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Abstract.

The basic methods of constructing the sets of mutually unbiased bases in the Hilbert

space of an arbitrary finite dimension are discussed and an emerging link between

them is outlined. It is shown that these methods employ a wide range of important

mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and

related projective geometries, and entanglement, to mention a few. Some applications

of the theory to quantum information tasks are also mentioned.
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1. Introduction

As a visionary founder of contemporary physics, Galileo Galilei wrote: Philosophy

(nature) is written in that great book which ever lies before our eyes. I mean the universe,

but we cannot understand it if we do not first learn the language and grasp the symbols in

which it is written. The book is written in the mathematical language... without whose

help it is humanly impossible to comprehend a single word of it, and without which

one wanders in vain through a dark labyrinth.” Even without advocating the unity of

physics and mathematics, it is becoming a reality that the concepts of quantization

invade mathematics after having profoundly changed physics. Problems pertinent to

quantum information theory are touching more and more branches of pure mathematics,

such as number theory, abstract algebra and projective geometry. This paper focuses

on one of the most prominent issues in this respect, namely the construction of sets of

mutually unbiased bases (MUBs) in a Hilbert space of finite dimension. An updated

list of open problems related to the development of quantum technologies can be, for

example, found in [1].

To begin with, one recalls that two different orthonormal bases A and B of a d-

dimensional Hilbert space Hd with metrics 〈. . . | . . .〉 are called mutually unbiased if and

only if |〈a|b〉| = 1/
√
d for all a∈A and all b∈B. An aggregate of mutually unbiased bases

is a set of orthonormal bases which are pairwise mutually unbiased. It has been found [2]

that the maximum number of such bases cannot be greater than d+ 1. It is also known

that this limit is reached if d is a power of prime. Yet, a still unanswered question is if

there are non-prime-power values of d for which this bound is attained. It is surmised

[3], [4] that the maximum number of such bases, N(d), is equal to 1+min(pei

i ), the latter

quantity being the lowest factor in the prime number decomposition of d, d =
∏

i p
ei

i .

But, for example, it is still not known [5] whether they are more than three MUBs for

d = 6, the lowest non-prime-power dimension, although the latest findings of Wootters

[6] (and an earlier result of G. Tarry quoted in the last reference) seem to speak in favor

of this conjecture.

MUBs have already been recognized to play an important role in quantum

information theory. Their main domain of applications is the field of secure quantum

key exchange (quantum cryptography). This is because any attempt by an eavesdropper

to distinguish between two non-orthogonal quantum states shared by two remote parties

will occur at the price of introducing a disturbance into the signal, thus revealing the

attack and allowing to reject the corrupted quantum data. Until recently, most quantum

cryptography protocols have solely relied, like the original BB84 one, upon 1-qubit

technologies, i.e. on the lowest non-trivial dimension (d = 2), usually the polarization

states of a single photon, or other schemes such as the sidebands of phase-modulated

light [7]. But security against eavesdropping has lately been found to substantially

increase by using all the three bases of qubits, employing higher dimensional states,

e.g. qudits [8],[9], or even entanglement-based protocols [10]. Another, closely related,

application of MUBs is so-called quantum state tomography, i.e. the most efficient way
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to decipher an unknown quantum state [1].

Quantum state recovery and secure quantum key distribution can also be furnished

in terms of so-called positive operator valued measures (POVMs) which are symmetric

informationally complete (SIC-POVMs) [11]. These are defined as sets of d2 normalized

vectors a and b such that |〈a|b〉| = 1/
√
d+ 1, where a 6= b, and they are, obviously, very

intimately connected with MUBs. Unlike the latters, however, the SIC-POVMs can

exist in all finite dimensions and they have already been constructed for d = 6 [5]. The

intricate link between MUBs and SIC-POVMs has recently been examined by Wootters

[6] and acquired an intriguing geometrical footing in the light of the “SPR conjecture”

[12] stating that the question of the existence of a set of d+1 mutually unbiased bases in

a d-dimensional Hilbert space if d differs from a power of a prime number is equivalent

to the problem of whether there exist projective planes whose order d is not a power of

a prime number.

The paper is organized as follows. In Sects. 2 and 3 the construction of a maximal

set of MUBs in dimension d = pm, p being a prime, as a quantum Fourier transform

acting on a Galois field (p odd) and a Galois ring GR(4m) (p = 2) is discussed. This puts

in perspective the earlier formulas by [2] and [4], respectively. The case of non-prime-

power dimensions is briefly examined in Sect. 4. In Sect. 5, we focus on our recent

conjecture on the equivalence of two problems: the surmised nonexistence of projective

planes whose order is not a power of a prime and the suspected non existence of a

complete set of MUBs in Hilbert spaces of non-prime-power dimensions. The geometry

of qubits is discussed and the concept of a lifted Fano plane is introduced. Finally, an

intricate relationship between MUBs and maximal entanglement is emphasized, which

promises to shed fresh light on newly emerging concepts such as the distillation of mixed

states and bound entanglement. The exposition of the theory should be self-containing.

Yet, the interested reader may find it helpful to consult some introductory texts on

quantum theory in a finite Hilbert space and its relation to Fourier transforms and

phase space methods, e.g., the review by A. Vourdas [13].

2. MUB’s, quantum Fourier transforms and Galois fields

In this section we shall examine a close connection between MUBs and Fourier trans-

forms. Let consider an orthogonal computational basisB0 = (|0〉, |1〉, · · · , |n〉, · · · , |d−1〉)
with indices n in the ring Zd of integers modulo d. There is a dual basis which is defined

by the quantum Fourier transform

|θk〉 =
1√
d

d−1
∑

n=0

ωkn
d |n〉, (1)

where k ∈ Zd, ωd = exp(2iπ
d

) and i2 = −1. In the context of quantum optics this

Fourier transform relates Fock states |k〉 of light to the so-called phase states |θk〉. The

properties of the quantum phase operator underlying this construction have extensively

been studied and found to be linked to prime number theory [14].
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Let us start with d = 2, i.e. the case of qubits, where ω = −1 and so

|θ0〉 =
1√
2
(|0〉 + |1〉); |θ1〉 =

1√
2
(|0〉 − |1〉). (2)

These two vectors can also be obtained by applying the Hadamard matrix H =

1√
2

[

1 1

1 −1

]

to the basis (|0〉, |1〉). Note that the two orthogonal bases B0 = (|0〉, |1〉)

and B1 = (|θ0〉, |θ1〉) are mutually unbiased. The third base B2 = (|ψ0〉, |ψ1〉) which is

mutually unbiased to both B0 and B1 is obtained from H by the pre-action of a π/2

rotation S =

[

1 0

0 i

]

, so that HS = 1√
2

[

1 i

1 −i

]

. The three matrices (I,H,HS) thus

generate the three mutually unbiased bases. These matrices are also important for two

qubits gates in quantum computation [8].

The above-outlined strategy for finding MUBs for qubits contrasts with that used

by a majority of authors. The eigenvectors of Pauli spin matrices σz =

[

1 0

0 −1

]

,

σx =

[

0 1

1 0

]

, σy =

[

0 −i
i 0

]

, where σy = iσxσz, are precisely the sought bases B0, B1

and B2. A natural generalization of Pauli operators σx and σz for an arbitrary dimension

d is the Pauli group of shift and clock operators:

Xd|n〉 = |n+ 1〉, (3)

Zd|n〉 = ωn
d |n〉.

For a prime dimension d = p, it can be shown that the eigenvectors of the unitary

operators (Zp, Xp, XpZp, · · · , XpZ
p−1
p ) generate the set of d + 1 MUB’s [15]. A natural

question here emerges whether this method can straightforwardly be generalized to any

dimension.

To this end in view, let us attempt to rewrite Eq.(1) in such a way that the

exponent of ωd now acts on the elements of a Galois field G = GF (pm), the finite

field of characteristic p and cardinality d = pm. Denoting “⊕” and “⊙” the two usual

operations in the field and replacing ωd by the root of unity ωp, we get

|θk〉 =
1√
d

d−1
∑

n=0

ωk⊙n
p |n〉. (4)

Next, we employ the Euclidean division theorem for fields [16], which says that given

any two polynomials k and n in G there exists a uniquely determined pair a and b in G

such that k = a⊙ n⊕ b, deg b < deg a. This allows for the exponent in Eq.(4), E, to be

written as E = (a⊙ n⊕ b) ⊙ n. In the case of prime dimension d = p, E is an integer.

Otherwise E is a polynomial and Eq.(4) generalizes to

|θa
b 〉 =

1√
d

d−1
∑

n=0

ωtr[(a⊙n⊕b)⊙n]
p |n〉, (5)

where “tr” stands for the trace of GF (pm) down to GF (p),

tr(E) = E ⊕ Ep ⊕ · · · ⊕ Epm−1

, E ∈ GF (pm). (6)
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In a finite field of odd characteristic p, Eq.(5) defines the set of d bases, with the

index a for the base and the index b for the vector in the base, mutually unbiased to

each other and to the computational base B0 as well. In a slightly different form, this

equation was first derived by Wootters [2]. Its nice short elucidation, based on Weil

sums, is due to Klappenecker et al [4]. Another, a more tricky derivation still in the

spirit of Fourier transforms and claimed to also apply to the case of characteristic 2,

was found by Durt [17]. A very recent approach based on the Weyl operators in the

L2-space over Galois fields is also worth mentioning [18].

As already pointed out in [2], the reason why (5) defines the complete set of

MUB’s relies on the field theoretical formula |∑d−1
n=0 ω

tr[(a⊙n⊕b)⊙n]
p |n〉| = p1/2, with a 6= 0

and p being an odd prime. This method, however, fails for characteristic two where

|∑d−1
n=0 ω

tr[(a⊙n⊕b)⊙n]
2 |n〉| = 0 for any a, b. As shown in Sect. 3 below, here one has to use

Galois rings instead of Galois fields to find a complete set of MUBs.

A closer inspection of (5) reveals an intricate relation between MUBs and quantum

phase operators. It is known [14] that the Fourier basis |θk〉 can be derived in terms

of the eigenvectors of a quantum phase operator with eigenvalues θk and given by

Θd =
∑d−1

k=0 θk|θk〉〈θk|. Similarly, using well known properties of the field trace, one

can show that each base of index a can be associated with a quantum phase operator

Θa
d =

d−1
∑

b=0

θa
b |θa

b 〉〈θa
b |, (7)

with eigenvectors |θa
b 〉 and eigenvalues θa

b ; the latter may thus be called an “MUB

operator.”

3. MUB’s for even characteristic from Galois rings

Our next goal is to find a Fourier transform formulation of MUBs in characteristic 2.

Eq.(4), as it stands, is in principle valid for any power of a prime, d = pm, thus also for

2m−dits, and one may, therefore, be tempted to connect the Galois field algebra and

generalized Pauli operators (3) by constructing discrete vector spaces over the Galois

field [19]. For the one qubit case we already know that the eigenvectors of Pauli matrices

σz, σx and σxσz define the three MUBs. Passing to the quartit (i.e., 4-dit) case, one finds

that the operators of the following tensorial products σz ⊗ σx, σz ⊗ σxσz and σxσz ⊗ σz

are associated to translations, i.e. to a single line in the corresponding vector space,

and they define a unique basis represented by their simultaneous eigenvectors. Since

there are 4 + 1 lines in this discrete vector space, there are also 4 + 1 MUBs. Other

geometrically inspired derivations based on the tensorial decomposition of operators in

the Pauli group can be found in [15],[20],[21].

Now, let us try adjusting Eq.(4) for the case of characteristic two. Instead of the

Euclidean division in the field GF (2m), it is necessary to consider a decomposition in

the Galois ring GR(4m) (defined below) so that the relevant root of unity in the Fourier

formula now reads ω4 = exp(2iπ/4) = i. For qubits GR(4) = Z4, and since any number
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k in Z4 can be written as k = a⊕ 2 ⊙ b, Eq. (4) transforms into

|θa
b 〉 =

1√
2

1
∑

n=0

i(a⊕2⊙b)⊙n|n〉, (8)

where ⊕ and ⊙ now act in Z4. We note that the bases are identical to the ones obtained

earlier from Eq.(1), i.e. B1 = (|θ0
0〉, |θ0

1〉) and B2 = (|θ1
0〉, |θ1

1〉).
To generalize further this formula one needs to introduce some abstract algebra.

First one recalls that the Galois field GF (pm) is the field of polynomials defined as the

quotient Zp(x)/q(x) of the ring of polynomials Zp(x) by a primitive polynomial of order

m over Zp = GF (p). By definition, this primitive element α = q(x) has the property

to be irreducible over the base field GF (p), i.e. it cannot be factored into products of

lesser-degree polynomials; it is also primitive over GF (p) of order p−1 in the sense that

it generates any non zero element of GF (p) by a power sequence (α1, α2, · · · , αp−1 = 1)

and in addition all of its roots are in the extension field GF (pm). There is at least one

primitive polynomial for any extension field GF (pm). For p = 2 and m = 2, 3 and 4 they

are, for example, of the form q(x) = x2 + x+ 1, x3 + x+ 1 and x4 + x+ 1, respectively.

A Galois ring GR(4m) of order m is a ring of polynomials which is an extension

of Z4 of degree m containing an r-th root of unity [22],[23]. Let h2(x) ∈ Z2(x) be

a primitive irreducible polynomial of degree m. There is a unique monic polynomial

h(x) ∈ Z4(x) of degree m such that h(x) = h2(x)(mod 2) and h(x)(mod 4) divides

xr − 1, where r = 2m − 1. The polynomial h(x) is the basic primitive polynomial and

defines the Galois ring GR(4m) = Z4/h(x) of cardinality 4m. This ring can be found as

follows. Let h2(x) = e(x)−d(x), where e(x) contains only even powers and d(x) only odd

powers; then h(x2) = ±(e2(x)− d2(x)). For m = 2, 3 and 4 one gets h(x) = x2 + x+ 1,

x3 + 2x2 + x− 1 and x4 + 2x2 − x+ 1, respectively.

Any non zero element of GF (pm) can be expressed in terms of a single primitive

element. This is no longer true in GR(4m), which contains zero divisors. But in the

latter case there exists a nonzero element ξ of order 2m − 1 which is a root of the

basic primitive polynomial h(x). Any element β ∈ GR(4m) can be uniquely determined

in the form β = a ⊕ 2 ⊙ b, where a and b belong to the so-called Teichmüller set

Tm = (0, 1, ξ, · · · , ξ2m−2). Moreover, one finds that a = β2m

. We can also define the

trace to the base ring Z4 by the map

tr(β) =
m−1
∑

k=0

σk(β), (9)

where the summation runs over GR(4m) and the Frobenius automorphism σ reads

σ(a⊕ 2 ⊙ b) = a2 ⊕ 2 ⊙ b2, (10)

with a2 ≡ a ⊙ a. Using the 2-adic decomposition of k in the exponent of (4) and the

above-given trace map, we finally get

|θa
b 〉 =

1√
2m

2m−1
∑

n=0

itr[(a⊕2⊙b)⊙n]|n〉; (11)
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the last expression gives a set of d = 2m bases with index a for the base and index b for

the vectors in the base, mutually unbiased to each other and to the computational base

B0 [4].

Let us apply this formula to the case of quartits. In GR(42) = Z4[x]/(x
2 + x+ 1)

the Teichmüller set reads T2 = (0, 1, x, 3 + 3x); the 16 elements a ⊕ 2 ⊙ b with a and b

in T2 are shown in the following matrix












0 2 2x 2 + 2x

1 3 1 + 2x 3 + 2x

x 2 + x 3x 2 + 3x

3 + 3x 1 + 3x 3 + x 1 + x













.

Extracting the Teichmüller decomposition (a⊕ 2 ⊙ b) ⊙ n = a′ ⊕ 2 ⊙ b′ and calculating

the exponent tr(a′ ⊕ 2 ⊙ b′) = a′ ⊕ 2 ⊙ b′ ⊕ a′2 ⊕ 2 ⊙ b′2 one gets the four MUBs

B1 = (1/2){(1, 1, 1, 1), (1, 1,−1,−1), (1,−1,−1, 1), (1,−1, 1,−1)}
B2 = (1/2){(1,−1,−i,−i), (1,−1, i, i), (1, 1, i,−i), (1, 1,−i, i)}
B3 = (1/2){(1,−i,−i,−1), (1,−i, i, 1), (1, i, i,−1), (1, i,−i, 1)}
B4 = (1/2){(1,−i,−1,−i), (1,−i, 1, i), (1, i, 1,−i), (1, i,−1, i)}. (12)

The case of 8-dits can be examined in a similar fashion, with the ring GR(43) =

Z4[x]/(x
3 + 2x2 + x − 1) and Teichmüller set featuring the following eight elements:

T2 = {0, 1, x, x2, 1 + 3x+ 2x2, 2 + 3x+ 3x2, 3 + 3x+ x2, 1 + 2x+ x2}.

4. MUB’s for non-prime-power dimensions

For d = 6, the lowest non-prime-power (n-p-p) case, one constructs a set of three MUBs

as follows. One takes the three MUBs in d = 2, viz.

B
(1)
0 = (|0〉, |1〉), B(1)

1 = (|θ0〉, |θ1〉), B(1)
2 = (|ψ0〉, |ψ1〉), (13)

or, in the matrix form, B
(1)
0 =I2, B

(1)
1 =H and B

(1)
2 =HS, and the first three MUBs in

d = 3, viz.

B
(2)
0 = (|0〉, |1〉, |2〉), B(2)

1 = (|u0〉, |u1〉, |u2〉), B(2)
2 = (|v0〉, |v1〉, |v2〉), (14)

or, in a more convenient form, B
(2)
0 =I3, B

(2)
1 =(1/

√
3









1 1 1

1 ω3 ω̄3

1 ω̄3 ω3









, B
(2)
2 =1/

√
3









1 ω3 ω3

1 ω̄3 1

1 1 ω̄3









,

and extracts the expressions for three MUBs in d = 6 from the rows of the following ten-

sorial product matrices C0 = B
(1)
0 ⊗B(2)

0 = I6, C1 = B
(1)
1 ⊗B(2)

1 and C2 = B
(1)
2 ⊗B(2)

2 . This

construction can easily be generalized to any n-p-p dimension [4],[24]. One considers

the prime number decomposition d =
∏r

i=1 p
ei

i , takes its smallest factor m̃ = mini(p
ei

i ),

and gets m̃+ 1 MUBs from the tensorial product B(k) = ⊗r
i=1B

(k)
i , (k = 0, .., m̃).

At this point, it is instructive to enlighten the above-described construction of

MUBs by confining ourselves to the Galois ring in d = 6. Let us take the latter as

the quotient GR(62) = Z6[x]/(x
2 + 3x + 1) of polynomials over Z6 by a polynomial
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irreducible over both Z2 and Z3. GR(62) has 36 elements. The notion of Teichmüller

set can be generalized to the so-called Sylow decomposition [3]. Any element β ∈ GR(6)

can be uniquely determined in the form β = a ⊕ b, where a and b are in the Sylow

subgroups Sa and Sb. These can be defined as Sa = {x ∈ GR(6) : 2x = 0} and

Sb = {x ∈ GR(6) : 3x = 0}, i.e.

Sa = {0, 3, 3x, 3 + 3x},
Sb = {0, 2, 4, 2x, 4x, 2 + 2x, 2 + 4x, 4 + 2x, 4 + 4x}. (15)

Since the quotient polynomial is irreducible, one observes that Sa and Sb themselves

are finite fields, being isomorphic to GF (4) and GF (9), respectively. One can therefore

express the ring in dimension 6 as the direct product GF (4)⊕GF (9) = GR(6). Can this

property be useful to constructs MUBs themselves, or it merely represents a constraint

on the maximum number of MUBs? One construction of MUBs for d=6 was based

on the tensorial product of MUBs in dimension 2 and 3, respectively. But the three

MUBs in dimension two do not follow from the four elements of GF (4), but from the

four elements of GR(41) = Z4. On the other hand, the four MUBs in d=3 follow from

the three elements of GF (3) = Z3. So the decomposition of GR(6) as a product of

two fields appears to be irrelevant to the topic of MUBs. Moreover, it was shown that

complete sets of MUBs in n-p-p dimensions cannot be constructed using a majority

of generalizations of known formulas for finite rings [3]. This, however, should not

deter us from looking at other possible constructions. For example, using the properties

of sets of mutually orthogonal Latin squares, it has recently been shown that in a

particular square dimension 262 it is, in principle, possible to construct at least 6

MUBs, while the construction based on the prime number decomposition determines

only mini(p
ei

i ) + 1 = 22 + 1 = 5 of them [25].

5. MUB’s and finite projective planes

An intriguing similarity between mutually unbiased measurements and finite projective

geometry has recently been noticed [12]. Let us find the minimum number of different

measurements we need to determine uniquely the state of an ensemble of identical d-

state particles. The density matrix of such en ensemble, being Hermitean and of unit

trace, is specified by (2d2/2) − 1 = d2 − 1 real parameters. When one performs a

non-degenerate orthogonal measurement on each of many copies of such a system one

eventually obtains d− 1 real numbers (the probabilities of all but one of the d possible

outcomes). The minimum number of different measurements needed to determine the

state uniquely is thus (d2 − 1)/(d− 1) = d+ 1 [2],[19].

It is striking that the identical expression can be found within the context of finite

projective geometry. A finite projective plane is an incidence structure consisting of

points and lines such that any two points lie on just one line, any two lines pass through

just one point, and there exist four points, no three of them on a line [26]. From these

properties it readily follows that for any finite projective plane there exists an integer
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d with the properties that any line contains exactly d+ 1 points, any point is the meet

of exactly d + 1 lines, and the number of points is the same as the number of lines,

namely d2 + d+ 1. This integer d is called the order of the projective plane. The most

striking issue here is that the order of known finite projective planes is a power of prime.

The question of which other integers occur as orders of finite projective planes remains

one of the most challenging problems of contemporary mathematics. The only “no-go”

theorem known so far in this respect is the Bruck-Ryser theorem [27] saying that there

is no projective plane of order d if d − 1 or d − 2 is divisible by 4 and d is not the

sum of two squares. Out of the first few non-prime-power numbers, this theorem rules

out finite projective planes of order 6, 14, 21, 22, 30 and 33. Moreover, using massive

computer calculations, it was proved that there is no projective plane of order ten. It is

surmised that the order of any projective plane is a power of a prime.

It is conjectured [12] that the question of the existence of a set of d + 1 mutually

unbiased bases in a d-dimensional Hilbert space if d differs from a power of a prime

number is identical with the problem of whether there exist projective planes whose

order d is not a power of a prime number.

5.1. GF (8) and the Fano plane

The smallest projective plane, also called the Fano plane, is obviously the d = 2 one; it

contains 7 points and 7 lines, any line contains 3 points and each point is on 3 lines. It

comprises a 3-dimensional vector space over the field GF (2), each point being a triple

(g1, g2, g3), excluding the (0,0,0) one, where gi ∈ GF (2) = {0, 1} [26]. The points of

this plane can also be represented in terms of the non-zero elements of the Galois field

G = GF (23).

To see this, we recall that this field is isomorphic to Z2(x)/(α) with the polynomial

α = p(x) = x3 + x+ 1 irreducible in GF (2). It is well-known that there are three useful

representations of the elements of GF (8) as shown in Table I [26], [28],[29].

Table 1. Representations of the elements of the Galois field GF (8)

as powers of α as polynomials as 3-tuples in Z3
2

0 0 (0,0,0)

1 1 (0,0,1)

α α (0,1,0)

α2 α2 (1,0,0)

α3 1 + α (0,1,1)

α4 α + α2 (1,1,0)

α5 1+α+α2 (1,1,1)

α6 1 + α2 (1,0,1)

The first representation emphasizes the fact that G∗ = G− {0} is a multiplicative

cyclic group of order 7, for α7 = 1. The second representation is obtained from the first



Algebraic Geometrical Structures Underlying Mutually Unbiased Measurements 10

(0,0,1)

(0,1,0)

(1,1,0)

(0,1,1)

(1,0,1) (1,0,0)

(1,1,1)

Figure 1. The Fano plane

by calculating modulo the primitive polynomial α. Finally, the 3-tuple representation is

obtained from the coefficients of the three powers x0 = 1, x1 = x and x2. Taking these

3-tuples as the points of a 3-dimensional vector space, we recover the Fano plane − see

Fig. 1.

5.2. The lifted Fano plane in GR(43)

We already know from Sect. 3 that the relevant object for 2m-dits is not the Galois field

GF (2m), but rather the Galois ring GR(4m). It is therefore important to have a look at

the geometry in the space A = GR(43). For a ring, the concept of a vector space must

be replaced by that of a module. The largest cycle in A is the set T ∗
3 = T3 − {0} (see

Sect. 3), and each element of T ∗
3 can be represented in the same way as in the case of

a Galois field. This is summarized in Table II. Any polynomial h(x) in T ∗
3 (column 2)

Table 2. Representations of the elements of the cyclic group in the Galois ring GR(43)

as powers of ξ as polynomials as 3-tuples in Z3
4 as 3-tuples in Z3

2

0 0 (0,0,0) (0,0,0)

1 1 (0,0,1) (0,0,1)

ξ ξ (0,1,0) (0,1,0)

ξ2 ξ2 (1,0,0) (1,0,0)

ξ3 1 + 3ξ + 2ξ2 (2,3,1) (0,1,1)

ξ4 2 + 3ξ + 3ξ2 (3,3,2) (1,1,0)

ξ5 3 + 3ξ+ξ2 (1,3,3) (1,1,1)

ξ6 1 + 2ξ + ξ2 (1,2,1) (1,0,1)
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is uniquely projected as a polynomial h2(x) = h(x) (mod 2) in GF (8), which results in

the 3-tuple representation in Z3
2 (column 4). Vice versa, any polynomial in GF (8) has

a unique lift in T ∗
3 . Since the geometrical structure we are looking at is combinatorial

and doesn’t depend on particular coordinates, it follows that the lifted Fano plane in

T ∗
3 is still the Fano plane up to isomorphism. So the Fano geometry is inherent in the

geometry of qubits, but we needed a special coordinatization in order to be able to see

that.

6. MUB’s of maximally entangled states

The above-discussed methods of constructing MUBs can straightforwardly be used for

recognizing orthogonal bases of maximally entangled states, of which some can be

mutually unbiased. Following the methodology outlined in Sects. 2 and 3, let us

consider a set of generalized Bell states defined as a two particle quantum Fourier

transform [9],[30]

|Bh,k〉 =
1√
d

d−1
∑

n=0

ωkn
d |n, n+ h〉, (16)

where |n, n + h〉 denotes the two-particle state |n〉, |n + h〉 and the operation n + h is

performed modulo d. These states are both orthonormal, 〈Bh,k|Bh′,k′〉 = δhh′δkk′, and

maximally entangled, trace2|Bh,k〉〈Bh,k| = 1
d
Id, where trace2 means the partial trace over

the second qudit [8]. If one restricts to the case of 2-qubits, one recovers the well-known

representation of Bell states

(|B0,0〉, |B0,1〉) =
1√
2
(|00〉 + |11〉, |00〉 − |11〉),

(|B1,0〉, |B1,1〉) =
1√
2
(|01〉 + |10〉, |01〉 − |10〉), (17)

where a more compact notation |00〉 = |0, 0〉, |01〉 = |0, 1〉,. . . , is employed. Let us

first focus on 2-qubits starting from Eq.(8). Paralleling of what we did in Sect. 3, one

first identifies kn in (16) as the multiplication k ⊙ n of polynomials in GR(4) and then

makes use of Teichmüller decomposition k = a ⊕ 2 ⊙ b. This leads to a set of 4 bases

(h, a = 0, 1) of two vectors (b = 0, 1), namely

|Ba
h,b〉 =

1√
2

1
∑

n=0

i(a⊕2⊙b)⊙n|n, n⊕ h〉. (18)

Casting the last equation into its matrix form (safe for the proportionality factor),
[

(|00〉) + |11〉, |00〉 − |11〉); (|01〉 + |10〉, |01〉 − |10〉)
(|00〉 + i|11〉, |00〉 − i|11〉); (|01〉 + i|10〉, |01〉)− i|10〉)

]

, (19)

one finds that two bases in one column are mutually unbiased, while vectors in two

bases on the same line are orthogonal to each other.
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Eq.(18) can easily be extended to maximally entangled two-particle sets of 2m-dits

by applying, as in Eq.(11), the Frobenius map (9) to the base field Z4

|Ba
h,b〉 =

1√
2m

2m−1
∑

n=0

itr[(a⊕2⊙b)⊙n]|n, n⊕ h〉. (20)

For 2-particle sets of quartits, using Eqs.(12) and (20), one thus gets 4 sets (|Ba
h,b〉,

h = 0, ..., 3) of 4 MUBs (a = 0, ..., 3),

{(|00〉 + |11〉 + |22〉 + |33〉, |00〉+ |11〉 − |22〉 − |33〉,
|00〉 − |11〉 − |22〉 + |33〉, |00〉 − |11〉 + |22〉 − |33〉);
(|00〉 − |11〉 − i|22〉 − i|33〉, |00〉 − |11〉 + i|22〉 + i|33〉,
|00〉 + |11〉 + i|22〉 − i|33〉, |00〉+ |11〉 − i|22〉 + i|33〉);
· · ·}

{(|01〉 + |12〉 + |23〉 + |30〉, |01〉+ |12〉 − |23〉 − |30〉,
|01〉 − |12〉 − |23〉 + |30〉, |01〉 − |12〉 + |23〉 − |30〉);
(|01〉 − |12〉 − i|23〉 − i|30〉, |01〉 − |12〉 + i|23〉 + i|30〉,
|01〉 + |12〉 + i|23〉 − i|30〉, |01〉+ |12〉 − i|23〉 + i|30〉);
· · ·}

{(|02〉 + |13〉 + |20〉 + |31〉, |02〉+ |13〉 − |20〉 − |31〉,
|02〉 − |13〉 − |20〉 + |31〉, |02〉 − |13〉 + |20〉 − |31〉); · · ·
· · ·}

{(|03〉 + |10〉 + |21〉 + |32〉, |03〉+ |10〉 − |21〉 − |32〉,
|03〉 − |10〉 − |21〉 + |32〉, |03〉 − |10〉 + |21〉 − |32〉); · · ·
· · ·}, (21)

where, for the sake of brevity, we omitted the normalization factor (1/2). Within each

set, the four bases are mutually unbiased, as in (12), while the vectors of the bases from

different sets are orthogonal.

Turning now to odd characteristic, i.e. to d = pm with p an odd prime, we can

similarly extend Wootters formula (5) to the generalized Bell states

|Ba
h,b〉 =

1√
d

d−1
∑

n=0

ω
tr[(a⊙n⊕b)⊙n]
d |n, n⊕ h〉, (22)

where the trace is defined by Eq.(6). A list of the generalized Bell states of qutrits for

the base a = 0 can be found in [31], the work that relies on a coherent state formulation

of entanglement. In general, for d a power of a prime, starting from (16) or (22) one

obtains d2 bases of d maximally entangled states. Each set of the d bases (with h fixed)

has the property of mutual unbiasedness.
Eq.(16) can be used, without any substantial restriction, to find d bases (h =

0, .., d − 1) of maximally entangled states in any composite dimension d =
∏r

i=1 p
ei

i .
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Or one can also follow the strategy of Sect. 4 to get m̃ = mini(p
ei

i ) sets of mutually
unbiased bases of maximally entangled states. In d = 6, for example, one expects that
two such sets of d bases can be constructed. Using the tensorial products in Sect. 4,
one indeed finds the two 2 × 6 sets (with the 1/

√
6 factor omitted)

{(|00〉+ |11〉 + |22〉 + |33〉 + |44〉 + |55〉, |00〉+ ω3|11〉 + ω̄3|22〉+ |33〉 + ω3|44〉 + ω̄3|55〉,
|00〉 + ω̄3|11〉+ ω3|22〉 + |33〉 + ω̄3|44〉 + ω3|55〉, |00〉+ |11〉 + |22〉 − |33〉 − |44〉 − |55〉,
|00〉 + ω3|11〉+ ω̄3|22〉 − |33〉 − ω3|44〉 − ω̄3|55〉, |00〉+ ω̄3|11〉 + ω3|22〉 − |33〉 − ω̄3|44〉 − ω3|55〉);
(|00〉 + ω3|11〉 + ω3|22〉+ i|33〉 + iω3|44〉 + iω3|55〉, |00〉+ ω̄3|11〉 + |22〉+ i|33〉 + iω̄3|44〉 + i|55〉,
|00〉 + |11〉+ ω̄3|22〉 + i|33〉 + i|44〉+ iω̄3|55〉, |00〉+ ω3|11〉+ ω3|22〉 − i|33〉 − iω3|44〉 − iω3|55〉,
|00〉 + ω̄3|11〉+ |22〉 − i|33〉 − iω̄3|44〉 − i|55〉, |00〉+ |11〉 + ω̄3|22〉 − i|33〉 − i|44〉 − iω̄3|55〉); . . .}

.

.

.

{(|01〉+ |12〉 + |23〉 + |34〉 + |45〉 + |50〉, |01〉+ ω3|12〉 + ω̄3|23〉+ |34〉 + ω3|45〉 + ω̄3|50〉, · · ·}.

Multipartite entanglement is a key ingredient of many quantum protocols, still

needing much work to be properly understood. Sets of orthogonal product states that

are unextendible, meaning that no further product states can be found orthogonal to all

the existing ones, have recently attracted a lot of attention. These unextendible product

bases [32], and their complement [33], certainly deserve reconsideration in terms of the

above-outlined theory, which is based on abstract algebra and finite geometry.

The Fourier transform approach implies that mutual unbiasedness and maximal

entanglement are complementary aspects in orthogonal quantum measurements. In

such measurements, the quantum states are encoded in a three-dimensional lattice of

indices h (entanglement), a (unbiasedness) and b (dimensionality of Hilbert space). If

d is a power of a prime, the lattice is a cube since in this case h, a and b reach their

limiting value d. If one forgets about entanglement (h = 0), the finite geometry which

seems to be of most relevance is that of a finite projective plane. On the other hand,

when unbiasedness is not taken into account, as well as for multipartite information

tasks when d is not (a power of) a prime, other concepts have been introduced, such as

Bell inequalities [34], coherent states [31], entanglement swapping [35], generalized Hopf

fibrations [36], topological entanglement [37] and bound entanglement [32], to mention

a few.
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