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Light scattering from cold rolled aluminum surfaces
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We present experimental light scattering measurements from aluminum surfaces obtained by cold
rolling. We show that our results are consistent with a scale invariant description of the roughness
of these surfaces. The roughness parameters that we obtain from the light scattering experiment
are consistent with those obtained from Atomic Force Microscopy measurements.

Since an early paper by Berry in 1979[1], the study of wave scattering from self-affine (fractal) surfaces has become
very active, see Ref.[2, 3, 4, 5, 6, 7, 8, 9, 10] for recent references. Most of these papers consist in numerical
simulations; apart from the early works of Jakeman et al [11, 12] very few theoretical results have been published;
the same statement stands for experimental results while lots of real surfaces[13, 14, 15] have been shown to obey
scale invariance. Here we try and test experimentally recent theoretical expressions obtained for the scattering of a
scalar wave from a perfectly conducting self-affine surface [16]. We report scattering measurements of an s-polarized
electromagnetic wave (632.8 nanometers) from a rough aluminum alloy plate (Al 5182). The latter was obtained
by industrial cold rolling. As presented in Fig. 1 taken from Ref. [15] by Plouraboué and Boehm, the rolling
process results in a very anisotropic surface, the roughness being much smaller along the rolling direction than in the
orthogonal one. From Atomic Force Microscopy (AFM) measurements with a long range scanner the authors could
establish the scale invariant character of the roughness: the surface was found to be self-affine between a few tens
of nanometers and about fifty micrometers. At the macroscopic scale, they measured the height standard deviation
(RMS roughness) to be σ = 2.5 µm.

Let us briefly recall that a profile or a one-dimensional surface is said to be self-affine if it remains statistically
invariant under the following transformations:

x → λx , z → λζz .

where the parameter ζ is the roughness exponent. A direct consequence of this scale invariance is that when measured
over a length d geometrical quantities such as a roughness σ or a slope s are dependent on this length d:

σ(d) ∝ dζ , s(d) ∝ dζ−1

The roughness exponent which characterizes the autocorrelation function is however not sufficient to give a complete
characterization of the statistics of the surface roughness. The latter also requires an amplitude parameter. In
the context of light scattering, one can for example normalize the geometrical quantities with their value over one
wavelength:

σ(d) = σ(λ)

(

d

λ

)ζ

, s(d) = s(λ)

(

d

λ

)ζ−1

We will see in the following that the value of the slope s(λ) is the crucial numerical parameter when dealing with
scattering from self-affine rough surfaces. Note finally that the scale invariance of real surfaces roughness can only
extend over a finite domain. The upper cut-off allows to define a macroscopic roughness, the lower one allows to
define a local slope in every point. This scaling invariant formalism has been shown to be relevant to describe varied
surfaces such as the ones obtained by fracture[13], growth or deposition processes [14].

We performed our measurements on a fully automated scatterometer (see ref. [17, 18] for a full description). The
set-up is designed for the measurement of the bidirectional scattering distribution function. The source is a Helium-
Neon laser of wavelength λ = 632.8 nm, the beam passes through a mechanical chopper and is submitted to a spatial
filtering before reaching the sample. The latter is placed on a rotating plate which allows to vary the incident angle.
The scattered light is collected by a converging lens and focussed on a photomultiplier. This detection set-up is placed
on an automated rotating arm. Note that the shadow of the photomultiplier imposes a blind region of ±11 degrees
around the back-scattering angle. Two polarizers allow us to select the polarization directions of both incident and
scattered lights. The output signal is filtered by a lock-in amplifier and processed by a micro-computer. We used a
frequency f = 700Hz and a time constant τ = 1s. The surface being highly anisotropic, the result is a priori very
sensitive to the orientation of the surface. In order to select properly one of the two main directions of the surface,
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FIG. 1: AFM image of 512×512 points of the aluminum alloy sheet surface. This image has been obtained by Plouraboué
and Boehm[15] in contact mode on a Park Scientific AFM using a long range scanner (100 µm lateral travel and 5 µm vertical
travel). The height standard deviation has been measured to be σ = 2.5 µm.

we placed a vertical slit in front of the photomultiplier. This allows to reduce the effects of possible misorientation
of the sample. The results of the scattering measurements obtained for incidence angles 0, 30, 50 and 65 degrees are
displayed in semi-log scale on figure 2.

How does the scale invariance of the roughness affect the angular distribution of the scattered light? The comparison
of experimental light scattering data with theoretical models still remains a delicate matter. A key point is obviously
to give a proper description of the statistical properties of the surface roughness. When testing new models or
approximations, it is usual to design surfaces of controlled Gaussian autocorrelation function (this is for example
possible by illuminating photosensitive materials with a series of laser speckles [19, 20, 21]). In the following we want
to test the consistency of our scattering measurements with the roughness analysis. We perform this test via a very
crude approximation: we consider the surface to be one-dimensional and perfectly conducting. We then compare
our experimental results with analytical predictions obtained in the context of a simple Kirchhoff approximation
corresponding to Gaussian, exponential and self-affine correlations.

Although lots of studies have been published about scattering from scale invariant surfaces in the last twenty years,
very few analytical results can be found in the literature. The main results are due to Jakeman and his collaborators
[11, 12] who showed that the angular distribution of the intensity of a wave scattered from a self-affine random phase
screen could be written as a Lévy distribution. In a similar spirit, some of us studied very recently[16] the case of
scattering from self-affine surfaces and found in the context of a Kirchhoff approximation:

〈

∂R

∂θ

〉

=
s(λ)−

1

ζ a−( 1

ζ
−1)

√
2 cos θ0

cos θ+θ0

2

cos3 θ−θ0

2

(1)

×L2ζ

(√
2 tan θ−θ0

2

a
1

ζ
−1s(λ)

1

ζ

)

,

where a = 2π
√

2 cos θ+θ0

2 cos θ−θ0

2 , and Lα(x) is the centered symmetrical Lévy stable distribution of exponent α
defined as

Lα(x) =
1

2π

∫ ∞

−∞

dk eikxe−|k|α . (2)

Note that the form of this analytical result does not depend on the value of the global RMS roughness σ in contrast
to the case of a Gaussian correlated surface. The scattering pattern is centered around the specular direction with an
angular width w which scales as
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FIG. 2: Scattered intensity measurements obtained at incidence angles θ0 = 0, 30, 50 and 65 degrees respectively. The
experimental results are shown in symbols. The solid/dotted/dashed lines correspond to the expressions obtained for a Kirchhoff
approximation in case of self-affine/Gaussian/exponential correlations respectively.

w ≃ s(λ)
1

ζ

It is worth mentioning here that in the context of this simple Kirchhoff approximation, the crucial geometrical
parameter to consider is the slope over the scale of one wavelength s(λ): the angular distribution of the scattered
intensity is mainly controlled by this “local” parameter and does not depend on the value of the global RMS roughness.
The latter will only come back into the game if one goes beyond a single scattering approximation.

Using the complete set of experimental scattering data, we performed a numerical fitting procedure for the expression
(1) and for the expressions obtained with Gaussian or exponential correlations. The latter have been derived in the case
of very rough surfaces (see Appendix for details of the expressions and the derivation). The fitting procedure consisted
in a numerical minimization of the quadratic distance between the data and the tested expression in logarithmical
scale. The free parameters are an amplitude parameter (which is simply an additive constant in logarithmic scale)
and two geometrical parameters: the roughness exponent ζ and typical slope over the wavelength s(λ). In the case
of gaussian or exponential correlation there is only one geometrical parameter which is an equivalent slope σ/τ or
2πσ2/λτ respectively. Note that the same parameters are used for the whole set of experimental data gathering four
different incidence angles.

In order to get rid of shadowing and multiple scattering effects, we restricted the fitting procedure to a region of ±
50 degrees around the incidence angle. In this region we can see on figure 2 that there is a good agreement with the
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expression () which has been obtained with a roughness exponent ζ = 0.78 and a typical slope over the wavelength
s(λ) = 0.11. For large scattering angles the analytical expression systematically overestimates the scattered intensity.
We attribute this behavior to the shadowing efffects. None of the Gaussian and exponential correlations can give a
comparable result. In the Gaussian case, we obtain σ/τ = 0.08 and in the exponential case 2πσ2/λτ = 0.10.

Beyond this direct comparison of the different prediction for the angular distribution of the scattered intensity,
we try also to compare the geometrical parameters that we obtained with direct roughness measurements performed
by Atomic Force Microscopy. We imaged an area of size 2.048 µm × 2.048 µm with a lateral step of 4 nm. From
these roughness measurements we compute the typical height difference ∆z between two points as a function of the
distance ∆x separating the two points. This quantity is obtained via a quadratic mean over all possible couples
of points separated by a given distance ∆x. In case of self-affine, Gaussian or exponential correlations, we expect
respectively:

∆zsa = λs(λ)

(

∆x

λ

)ζ

, (3)

∆zGauss = σ
√

2

√

1 − exp(−∆x2

τ2
) , (4)

∆zexp = σ
√

2

√

1 − exp(−∆x

τ
) . (5)

We show in Fig.3 the results of the roughness analysis and the predictions corresponding to the self-affine corre-
lations. Both the value ζ = 0.78 of the roughness exponent and the slope over one wavelength s(λ) = 0.11 that we
obtain from the scattering measurements seem to be consistent with the experimental roughness data. Note that the
hypothesis of exponential and Gaussian correlations would have lead to power laws of exponents 0.5 and 1 respectively
since we consider horizontal distances ∆x about the wavelength which are far smaller than the expected correlation
lengths.

These first results can be considered as very promising: let us recall that we assumed the surface to be purely
one-dimensional and perfectly conducting and that we used a basic Kirchhoff approximation, neglecting all shadowing
or multiple scattering effects... Refining the modeling of shadowing or multiple scattering in the specific case of
self-affine surfaces could allow to design a valuable tool to measure the geometrical parameters describing self-affine
surfaces. This experimental study also makes clear that self-affine correlations can be a relevant formalism to describe
the optical properties of real surfaces. Beyong classical optical phenomena this could be also of great interest in the
context of the recent studies [23, 24] modeling thermal emission properties of rough surfaces.

We derive in this appendix the expression of the scattering cross-section in the framework of the Kirchhoff approx-
imation for a one-dimensional very rough surface.

In the following we consider the scattering of s-polarized electromagnetic waves from a one-dimensional, rough
surface z = ζ(x). The height distribution is supposed to be gaussian of standard deviation σ and the two-points
statistics is characterized by the autocorrelation function C(v). The pulsation of the wave is ω, the wave number is
k, the incidence angle is θ0, the scattering angle is θ.

Following Maradudin et al [25] the Kirchhoff approximation gives for the scattering cross-section ∂R/∂θ from a
rough surface of infinite lateral extent:

〈

∂Rs

∂θ

〉

=
ω

2πc

1

cos θ0

(

cos [(θ + θ0)/2]

cos [(θ − θ0)/2]

)2

I(θ, θ0) , (6)

where

I(θ, θ0) =

∫ ∞

−∞

dv exp {ik(sin θ − sin θ0)v}Ω(v) , (7)

Ω(v) = 〈exp {−ik[cos θ + cos θ0] ∆ζ(v)}〉 . (8)

Note that the statistical properties of the profile function, ζ(x), enters Eqs. () only through Ω(v). With the knowledge
of the autocorrelation function C(v) the distribution of the height differences ∆ζ(v) = ζ(x+ v)− ζ(x) can be written:
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FIG. 3: Roughness analysis computed from AFM measurements (circles) compared with predictions obtained via a fit of the
angular scattered intensity distribution assuming self-affine correlations. The slope of the line is ζ = 0.78

P (∆ζ, v) =
1

2σ
√

π
√

1 − C(v)
exp

[ −∆ζ2

4σ2 [1 − C(v)]

]

. (9)

This leads immediately to:

Ω(v) = exp
{

−k2σ2(cos θ + cos θ0)
2 [1 − C(v)]

}

. (10)

In case of a very rough surface, we have k2σ2 ≪ 1 (in our experimental case, σ = 2.5µm and λ = 632.8 nm so that
k2σ2 ≃ 600) and and the only v to really contribute to the integral are in the close vicinity of zero. We can then
replace C(v) by the first terms of its expansion around zero. Consider the gaussian and exponential cases

CG(v) = exp

(

−v2

τ2

)

, Cexp(v) = exp
(

−v

τ

)

. (11)

where τ is by definition the correlation length, this leads to:

ΩG(v) = exp
[

−k2 (cos θ + cos θ0)
2
α2v2

]

, (12)

Ωexp(v) = exp
[

−k2 (cos θ + cos θ0)
2
ασ|v|

]

. (13)

Simple algebra leads finally to

〈

∂Rs

∂θ

〉

G

=
k

4α
√

π cos θ0

cos [(θ + θ0)/2]

cos3 [(θ − θ0)/2]
exp

[

− 1

4α2

(

tan
θ − θ0

2

)2
]

, (14)

〈

∂Rs

∂θ

〉

exp

=
ασk

π cos θ0

cos2 [(θ + θ0)/2]

sin2 [(θ − θ0)/2] + 4(ασk)2 cos2 [(θ + θ0)/2] cos4 [(θ − θ0)/2]
(15)
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