.4K

ne 8.5×1022cm−3

λ0 180Å

ξ0 115Å

κ 1.6

Bc2 1.3T (4K)

Rxx (normal state) 1.7Ω (4K)

σn (normal state) 1.2 × 107Ω−1m−1 (4K)

le 76Å(4K)
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