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Efficient polynomial time algorithms computing

industrial-strength primitive roots

Jacques Dubrois∗ and Jean-Guillaume Dumas∗

September 13, 2004

Abstract

E. Bach, following an idea of T. Itoh, has shown how to build a small
set of numbers modulo a prime p such that at least one element of this set
is a generator of Z/pZ[2, 16]. E. Bach suggests also that at least half of
his set should be generators. We show here that a slight variant of this set
can indeed be made to contain a ratio of primitive roots as close to 1 as
necessary. We thus derive several algorithms computing primitive roots
correct with very high probability in polynomial time. In particular we

present an O(
q

1

ε
log2(p) + log4(p)) algorithm providing primitive roots

with probability of correctness greater than 1− ε and several O(logα(p)),
4 ≤ α ≤ 4.959 algorithms computing ”Industrial-strength” primitive roots
with probabilities e.g. greater than the probability of ”hardware malfunc-
tions”.

1 Introduction

Primitive roots are generators of multiplicative group of the invertibles of a fi-
nite field. We focus in this paper only on prime finite fields, but actually the
proposed algorithms can work over extension fields or any other multiplicative
groups.

Primitive roots are of intrinsic use e.g. for secret key exchange [7] or pseudo
random generators [4]. The classical method of generation of such generators is
by trial, test and error. Indeed within a prime field with p elements they are
quite numerous (φ(φ(p)) = φ(p− 1) among p− 1 invertibles are generators, see
e.g. [5] for more details). The problem resides in the test to decide whether a
number g is a generator or not. The first idea is to test every gi for i = 1..p− 1
looking for matches. Unfortunately this is exponential in the size of p. The

classical acceleration is then to factor p− 1 and test whether one of the g
p−1

q is
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1 for q a divisor of p− 1. If this is the case then g is obviously not a generator.
On the contrary, one has proved that the only possible order of g is p − 1. Un-
fortunately again, factorization is still not a polynomial time process. Therefore
no polynomial time algorithm computing primitive roots is known.

However, there exists polynomial time methods isolating a polynomial size
set of numbers containing at least one primitive root. Shoup’s [23] algorithm
is such a method. Elliot and Murata [8] also gave polynomial lower bounds on
the least primitive root modulo p. One can also generate elements with expo-
nentially large order even though not being primitive roots [13]. Our method is
in between those two approaches.

As reported by Bach [2], Itoh’s breakthrough was to use only a partial fac-
torization of p − 1 to produce primitive roots with high probability [16]. Bach
then used this idea of partial factorization to give the actual smallest known set
deterministically containing one primitive root[2]. Moreover, he suggested that
his set contained at least half primitive roots.

In this paper, we propose to use a combination of Itoh’s and Bach’s algo-
rithms producing a polynomial time algorithm generating primitive roots with
a very small probability of failure. Such generated numbers will be denoted by
“Industrial-strength” primitive roots. We also have a guaranteed lower bound
on the order of the produced elements. We mainly deal with the analysis of the
actual ratio of primitive roots within a variant of Bach’s full set. As this ratio
is close to 1, selecting a random element within this set produces a fast and
effective method computing primitive roots. The probability of failure, i.e. of
selecting a non primitive root can therefore be made arbitrarily low.

We present in section 2 our algorithm and the main theorem counting the
ratio of primitive roots. As this ratio and provable bounds on it highly depends
on ω the number of prime factors of a given composite, section 3 shows some
refinement of known bounds for ω. Then practical implementation details and
effective ratios are discussed section 4. Section 5 presents following a tentative
analysis of the composite case. We conclude section 6 with applications of
primitive root generation, accelerated by our probabilistic method. Among this
applications are Diffie-Hellman key exchange, ElGamal cryptosystem, Blum-
Micali pseudo random bit generation, and a new probabilistic primality test
based on Lucas’ deterministic procedure.
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2 The variant of Itoh/Bach’s algorithm

We now present our variant of Itoh/Bach’s algorithm. The salient features of
our approach when compared to Bach’s are that:

1. We partially factor, but with known lower bound on the remaining factors
to be found.

2. We do not require the primality of the chosen elements.

3. We consider the whole set of candidates instead of only the first ones.

Now, when compared to Itoh’s method, we use a deterministic process producing
a number with a very high order and which has a high probability of being
primitive. On the contrary, Itoh selects a random element but uses a polynomial
process to prove that this number is a primitive root with high probability [16].
The difference here is that with our version we use low order terms to build
higher order elements whereas Itoh discards the randomly chosen candidates
and restarts all over at each failure.

As we show next, with this requirements we are able to prove very high
probabilities to find primitive roots.

We now prove that this algorithm is correct and give its running complexity.
In order to prove the correctness, we prove the following theorem. We have to
admit that Itoh, independently and very differently, proves the same within his
[16, Theorem 1].

Theorem 1. The ratio of primitive roots within the returned values of Algo-

rithm 1 is φ(Q)
Q−1 .

Proof. We let p−1 = kQ. a as in the algorithm has order k (see e.g. [2]). First,
let B = {bk, b ∈ Z/pZ

∗
and bk has order Q}. We have |B| = φ(Q). Indeed

the distinct elements of B are exactly all the elements in Z/pZ
∗

of order Q: if
y is of order Q, then there exists some generator g for which y = guk, b is thus gu.

We now need to count how many b are such that bk is of order Q, or equiv-
alently how many b are such that abk is a primitive root, for a of order k ?

Well, we let g = abk be a primitive root. Then, ∃v so that a = gvQ and
b = gt1 . From there we now that 1 ≡ vQ + t1k [p − 1]. Now we set i so that
0 ≤ t0 = t1 − iQ ≤ Q ; this gives that ∀j ∈ {0..k − 1}, t0 + jQ < P − 1 and
a.(gt0+jQ)k ≡ g, since k(t0 + jQ) = k(t1 + (j − i)Q) ≡ kt1 ≡ 1− vQ [p− 1]. We
thus have k possible bi for which abk

i = g. This proves that k distinct bi produce
the same primitive root. Moreover, two distinct primitive roots can of course
only be produced by distinct bi. This proves that kφ(Q) distinct bi produce a
primitive root.
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Algorithm 1: Probabilistic Primitive Root

Input: A prime p ≥ 3

Input: A failure probability 0 < ε < 1

Output: A number, primitive root with probability greater than 1 − ε.

begin

Compute B such that (1 + 2
p−1 )(1 − 1

B
)logB

p−1
2 == 1 − ε.

Partially factor p − 1, so that p − 1 = 2e1pe2
2 .....peh

h Q where pi < B

and Q is free of prime < B (for that use e.g. 2
√

B loops of Pollard’s
rho method).
foreach 1 ≤ i ≤ h do

By trial and error, randomly choose αi verifying:

α
p−1
pi

i 6≡ 1 mod p.

Set a =
h∏

i=1

α

p−1

p
ei
i

i mod p.

if Factorization is complete then
Set Probability of correctness to 1.
return a.

else
Refine Probability of correctness to (1 + 1

Q−1 )(1 − 1
B

)logB Q.

By trial and error, randomly choose b verifying: b
p−1

Q 6≡ 1.

return g = ab
p−1

Q .

end

There remains to count from how many bi we can select. Well, this is p − 1
minus the number of bi for which bk

i ≡ 1. As before, 1 has exactly k distinct

pre images. We thus conclude for the ratio to be kφ(Q)
p−1−k

= φ(Q)
Q−1 .

Corollary 2. Algorithm 1 is correct.

Proof. Theorem 1 shows that the probability to get a primitive root is exactly
φ(Q)
Q−1 . We thus only need to show that φ(Q)

Q−1 > 1 − ε.

Let Q =
ω(Q)∏
i=1

qi
fi where ω(Q) is the number of distinct prime factors of Q. Then

φ(Q) =
ω(Q)∏
i=1

φ(qi
fi) = Q

ω(Q)∏
i=1

(1 − 1
qi

).

Thus φ(Q)
Q−1 = (1 + 1

Q−1 )
ω(Q)∏
i=1

(1 − 1
qi

). Now, since any factor of Q is bigger than
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B, we have:
ω(Q)∏

i=1

(1 − 1

qi

) >

ω(Q)∏

i=1

(1 − 1

B
) = (1 − 1

B
)ω(Q).

To finish, we minor ω(Q) by logB(Q). This gives the probability refinement.
Since Q is not known at the beginning, one can minor it there by p−1

2 since p−1
must be even whenever p ≥ 3.

Remark 3. Of course, one can dynamically refine B as more and more small
factors of p−1 are known. Indeed Q starts with value p−1

2 (and can immediately

be set to p−1
2e1

) but is also reduced each time a new factor is known. The end
refinement would then become unnecessary. Algorithm 1 is given instead for the
sake of simplicity.

Remark 4. Instead of looking for distinct αi for the different pi, one can take
one αi at random. Then, the idea is to check for its order with respects to all

of the pi and not only one. Suppose that α
p−1
p1 6≡ 1 and α

p−1
p2 6≡ 1 Then α can

serve for both primes and a be set to α
p−1

p
e1
1 p

e2
2 . The search then continues as in

algorithm 1.

Theorem 5. Algorithm 1 has a worst case complexity of

O

(
1

ε
log2(p) + log4(p) log(log(p))

)

and, when Pollard’s rho algorithm is used, an average running time of

O

(√
1

ε
log2(p) + log3(p) log(log(p))

)
1.

Proof. For the computation of B, we use a Newton-Raphson’s approximation.

The second step depends on the factorization method. Both complexities
here are given by the application of Pollard’s rho algorithm. Indeed Pollard’s
rho would require at worst L = 2dBe loops and L ≈ 3.5482d

√
Be on the aver-

age thanks to the birthday paradox [20]. Now each loop of Pollard’s rho is a
squaring and a gcd, both of complexity O(log2 p). We conclude by the fact that

(1 + 2
p−1 )(1 − 1

B
)logB

p−1
2 = 1 − ε so that B ≤ 1

ε
.

1Using fast integer arithmetic [12, Corollary 11.10] this can become

O

 

r

1

ε
log(p) log2(log(p)) log(log(log(p))) + log2(p) log2(log(p)) log(log(log(p)))

!
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For the remaining steps, there is at worst log p distinct factors, thus log p
distinct ai, but only log log p on the average [15, Theorem 430]. Each one
requires an exponentiation which can be performed with O(log3 p) operations
using fast binary modular exponentiation. Now, to get a correct ai, at most
O(log log p) trials should be necessary (see e.g. [24, Theorem 6.18]). However,
by an argument similar to that of theorem 1, less than 1 − 1

pi
of the αi are

such that α
p−1
pi

i ≡ 1. This gives an average number of trials of 1 + 1
pi

, which is

bounded by a cnstant. This gives log× log3 × log log in the worst case (distinct
factors × exponentiation × number of trials) and only log log× log3 ×2 on the
average.

Of course, the only problem with this algorithm is that it is not polynomial.
Indeed the partial factorization up to factors of any given size is still exponential.

This gives the non polynomial factor
√

1
ε
. Other factoring algorithms with

better complexity could also be used, provided they can guaranty a bound on
the unfound factors.

Anyway, we now try to reduce the actual values of B in order to produce
efficient algorithms. The first idea, of next section, is to improve the bounds.
Then, the trick of the following section is to factor only to a logarithmic size of
factors in order to guaranty a polynomial time algorithm.
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3 About the number of prime divisors

In the previous section, we have seen that the probability to get a primitive root

out of our algorithm is greater than
(
1 − 1

B

)ω(Q)
for Q the remaining unfactored

part with no divisors less than B. The running time of the algorithm, and in
particular its non-polynomial behaviour depnds on B and on ω. The problem
is that ω is in general quite small. The bound we used in the preceding section,
logB(p − 1), is then much too large. In this section, we thus provide tighter
probability estimates for some small B and large Q.

Theorem 6. Let B ∈ IN, Q ∈ IN such that no prime lower than B divides Q
then:

ω(Q) ≤ logB(Q) ∀B ≥ 2 (1)

ω(Q) ≤ 1.0956448

logB(ln(Q))
logB(Q) ∀B ≥ 210 (2)

ω(Q) ≤ 1.0808280

logB(ln(Q))
logB(Q) ∀B ≥ 215 (3)

ω(Q) ≤ 1.0561364

logB(ln(Q))
logB(Q) ∀B ≥ 220 (4)

Proof. Of course, (1) is a large upper bound on the number of divisors of Q and
therefore a bound on the number of prime divisors. Now for the other bounds,
we refine Robin’s bound on ω [22, Theorem 11]: which is ω(n) ≤ 1.3841

ln(ln(n)) ln(n).

Let Nk =
∏k

i=1 pi where pi is the i-th prime. Now, we let k be such that
Nk

Nπ(B)
≤ Q < Nk+1

Nπ(B)
. Then ω(Q) ≤ ω

(
Nk

Nπ(B)

)
= k − π(B) since no prime less

than B can divide Q. We then combine this with the fact that X ↪→ ln(X)
X

is decreasing for X > e to get: ω(Q) ≤ F (k,B)
logB(ln(Q)) logB(Q) where F (k,B) =

(k − π(B)).
log

„
log

„
Nk

Nπ(B)

««

log

„
Nk

Nπ(B)

« . We then replace both Nk in F (k,B) using e.g.

classical bounds on θ(pk) = ln(Nk) [22, Theorems 7 & 8]:

θ(pk) ≥k(ln(k) + ln(ln(k)) − 1 + ln(ln(k))/ln(k) − 2.1454/ln(k)) (5)

θ(pk) ≤k(ln(k) + ln(ln(k)) − 1 + ln(ln(k))/ln(k) − 1.9185/ln(k)) (6)

We therefore obtain a function F̃ (k,B) explicit in k and B. The values given

in the theorem are the numerically computed maximal values of F̃ (k,B) as a
function in k for B ∈ {210, 215, 220}. The claim for the greater values of B then

follows from the fact that F̃ (k,B) is decreasing in B.

It is noticeable that the last estimates are more interesting than logB(Q)

only when B
eF (k,B) < ln(Q). Those estimates are then only useful for very large

Q (e.g. more than 105 bits for B = 215).
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4 Polynomial time heuristics

4.1 Efficient generation of industrial-strength primitive
roots

Despite the small theoretical improvements of section 3, our lower bound for the
actual probability of correctness is much too low. For that reason, we propose
another algorithm with an attainable number of loops for the partial factor-
ization. Therefore, the algorithm is efficient and we provide experimental data
showing that it also has a very good behavior with respect to the probabilities.

Algorithm 2: Polynomial-time Generation of Primitive Root

Input: A prime p ≥ 3

Output: A number, primitive root of p with high probability.

begin
Apply Algorithm 1 with B ≤ log2(p) log2(log(p)).

end

Lemma 7. With Pollard’s rho factoring, Algorithm 2 has an

O
(
log3(p) log(log(p))

)

average bit complexity.

Proof. The proof is trivial in view of that of theorem 5. Just replace B by
log2(p) log2(log(p)) and use L =

√
B.

In practice, L should be chosen not higher than a million ! Indeed, the
following experimental data (see figures 1 and 2) shows that a probability of 1−
2−40 is easily guaranteed. We choose Q with known factorization and compute
φ(Q)
Q−1 . Figure 1 shows the very good behavior of our algorithm when the number
of distinct factors is small. Now, figure 2 seems to show that no probability less
than 1−2−40 is possible even with L as small as 220. This fact will be explained
in the following.

4.2 Industrial-strength primitive roots with best polyno-
mial complexity

Provided that one is ready to accept a fixed probability, further theoretical im-
provements on the asymptotic complexity can be made. Indeed, Don Knuth said
”For the probability less than ( 1

4 )25 that such a 25-times-in-row procedures gives
the wrong information about n. This is less than one chance in a quadrillion;
even if we certified a billion different primes with such a procedure, the expected
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number of mistakes would be less than 1/1000000. It’s much more likely that
our computer has dropped a bit in its calculations, due to hardware malfunctions
or cosmic radiations, than that algorithm P has repeatedly guessed wrong.” [17].
We thus provide a version of our algorithm guarantying that the probability of
incorrect answer is lower than 2−50.

Algorithm 3: Industrial-strength Primitive Root

Input: A prime p ≥ 3

Output: A number, primitive root of p with probability higher than
1 − 2−50 (resp. 1 − 2−40).

begin
if p < 2512 (resp. p < 230) then

Factor p − 1 completely and produce a deterministic primitive
root.

else
Apply Algorithm 1 with B = log5.918016p (resp. B = log5.909920p).

end

Theorem 8. With Pollard’s rho factoring, Algorithm 3 is correct and has an
average O(log4.959008 p) (resp. O(log4.954960 p)) asymptotic bit complexity2.

Proof. First, we remark that 512-bits numbers are nowadays factorizable. So,
whatever running time is needed to compute the factorization of numbers lower
than 2512, this is asymptotically a constant ! Still, if this is too hard to swallow,
we also give the algorithm with a slightly smaller probability of correctness and
a trivial factorization of 30-bits numbers. Now for p > 2512 and B = logα(p),

we just remark that (1+ 2
p−1 )(1− 1

B
)logB

p−1
2 is increasing, so that it is bounded

by its first value (for which p = 2512). Now numerical approximation of α so
that the latter is 1− 2−50 gives α ≈ 5.918. The complexity exponent follows as
it is 2 + α

2 .
Now the exact same arguments apply for a probability 1− 2−40, and then with
very easy factorization: for a composite number of 30 bits, there exist a factor
with less than 15 bits. Pollard’s rho algorithm would then only require 180
loops on the average !

With this version, we see once more that a probability of 1−2−40 can indeed
always be guaranteed. In other words, this proves that our algorithm is able to
very efficiently produce industrial-strength primitive roots.

This is for instance illustrated when comparing our algorithm, implemented
in C++ with GMP [14], to existing software (e.g. Pari-GP3) on an Intel PIV
2.4GHz. Such comparison is shown on figure 3.

2The worst case exponents then being 7.918016 (resp. 7.909920).
3http://pari.math.u-bordeaux.fr
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Of course, the comparison is not fair as other softwares are always factoring
p−1 completely. Still we can see the huge progress in primitive root generation
that our algorithm has enabled.
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5 Tentative analysis of the algorithm for com-
posite numbers

In this section we propose some analysis of the behavior of the algorithm for
composite numbers. Indeed, our algorithm can also be used to produce high,
if not maximal, order element modulo some composite number. This analysis
is also used section 6.2 for the probabilistic primality test. It is well known
that there exists primitive roots for every number of the form 2, 4, pk or 2pk

with p an odd prime. On the other hand, Euler’s theorem states that every
invertible a within Z/pZ

∗ verifies aϕ(n) ≡ 1[n]. Thus, for composite numbers n
not possessing primitive roots, ϕ(n) is not a possible order of an invertible. We
therefore use Carmichael’s lambda function, the maximal order of an invertible,
defined e.g. in [17, 9, 3]:

Definition 9. λ(m) is the maximal order of an invertible element in the mul-
tiplicative group (Z/pZ

∗, ×).

Of course, λ and ϕ coincide for 2, 4, pk and 2pk, for p and odd prime.

Then λ(2e) = 2e−2 for e ≥ 3. Now, for the other cases, since ϕ
(∏

pki

i

)
=

∏
(pi − 1)pki−1

i for distinct primes pi, we obtain the similar following formula
for λ:

λ
(∏

pki

i

)
= lcm{λ(pki

i )}

Eventually, we also obtain the following corollary of Euler’s theorem:

Corollary 10. Every invertible a within Z/pZ
∗ verifies aλ(n) ≡ 1[n].

Proof. Let n =
∏

pei

i , for distinct primes pi. Then ϕ(pei

i ) divides λ(n). This
together with Euler’s theorem shows that aλ(n) ≡ 1[pei

i ]. The Chinese theorem
thus implies that the latter is also true modulo the product of the pei

i .

This corollary shows that the order of any invertible must divide λ(n). Now
for n prime, the number of invertibles having order d|p−1 is exactly ϕ(d) so that∑

d|k ϕ(d) = k for k|p − 1. We have the following analogous for n a composite
number:

Proposition 11. The number of invertibles having order d|λ(n) is

∑

Sd

ω∏

j=1

ϕ(dj)

for n = pe1
1 . . . peω

ω and Sd = {(d1, . . . , dω) s.t. dj |ϕ(p
ej

j ) and lcm{dj} = d}.

Proof. By the Chinese theorem, an element has order d if and only if the lcm of
its orders modulo the p

ej

j is d. Then there are exactly ϕ(dj) elements of order

dj modulo p
ej

j .
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Let us have a look of this behavior on an example: let n = 45 so that
ϕ(45) = 6 × 4 = 24 and λ(45) = 12. We thus know that any order modulo 9
divides ϕ(9) = 6 and that any order modulo 5 divides ϕ(5) = 4. This gives the
different orders of the 24 invertibles shown on table 1.

order modulo 9 modulo 5 # of elements of that order modulo 45
1 1 1 1

1 2 1
2 1 1
2 2 1

2 3
3 3 1 ϕ(3) × ϕ(1) = 2

1 4 ϕ(1) × ϕ(4) = 2
2 4 ϕ(2) × ϕ(4) = 2

4 4
6 1 ϕ(6) × ϕ(1) = 2
3 2 ϕ(3) × ϕ(2) = 2
6 2 ϕ(6) × ϕ(2) = 2

6 6
3 4 ϕ(3) × ϕ(4) = 4
6 4 ϕ(6) × ϕ(4) = 4

12 8

Table 1: Elements of a given order modulo 45

It would be highly desirable to have tight bounds on those number of ele-
ments of a given order. Moreover, these bounds should be easily computable
(e.g. not requiring some factorization !). We propose the following:

Proposition 12. For d dividing λ(n), the number of invertible elements of
order d is at least ϕ(d) and the number of invertibles of order less than or equal
to d is at least d.

Proof. At least one ω-uple (d1, . . . , dω) is possible, one for which the di are two
by two co-prime. Then

∏ω
j=1 ϕ(dj) = ϕ(d) which proves the first claim. The

second is only the sum of the ϕ(h) for h|d.

This, together with the following experimental result should give a basis for
the complete analysis of the composite case:

Conjecture 13. For n odd, the number of elements of order λ(n) is larger than
ϕ(ϕ(n)).

13



Ideas. The first idea is to use the previous proposition. Direct simplification
shows that we can construct at least

ω∏

j=1

ϕ(ϕ(pei

i ))

distinct elements having order λ(n). This is not sufficient. The second idea is
that every maximal order element produces

ϕ(λ(n))

other maximal elements in its orbit: consider an element of maximal order a.
Then if k is co-prime to λ then the order i of ak must be λ. Indeed, if aki ≡ 1
mod n, then ku + λv = 1 implies that akiu ≡ ai ≡ 1. As the order of a is λ and
no larger order is possible, then i == λ. This is still insufficient.

What happens is that each of the distinct elements produced by the first idea
generates its own orbit. The orbits are not distinct but neither are they equal.
The full proof would be to augment the orbits with a converging process . . .

The bound is tight: ϕ(ϕ(15)) = 4 and only 2, 7, 8 and 13 have order
λ(15) = 4. Now, this last result shows that actually quite a lot of elements are
of maximal order modulo n. Using this fact, a modification of algorithm 1 can
then produce with high probability an element of maximal order even though n
is composite.
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6 Applications

Of course, our generation can be applied to any application requiring the use of
primitive roots. In this section we show the speed of our method compared to
generation of primes with known factorization and propose a generalization of
Miller-Rabin probabilistic test.

6.1 Faster pseudo random generators construction or key
exchange

The use of a generator and a big prime is the core of many cryptographic
protocols. Among them are Blum-Micali pseudo-random generators [4], Diffie-
Hellman key exchange [7], etc.
In this section we just compare the generation of primes with known factoriza-
tion [1], so that primitive roots of primes with any given size are computable.
The idea in [4] is to iteratively and randomly build primes so that the factoriza-
tions of pi−1 are known. For cryptanalysis reasons their original method selects
the primes and primitive roots bit by bit and is therefore quite slow. On figure
4 we then present also a third way, which is to generate the prime with known
factorization as in [1], but then to generate the primitive root deterministically
with our algorithm (since the factorization of p− 1 is known). We compare this
method with the following full-probabilistic way:

1. By trial and error generate a probable prime (e.g. a prime passing several
Miller-Rabin tests [19]).

2. Generate a probable primitive root by Algorithm 2.

We see on figure 4 that our method is faster and allows for the use of bigger
primes/generators.

6.2 Probabilistic version of Lucas primality test

The deterministic primality test of Lucas is actually the existence of primitive
roots:

Theorem 14 (Lucas). Let p > 0. If one can find an a > 0 such that ap−1 ≡
1mod p and a

p−1
q 6≡ 1mod p, as soon as q divides p − 1, then p is prime.

We propose here as a probabilistic primality test to try to build a primitive
root. If one succeeds then the number is prime with high probability else it is
either proven composite or composite with a high probability.

Now for the complexity, we do not pretend to challenge Miller-Rabin test
for speed ! Well, one often needs to perform several Miller-Rabin tests with
distinct witnesses, so that the probability of being prime increases. Our idea is
the following: since one tests several witnesses, why not use them as factors of
our probable primitive root ! This idea can then be viewed as a generalization of
Miller-Rabin: we not only test for orders of the form n−1

2e but also for each order
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of the form n−1
qe where q is a small prime factor of n−1. The effective complexity

(save maybe from the partial factorization) will not suffer and the probability
can jump as soon as an element with very high order is generated. The algorithm
is then a slight modification of algorithm 1, where we let F (B,Q) = 1 − (1 +

1
Q−1 )(1 − 1

B
)logB Q:
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Algorithm 4: Probabilistic Lucas primality test

Input: n ≥ 3, odd.

Input: A failure probability 0 < ε < 1.

Output: Whether n is prime and a certificate of primality,

Output: or n is composite and a factor (or just a Fermat witness),

Output: or n is prime with probability of error less than ε,

Output: or n is composite with probability of error less than ε.

begin
• Set P = 1, a = 1, Q = n − 1 and q = 2.
while Q > n

2
3 do

Randomly choose α mod n.

if gcd(α, n) 6= 1 or αn−1 6≡ 1[n] or gcd(α
n−1

q − 1, n) /∈ {1;n} or

(q == 2 and n is not a strong pseudoprime to the base α) then
return n is composite.

else if α
n−1

q ≡ 1 mod n then
Set P = P/q.
if P ≤ ε then

return n is probably composite with error less than P .

else
- Set e to the greatest power of q dividing Q.
- Set Q = Q/qe.

- Set a = a × α
n−1
qe .

- Set k = k ∪ {qe}.
- Refine B such that F (B,Q) == 4ε.
- Find a new prime factor q of Q with q < B, otherwise set
q = Q.

if Every q was prime then
return n is prime and (a, k) is a certificate.

else
return n is probably prime with error less than F (B, q).

end

Remark 15. The exponentiations by n−1
q

can in practice by factorized in a

“Lucas-tree” [21, 6].

Remark 16. Algorithm 4 is correct for the primes and most of the composite
numbers.

Proof. Correctness for prime numbers is the correctness of the pseudo primitive
root generation.
Now for composite numbers: the idea is that first of all, only Carmichael num-
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bers will be able to pass the pseudo prime test several times. The ε times 4 then
follows since at least one α passed the strong pseudoprime test. This reduces
the possible Carmichael numbers able to pass our test. Then, for most of the
Carmichael numbers, λ(n) divides n − 1 but, moreover, λ(n) also divides n−1

q

for some q, factor of n − 1. Therefore, α
n−1

q will always be one. If n is prime
on the contrary, only 1

q
elements will have order a multiple of q.

Now for the n
2
3 in the loop. The argument is the same as for the Pocklington

theorem [6, Theorem 4.1.4] and the Brillhart, Lehmer and Selfridge theorem [6,
Theorem 4.1.5]: let n− 1 = kQ and let p be a prime factor of n. The algorithm
has found an a verifying an−1 ≡ 1 mod n. Hence, the order of aQ mod p is a

divisor of n−1
Q

= k. Now, since gcd(a
n−1

q − 1, n) = 1 for each prime q dividing
k, this order is not a proper divisor of k, so is equal to k. Hence, k must be a
divisor of p − 1 = ϕ(p). We conclude that each prime factor of n must exceed
k. From this, Pocklington’s theorem states that if k is greater than

√
n, n is

prime. And then, Brillhart-Lehmer-Selfridge theorem states that if k is in be-
tween n

1
3 and n

1
2 then n must be prime or composite with exactly two prime

factors [6, Theorem 4.1.5]. But n has escaped our previous tests only if n is
a Carmichael number. Fortunately, Carmichael numbers must have at least 3
factors [18, Proposition V.1.3]. Now, whenever Q is below n

2
3 , k exceeds n

1
3

and then n must be prime otherwise n would have more than 3 factors each of
those being greater than n

1
3 .

Here is an example of Carmichael number, 1729. 1728 = 2633, where
λ(1729) = 2232. Then n−1

q
is either 864 or 576 both of which are divisible

by 36 = λ(1729). Therefore, our test will detect 1729 to be probably composite
with any probability of correctness. Figure 5 shows that this algorithm is highly
competitive with repeated applications of GMP’s strong pseudo prime test (i.e.
with the same estimated probability of correctness). Depending on the success
of the partial factorization, our test can even be faster (timing presented on
figure 5 are the mean time between 4 disctinct runs).

Haplessly, some Carmichael numbers will still pass our test. The following
results, sharpening [10, lemma 1], explains why:

Theorem 17. Let n = pe1
1 . . . peω

ω . Let q be a prime divisor of ϕ(n), and
(f1, . . . , fω) be the maximal values for which qfi divides ϕ(pei

i ). There are

ϕ(n)

(
1 − 1

q
P

fi

)

invertible elements of order divisible by q (i.e. for which α
λ(n)

q 6≡ 1 mod n).

Proof. By the Chinese remainder theorem, one can consider the moduli by pei

i

separately. Suppose, without loss of generality, that pe1
1 is such that f1 > 0.

Otherwise all the fi are 0 and the theorem is still correct. Consider a generator g
of the invertibles modulo pe1

1 . An element has q in its order if and only if its index
with respect to g contains qf1 . There are exactly 1 − 1

qf1
such elements among
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the elements of Z/pe1
1

Z. By the Chinese theorem, among the elements having

their order divisible by q modulo n, we have then identified ϕ(n)
(
1 − 1

qf1

)
of

them: the ones having their order modulo pe1
1 divisible by q. Now the others

are among the ϕ(n)
(

1
qf1

)
that remains. Just now consider those modulo pe2

2 .

If f2 == 0 then we have not found any new element. Otherwise, 1 − 1
qf2

of

them are of order divisible by q. Well, actually, in both cases, we can state that
1 − 1

qf2
of them are of order divisible by q. We have thus found some other

elements: ϕ(n)
(

1
qf1

) (
1 − 1

qf2

)
. This added to the previously found elements

makes ϕ(n)
(
1 − 1

qf1qf2

)
. Doing such a counting for each of the remaining pei

i

gives the announced formula.

For instance, take a Carmichael number still passing our test whenever
B ≤ 1450: 37690903213 = 229× 2243× 73379. Well, 37690903212 = 19× 22 ×
3×59×1451×1931 and λ(37690903213) = 19×22×3×59×1931. Then, Q will be
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1451×1931 and our algorithm will be able to find elements for which α
n−1

Q 6≡ 1
mod n: those of which order is divisible by 1931. Unfortunately, there are
quite a lot of them: ϕ(n) 1930

1931 = 37489647840 ≈ (1− .00533962722683134975)n.
Thus, there are more than 5 chances over a thousand to choose an element α

for which α
n−1

1451×1931 6≡ 1 mod n. Even though this is much higher than 1
Q

(if

n was prime), this probability will not be detected abnormal by our algorithm.
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7 Conclusion

We provide here a new very fast and efficient algorithm generating primitive
roots. On the one hand, the algorithm has a polynomial time bit complexity
when all existing algorithms where exponential. This is for instance illustrated
when comparing it to existing software on figure 3.

On the other hand, our algorithm is probabilistic in the sense that the an-
swer might not be a primitive root. We have seen in this paper however, that
the chances that an incorrect answer is given are less important than say “hard-
ware malfunctions”. For this reason, we call our answers “Industrial-strength”
primitive roots.

Then, we propose a new probabilistic primality test using this primitive root
generation. This test can be viewed as a generalization of Miller-Rabin’s test to
other small prime factors dividing n−1. When a given probability of correctness
is desirable for the test, our algorithm is heuristically competitive with repeated
applications of Miller-Rabin’s.
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