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Non Abelian Berry Phase in Noncommutative Quantum Mechanics

Alain Bérard and Hervé Mohrbach

Laboratoire de Physique Moléculaire et des Collisions, Institut de Physique, Technopôle 2000, 57078 Metz, France
(Dated: September 14, 2004)

We consider the adiabatic evolution of the Dirac equation in order to compute its Berry curvature
in momentum space. It is found that the position operator acquires an anomalous contribution due to
the non Abelian Berry gauge connection rendering the quantum mechanic algebra noncommutative.
A generalization to any known spinning particles is possible by using the Bargmann-Wigner equation
of motions. The noncommutativity of the coordinates is responsible of the topological spin transport
of spinning particle similarly to the spin Hall effect in spintronic physics or the Magnus effect in
optics. As an application we predict new dynamics for nonrelativistic particles in an electric field
and for photons in a gravitational field.

PACS numbers:

Recently, Quantum Mechanics involving noncommuta-
tive space time coordinates has led to numerous works in
high energy [1] and condensed matter physics[2]. In this
framework an antisymmetric θij parameter usually taken
to be constant is introduced in the commutation relation
of the coordinates in the space manifold

[
xi, xj

]
= i~θij .

In a recent paper [3] we generalized the quantum me-
chanics in noncommutative geometry by considering a
quantum particle of mass m whose coordinates satisfy
the deformed Heisenberg algebra

[
xi, xj

]
= i~θij(x,p),

[xi, pj ] = i~δij , and [pi, pj] = 0. From the Jacobi iden-
tity [pi,

[
xj , xk

]
] + [xj , [xk, pi]] + [xk, [pi, xj ]] = 0, we de-

duced the important property that the θ field is only
momentum dependent. An important consequence of
the noncommmutativity between the coordinates is that
neither the position operator does satisfy the usual law
[xi, Lj ] = i~εijkxk, nor the angular momentum satisfy
the standard so(3) algebra [Li, Lj] = i~εijkLk. Actu-
ally we have [xi, Lj] = i~εijkxk + i~εj

klp
lθik(p), and

[Li, Lj ] = i~εij
kL

k + i~εi
klε

j
mnp

lpnθkm(p). To remedy
this absence of generators of rotations in the noncommu-
tative geometry we had to introduce a generalized angu-
lar momentum J = r ∧ p + λp

p , that satisfies the so(3)

algebra. The position operator then transforms as a vec-
tor under rotations i.e., [xi, Jj ] = i~εijkJk. The presence
of the dual Poincare momentum λp/p leads to a dual
Dirac monopole in momentum space for the position al-
gebra

[
xi, xj

]
= −i~λεijk p

k

p3
. (1)

This result immediately implies that the coordinates of
spinless particles are commuting. Another consequence
is the quantification of the helicity λ = n~/2 that arises
from the restoration of the translation group of momen-
tum that is broken by the monopole [3][7]. Note also that
other recent theoretical works concerning the anomalous
Hall effect in two-dimensional ferromagnets predicted a
topological singularity in the Brillouin zone [8]. In ad-
dition, in recent experiments a monopole in the crystal
momentum space was discovered and interpreted in terms
of an Abelian Berry curvature [9].

In quantum mechanics this construction may look for-
mal because it is always possible to introduce commuting
coordinates with the transformation R = r − p ∧ S/p2.
The angular momentum is then J = R ∧ p + S which
satisfies the usual so(3) algebra, whereas the potential
energy term in the Hamiltonian now contains spin-orbit
interactions V (R + p ∧ S/p2). In fact, the inverse pro-
cedure is usually more efficient: considering an Hamil-
tonian with a particular spin-orbit interaction one can
try to obtain a trivial Hamiltonian with a dynamics due
to the noncommutative coordinates algebra. This proce-
dure has been apply with success to the study of adiabatic
transport in semiconductor with spin-orbit couplings [10]
where the particular dynamics of the charges is due the
commutation relation (1). The important point is to fig-
ure out which one of the two position operators r or R

gives rise to the real mean trajectory of the particle. In
fact it is well known that R has not the genuine prop-
erty of a position operator for a relativistic particle. As
we shall see this crucial remark implies a new prediction
concerning the non-relativistic limit of a Dirac particle.

In particle physics it is by now well known that the
noncommutativity of the coordinates of massless parti-
cles is a fundamental property because the position op-
erator does not transform like a vector unless it satisfies
equation (1) and that θij(p) is the Berry curvature for a
massless particle with a given helicity λ [11].

In the present paper we present another point of view
of the origin of the monopole in high energy and con-
densed matter physics by considering the adiabatic evo-
lution of relativistic massive spinning particles. In par-
ticular the computation of the Berry curvature of Dirac
particles gives rise to a noncommutative position opera-
tor that was already postulated by Bacry [12] some times
ago. A generalization to any spin is possible by using
the Bargmann-Wigner [13] equations of motion. By do-
ing that construction, we are brought to make a gen-
eralization of noncommutative algebra by considering a
θ field which is momentum as well as spin dependent.
The associated connection is then non Abelian but be-
comes Abelian in the limit of vanishing mass leading to a
monopole configuration for the Berry curvature. In this
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respect our approach is different from [11] because the
description of the photons is obtained by taking the zero
mass limit of the massive representation of a spin one
particle.

The Dirac’s Hamiltonian for a relativistic particle of
mass m has the form

Ĥ = α.p + βm+ V̂ (R) ,

where V̂ is an operator that acts only on the orbital de-
grees of freedom. Using the Foldy-Wouthuysen unitary
transformation

U(p) =
Ep +mc2 + cβα.p√

2Ep (Ep +mc2)
,

with Ep =
√
p2c2 +m2c4, we get the following trans-

formed Hamiltonian

U(p)ĤU(p)+ = Epβ + U(p)V̂ (i~∂p)U(p)+.

The kinetic energy is now diagonal whereas the potential
term becomes V̂ (D) with the covariant derivative defined
by D =i~∂p + A, and with the gauge potential A =
i~U(p)∂pU(p)+, which reads

A =
~c

(
ic2p(α.p)β + iβ

(
Ep +mc2

)
Epα−cEp Σ ∧ p

)

2E2
p (Ep +mc2)

,

(2)
where Σ = 1 ⊗ σ, is a (4 × 4) matrix. We consider adi-
abatic approximation by identifying the momentum de-
gree of freedom as slow and the spin degree of freedom
as fast, similary to the nuclear configuration in adiabatic
treatment of molecular problems, which allows to neglect
the interband transition. We then keep only the bloc di-
agonal matrix element in the gauge potential and project
on the subspace of positive energy. This projection can-
cels the zitterbewegung which corresponds to an oscil-
latory motion around the mean position of the particle
that mixes the positive and negative energies. In this
way we obtain a non trivial gauge connection allowing us
to define a new position operator r for this particle

r =iℏ∂p +
c2ℏ ( p ∧ σ)

2Ep (Ep +mc2)
, (3)

which is a (2 × 2) matrix. The position operator (3 )
is not new, as it was postulated by H. Bacry [12]. In
fact considering the irreductible representation of the
Poincare group, this author proposed to adopt a gen-
eral position operator for free massive or massless par-
ticles with any spin. In our approach which is easily
generalizable to any known spin (see formula (6)) the
anomalous part of the position operator arises from an
adiabatic process of an interacting system and as we will
now see is related to the Berry connection. For a differ-
ent work with operator valued position connected to the
spin-degree of freedom see [14]. Zitterbewegung-free non-
commutative coordinates were also introduced for mass-
less particle with rigidity and in the context of anyons
[15].

It is straightforward to prove that the anomalous part
of the position operator can be interpreted as a Berry
connection in momentum space which, by definition is the
(4 × 4) matrix Aαβ(p) = i~ < αp+ | ∂p | βp+ > where
| α p+ > is an eigenvector of the free Dirac equation
of positive energy. The Berry connection can also be
written

Aαβ(p) = i~ < φα | U∂pU+ | φβ >,

in terms of the canonical base vectors | φα >=(
1 0 0 0

)
and | φβ >=

(
0 1 0 0

)
. The non zero

element belonging only to the positive subspace, we can
define the Berry connection by considering a 2 × 2 ma-
trix A(p) = i~P(U∂pU

+), where P is a projector on the
positive energy subspace. In this context the θ field we
postulated in [3] emerges naturally as a consequence of
the adiabatic motion of a Dirac particle and corresponds
to a non-Abelian gauge curvature satisfying the relation
θij(p, σ) = ∂piAj − ∂pjAi +

[
Ai, Aj

]
. The commutation

relations between the coordinates are then

[
xi, xj

]
= iℏθij(p, σ) = −i~2εijk

c4

2E3
p

(
mσk +

pk(p.σ)

Ep +mc2

)
,

(4)
relation which has very important consequences as it im-
plies the nonlocalizability of the spinning particles. This
is an intrinsic property and is not related to the creation
of a pair during the measurement process (for a detailed
discussion of this very important point see [12])

To generalize the construction of the position operator
for a particle with unspecified n/2 (n > 1) spin, we start
with the Bargmann-Wigner equations

(γ(i)
µ ∂µ +m+ V̂ )ψ(a1...an) = 0 (i = 1, 2...n),

where ψ(a1...an) is a Bargmann-Wigner amplitude and

γ(i) are matrices acting on ai. For each equation we have
an Hamiltonian

Ĥ(i) = α(i).p + βm+ V̂ ,

then

(
n∏

j=1

U (j)(p))Ĥ(i)(
n∏

j=1

U (j)(p)+) = Epβ
(i) + V̂ (D), (5)

with D =i~∂p +
n∑

i=1

A(i), and A(i) =

i~U (i)(p)∂pU
(i)(p)+. Again by considering the

adiabatic approximation we deduce a general position
operator r for spinning particles

r =iℏ∂p +
c2 (p ∧ S)

Ep (Ep +mc2)
, (6)

with S =ℏ
(
σ(1) + ...+ σ(n)

)
/2. The generalization of

(4) is then

[
xi, xj

]
= iℏθij(p,S) = −i~εijk

c4

E3
p

(
mSk +

pk(p.S)

Ep +mc2

)
.

(7)
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For a massless particle we recover the relation r =iℏ∂p +
p ∧ S/p2, with the commutation relation giving rise to

the monopole
[
xi, xj

]
= iℏθij(p) = −i~εijkλ

pk

p3 . The

monopole in momentum introduced in [3] in order to con-
struct genuine angular momenta has then a very simple
physical interpretation. It corresponds to the Berry cur-
vature resulting from an adiabatic process of massless
particle with helicity λ. For λ = ±1 we have the po-
sition operator of the photon, whose noncommutativity
property agrees with the weak localizability of the photon
which is certainly an experimental fact. It is not surpris-
ing that a massless particle has a monopole Berry curva-
ture as it is well known that the band touching point acts
as a monopole in momentum space [16]. This is precisely
the case for massless particles for which the positive and
negative energy band are degenerate in p = 0. In our
approach, the monopole appears as a limiting case of a
more general Non Abelian Berry curvature arising from
an adiabatic process of massive spinning particles.

The spin-orbit coupling term in (6) is a very small cor-
rections to the usual operator in the particle physics con-
text but it may be strongly enhanced and observable in
solid state physics because the spin-orbit effect is more
much important than in the vacuum. For instance in
narrow gap semiconductors the equations of the bands
theory are similar to the Dirac equation with the forbid-
den gap EG between the valence and conduction bands
instead of the Dirac gap 2mc2 [17].The monopole in mo-
mentum space predicted and observed in semiconductors
results from the limit of vanishing gap EG → 0 between
the valence and conduction bands.

It is also interesting to consider the symmetry proper-
ties of the position operator with respect to the group of
spatial rotations. In terms of commutative coordinates
R the angular momentum is by definition J = R ∧ p+S,
whereas in terms of the noncommutative coordinates the
angular momentum reads J = r ∧ p + M, where

M = S − A ∧ p. (8)

One can explicitly check that in terms of the non com-
mutative coordinates the relation [xi, Jj ] = i~εijkxk is
satisfied, so r like R transforms as a vector under space
rotations, but dR/dt = cα which is physically unaccept-
able. For a massless particle (8) leads to the Poincaré mo-
mentum associated to the monopole in momentum space
deduced in[3].

Let now look at some physical consequences of the non-
commuting position operator on the dynamics of a quan-
tum particle in an arbitrary potential. Due to the Berry
phase in the definition of the position the equation of
motion should be changed. But to compute commutator
like

[
xk, V (x)

]
one resorts to the semiclassical approxi-

mation
[
xk, V (x)

]
= i~∂lV (x)θkl +O(~2) leading to new

equations of motion

.
r=

p

Ep
+

.
p ∧θ, and

.
p= −∇V (r) (9)

with θi = εijkθjk. Whereas the equation for the mo-
mentum is usual, the velocity one acquires a topological
contribution due to the Berry phase, which is responsi-
ble of the relativistic topological spin transport as in the
context of semi-conductor where similar non-relativistic
equations lead to the spin Hall effect[10][18].

As an important particular application, consider the
nonrelativistic limit of a charged spinning Dirac particle
in a constant electric field V̂ (r) = eE.r, (the physical
results are not affected if the electric field is time depen-
dent). In this limit the Hamiltonian reads

H̃(R,p) ≈ mc2 +
p2

2m
+ V̂ (R)− e~

4m2c2
σ. (E ∧ p) , (10)

which is a Pauli Hamiltonian with a spin-orbit term. This
expression has been already deduced in [19] by consider-
ing the Born-Oppenheimer approximation of the Dirac
equation where the Berry phase in the nonrelativistic
limit emerges naturally. The adiabaticity is satisfied as
the non-diagonal terms of order λc/L can be made neg-
ligeable in comparison to the diagonal one which is of
order λ2

c/λL when λ << L (L is the length of variation
of the potential and λc is the Compton length). From
(10) we deduce

dX i

dt
=
pi

m
− eℏ

4m2c2
εijkσjEk, (11)

whereas the non relativistic limit of (9) leads to the fol-
lowing velocity

dxi

dt
=
pi

m
− eℏ

2m2c2
εijkσjEk. (12)

which shows an enhancement of the spin-orbit contribu-
tion to the velocity. This new fundamental prediction
which could be experimentally verified is one of the two
main result of this letter. This astonished result offers
another manifestation beside the Thomas precession of
the difference between the Galilean limit (11) and the
non-relativistic limit (12).

Another example of topological spin transport that we
consider now arises in the ultrarelativistic limit. Exper-
imentally what we call a topological spin transport has
been first observed in the case of the photon propaga-
tion in an inhomogeneous medium [20], where the right
and left circular polarization propagate along different
trajectories in a wave guide (the transverse shift is ob-
servable due to the multiple reflections), a phenomena
interpreted quantum mechanically as arising from the in-
teraction between the orbital momentum and the spin of
the photon [20]. To interpret the experiments these au-
thors introduced a complicate phenomenological Hamil-
tonian leading to generalized geometrical optic equation.
Our approach provides a new satisfactory interpreta-
tion as this effect, also called optical Magnus effect, is
now interpreted in terms of the non-commutative prop-
erty of the position operator containing the Berry phase.
Note that the adiabaticity conditions in this case are
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given in[21]. To illustrate our purpose consider the sim-
ple photon Hamiltonian in the inhomogeneous medium
H = pc/n(r), from which we deduce the semi-classical
equations of motion

dxi

dt
=
c

n

(
pi

p
+
λεijkpk

p2

∂ lnn

∂xj

)
(13)

which are similar to those introduced phenomenologically
in [20] , but here are deduced rigorously from different
physical consideration. This effect which is the manifes-
tation of the Berry phase and can be seen as the ultra-
relativistic spin-Hall effect implies that the velocity is no
more equal to c/n. Note that similar equations are also
given in [22] where the optical Magnus effect is also in-
terpreted in terms of a monopole Berry curvature but in
the context of geometrical optic. Our theory is easily gen-
eralizable to the photon propagation in a non isotropic
medium, a situation which is mentioned in [20] but could
not be studied with their phenomenological approach.
As a typical non-isotropic medium consider the photon
propagation in a static gravitational field whose metric
gij(x) is supposed to be time independent

(
g0i = 0

)
and

whose Hamiltonian is H = c
(
− pig

ij(x)pj

g00(x)

)1/2

. In the

semi-classical approximation the equation of motion are

dpk

dt
=
c2pipj

2H
∂k

(
gij(x)

g00(x)

)
(14)

and

dxk

dt
=
c
√
g00g

kipi√
−gijpipj

+
dpl

dt
θkl (15)

For a static gravitational field the velocity is then

vi = c
√

g00

dxi

dx0 = c
gijpj√
−gijpipj

+ 1
√

g00

dpl

dt θ
kl

with x0 = ct. Equation (14) and (15) are our new equa-
tions for the semiclassical propagation of light (or optical
geometric equation) which take into account the noncom-
mutative nature of the position operator, i.e the spin-
orbit coupling of the photon. Then the spinning nature
of photon introduces a quantum Berry phase, which af-
fects at the semi-classical level the propagation of light in
a static background gravitational field. This new funda-
mental prediction will be studied further in future paper,
but we already point out that the Berry phase implies a
velocity of light which is now different from the universal
value c.

In summary, we looked at the adiabatic evolution of
the Dirac equation in order to clarify the relation between
monopole and Berry curvature in momentum space. It
was found that the position operator acquires naturally
an anomalous contribution due to a non Abelian Berry
gauge connection rendering noncommutative the quan-
tum mechanic algebra. Using the Bargmann-Wigner
equation of motions we generalized our formalism to all
known spinning particles. The noncommutativity of the
coordinate is responsible of the topological spin trans-
port of spinning particle similarly to the spin Hall effect
in spintronic physics or the optical Magnus effect in op-
tics. In particular we predict two new effects. One is an
unusual spin-orbit contribution of a non-relativistic par-
ticle which could be verified experimentally. The other
one, concerns the effect of the Berry phase on the propa-
gation of light in a static background gravitational field.
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