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Abstract

Social scientists have shown an increasing inter-
est in understanding the structure of knowledge
communities, and particularly the organization of
“epistemic communities”, that is groups of agents
sharing common knowledge concerns. However, most
existing approaches are based only on either social
relationships or semantic similarity, while there has
been roughly no attempt to link social and semantic
aspects. In this paper, we introduce a formal frame-
work addressing this issue and propose a method
based on Galois lattices (or concept lattices) for
categorizing epistemic communities in an automated
and hierarchically structured fashion. Suggesting that
our process allows us to rebuild a whole community
structure and taxonomy, and notably fields and
subfields gathering a certain proportion of agents,
we eventually apply it to empirical data to exhibit
these alleged structural properties, and successfully
compare our results with categories spontaneously
given by domain experts.

Keywords: Social complex systems, Commu-

nity representation and categorization, Scientomet-

rics, Applied epistemology, Knowledge discovery in

databases.

Introduction

There has been recently an increasing interest from
social scientists for methods of knowledge commu-
nity analysis and particularly to understand their
structure. To this end, several conceptual frame-
works as well as automated processes have been
proposed for finding groups of agents or documents
related by common concepts or concerns, notably
in mathematical sociology [2, 28, 29], scientomet-
rics and knowledge discovery in databases (KDD)
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[16, 24, 32].

The focus is often on scientific communities as
a large amount of data available, and in particu-
lar and among others on biologist communities —
biology is a domain where the need for such tech-
niques is the most pressing since article production
rate is currently so high that it is hard for scientists
to know their community extent and to keep track
of its evolution. In this view, it is of utmost inter-
est to propose tools enabling agents to understand
the structure and the activity of the community
of knowledge they are member of, also called epis-
temic community. Existing approaches in com-
munity finding are either based only on social re-
lationships, with community extraction methods
stemming from graph theory applied to social net-
works [29, 31], or based only on semantic simi-
larity, namely clustering methods applied to doc-
ument databases where each document is consid-
ered as a vector in a semantic space [24].

However, there has been roughly no attempt to
link social and semantic aspects, while the vari-
ous characterizations of an epistemic community
[4, 6, 14] insist on the fact that such a community
is a group of agents who share and are working on
a given subset of concepts, thus suggesting that
we absolutely need to take into account this du-
ality, that is, that it is made of agents and com-
mon interests — agents having common interests.
In this paper, we give a formal framework for de-
scribing epistemic communities and then, we pro-
pose a method using Galois lattices [1] as well as
relevant criteria for categorizing these communi-
ties in an automated and hierarchically structured
fashion. Suggesting that our process allows us to
rebuild a whole community structure and taxon-
omy, we eventually apply it to empirical data and
eventually compare our results with the expected
categories spontaneously given by domain experts.

Our main source of data is MedLine, a
database maintained by the US National Library
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of Medicine and containing more than 11 million
references to health sciences articles published in
about 3,700 journals worldwide. Besides, we nar-
row our study to articles dealing with the zebrafish,
a fish whose embryo is translucid and fast devel-
oping, therefore widely used as a model animal by
embryologists.

1 Epistemic communities

1.1 Rationales

Several works stemming from social epistomology
to political science and economics have given an
account of the collaboration of agents within the
same epistemic framework and towards a given
knowledge-related goal (namely knowledge cre-
ation or validation) within what is also called
an epistemic community. For social epistemolo-
gists, it is a scientist group producing knowledge
and recognizing a given set of conceptual tools
and representations — the “paradigm”, accord-
ing to Kuhn [22] — possibly working in a dis-
tributed manner on specialized tasks [10, 35]. Con-
sidering a whole knowledge field as a huge epis-
temic community (e.g. biology, linguistics), one
can see subdisciplines as smaller embedded and
more specific epistemic communities, being sub-
fields within a paradigm. Haas [14] introduced
the notion of epistemic community as “a network
of knowledge-based experts (...) with an author-
itative claim to policy-relevant knowledge within
the domain of their expertise”. Cowan, David and
Foray [4] added to this definition the fact that an
epistemic community must share a subset of con-
cepts. In particular, an epistemic community is “a
group of agents working on a commonly acknowl-
edged subset of knowledge issues and who at the
very least accept a commonly understood procedu-
ral authority as essential to the success of their
knowledge activities”. The “common concern” as-
pect has been emphasized by Dupouet, Cohendet
and Creplet [6] who define an epistemic commu-
nity as “a group of agents sharing a common goal
of knowledge creation and a common framework
allowing to understand this trend”. These authors
nevertheless acknowledge the need of a notion of
authority and deference.

In the prospect of knowing which agents share
the same concerns and work on the same concepts,
and which these concerns or concepts are, we are

farther from the epistemological point of view and
need not characterize authoritative groups and
their role. Hence, the previous definitions seem
to be too precise in respect of authoritative and
normative properties whereas they lack the ability
to formalize accurately community boundaries and
extents. Obviously such a community of knowl-
edge should not necessarily be socially linked: it
needs for instance neither be a real department
nor a group of research. The definition must also
allow some flexibility in the sense that an agent
(or a concept) can belong to several communities.
We keep the idea of having common “knowledge
issues”, while we add maximality to our definition:

Definition EC-1 (Epistemic community).
Given a set of agents S and considering the con-
cepts they have in common, the epistemic commu-
nity of S is the largest set of agents who also share
these concepts.

This conception is to be compared with the no-
tion of structural equivalence introduced in sociol-
ogy by F. Lorrain and H. White [26] for describing
a community as a group of people related in an
identical manner to a set of other people – when
extending this notion to a group of people related
identically to the same concept set.

Definition EC-1 is based on an agent set, and
we could actually define correspondingly an epis-
temic community by starting from a given set of
concepts, i.e. define it as the set of concepts which
are at least used by the very agents that were us-
ing this given concept set. For the sake of clarity
however, in the following section, we will at first
focus on agent-based epistemic communities, keep-
ing in mind that concept-based notions are defined
strictly equivalently and in a dual manner (see def.
4 below).

1.2 Definitions

This being granted, we introduce from here a for-
mal framework allowing to work on these notions.
We present first the following basic definitions:

Definition 1 (Intent). The intent of a set of
agents S is the set of concepts which are used by
every agent in S.

Definition 2 (Epistemic group). An epistemic
group is a set of agents provided with its intent,
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Figure 1: Sample community, and relations between
agents A, B, C, D and concepts linguistics (Lng) and
neuroscience (NS) (dashed lines).

i.e. a group of agents and the concepts they have
in common.

Consider for instance that agents A, B and
C work on “linguistics” (Lng), while “neuro-
science” (NS) is being used by B, C and D (fig.
1). Therefore, the intent of {A,B} is {Lng},
that of {B,C,D} is {NS} and that of {B,C} is
{Lng,NS}. Some epistemic groups of this exam-
ple are thus ({A,B};{Lng}), ({B,C}; {Lng,NS})
and ({A,D};{∅}).

If we consider a given set of agents S – notably,
a group of agents prototypic of a field – willing to
know their epistemic community comes to identi-
fying the greatest group of people who share the
same knowledge issues as these agents (a group
which thereby includes these agents).

Definition 3 (Hierarchy, maximality). An
epistemic group is greater than another epistemic
group if and only if (i) their intents are the same
and (ii) the agent set of the former contains that
of the latter.

An epistemic group is said maximal if there ex-
ists no greater epistemic group.

This statement allows us not only to compare
epistemic groups but also and more significantly
to extend a given epistemic group to its maximal
social size. Interpreting definition EC-1 given in
section 1.1 within this framework leads now to the
following definition:

Definition EC-2 (Epistemic community).
The epistemic community based on a given agent
set is the corresponding maximal epistemic group.

The epistemic community based on, for instance,
{D} is thus ({B,C,D};{NS}), and the one based
on {A}, {A,B}, or {A,B,C} is ({A,B,C};{Lng}).1

Henceforth, with this understanding the use of
relation between the set of agents and the set of
concepts is sufficient to capture and describe the
underlying epistemic communities of a given sci-
entific field. By introducing an algebraic structure
particularly appropriate for this purpose, Galois
lattices, we offer moreover a method for represent-
ing and hierarchically grouping agents and con-
cepts they use, which we ultimately wish to prove
very relevant for epistemic community categoriza-
tion. Before doing so, we quickly introduce below
the concept-based notions, defined symmetrically
to the agent-based notions:

Definition 4 (Extent, concept-based no-
tions). The extent of a set of concepts C is the
set of agents using at least every concept in C. A
concept-based epistemic group is a set of concepts
provided with its extent. A concept-based epistemic
group is greater than another one if and only if
(i) their extent are the same and (ii) the concept
set of the former contains that of the latter. A
concept-based epistemic community is a maximal
concept-based epistemic group.

1.3 Galois lattices (GL)

Broadly speaking, using Galois lattices is possi-
ble whenever there is a relation between two sets,
which are usually a set of objects and a set of prop-
erties. GL is suitable for representing and order-
ing abstract categories relying on such a relation,
and it is therefore being widely used in conceptual
knowledge systems [38] and formal concept classi-
fication [11].2 In this view, considering agents as
objects and concepts as properties, GL will prove
to be an efficient tool to describe mathematically
the notions presented above.

Before constructing a GL we need what we call
a “pre-Galois structure”. Given two finite sets S

and C between which we have a binary relation

1The epistemic community based on {B} or {C} is how-
ever ({B,C};{Lng,NS}); this accounts notably for the fact
that B can belong both to a generic community and to a
more specific or multidisciplinary community: ({B};{Lng})
vs. ({B,C};{Lng,NS}) – see section 2.2 for more details.

2As Wille points out [38], GLs give a robust formaliza-
tion of the philosophical apprehension of an abstract notion,
characterized by its extent (physical implementation) and
its intent (properties or internal content).
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Figure 2: Extended sample community, with agents
A, B, C, D and E and concepts Lng, NS, prosody (prs),
relevance (rlv), imagery (img) and psychology (psy).

R ⊆ S × C, we introduce two operators “∧” and
“⋆” such that for any subset X ⊆ S (resp. Y ⊆ C),
X∧ (resp. Y ⋆) is the set of elements of C (resp.
S) related through R to every element of X (resp.
Y ), namely:3

X∧ = { y ∈ C | ∀x ∈ X, xRy } (1a)

Y ⋆ = { x ∈ S | ∀y ∈ Y, xRy } (1b)

Interpreting preceding definitions Defini-
tions 1, 2 and 4 get a clear interpretation here:
if X is a set of agents, X∧ denotes obviously
its intent. Similarly if Y is a concept set, Y ⋆

is its extent. Thus, epistemic groups are cou-
ples of kind (X, X∧) or (Y ⋆, Y ). It is also worth
noting that X ⊆ X ′ ⇒ X ′∧ ⊆ X∧ (expressing the
fact that the intent of a bigger agent set is smaller
– the more numerous they are, the less they share)
and that (X ∪ X ′)∧ = X∧ ∩ X ′∧ (i.e. the intent of
two agent sets is the intersection of their respective
intents – a group of agents has in common what
its individuals share...). On the more substantial
sample community described on fig. 2, we have for
instance {A,C}∧={Lng} and {NS,prs}⋆={C}.

Moreover, if we take the extent X∧⋆ of an intent
X∧, that is, apply ⋆ to ∧, we get all the agents
who use the same concepts that were common to
the agents of X (hence the largest agent set). In

3By definition we set (∅)∧ = C and (∅)⋆ = S.

fact, according to definitions EC-1 and EC-2 we
have:

Proposition 1. (X∧⋆, X∧) is the epistemic com-
munity based on X. 4

All these properties are similar and in fact dual if
we consider Y , ⋆ and Y ⋆∧.

GL and epistemic communities Besides,
the operation “∧⋆” is a closure operation [3],
in that it is (i) extensive (the closure is
never smaller, X ⊆ X∧⋆), (ii) idempotent (ap-
plying ∧⋆ more than once does not change
the closure, (X∧⋆)∧⋆ = X∧⋆) and (iii) increas-
ing (the closure of a smaller set is smaller,
X ⊆ X ′ ⇒ X∧⋆ ⊆ X ′∧⋆). We say that X (resp.
Y) is a closed subset if X∧⋆ = X (resp. Y = Y ⋆∧).
Given two subsets X ⊆ S and Y ⊆ C, a couple
(X, Y ) is said to be closed (or complete) if and
only if Y = X∧ and X = Y ⋆. This very notion is
at the core of the Galois lattice definition [1].

Definition 5 (GL). Given a relation R between
two finite sets S and C, the Galois lattice GS,C,R is
the set of every closed couple (X, Y ) ⊆ S×C under
relation R. Thus, GS,C,R = {(X∧⋆, X∧)|X ⊆ S}.

Yet such a closed couple is actually an epistemic
group (X, X∧) where X∧⋆ = X. Closed couples
correspond obviously to epistemic groups closed
under ∧⋆, and therefore it follows:

Proposition 2. A closed couple is an epistemic
community.

This yields the fundamental property that the
GL is exactly the set of epistemic communities (a
graphical representation of a GL is drawn on fig. 3
from the sample community of fig. 2).

2 Community categorization

2.1 Community structure rebuild-
ing

Nonetheless, if a GL contains all epistemic com-
munities, it is still unsure whether this tool itself

4Indeed, (i) X∧⋆ has the same intent as X and (ii) it
is the largest agent set enjoying this property. Proof: (i)
comes from ((X∧)⋆)∧ = X∧ [3]; (ii) is proved by tak-
ing X′ ⊃ X∧⋆ with X′∧ = X∧⋆∧, so that {x} ⊂ X′ ⇒
{x}∧ ⊃ X′∧ ⇒ {x}∧ ⊃ X∧⋆∧ ⇒ {x}∧⋆ ⊂ X∧⋆, but
{x} ⊂ {x}∧⋆ ⇒ {x} ⊂ X∧⋆, hence X′ ⊂ X∧⋆
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is meaningful or not as regards a community de-
scription task, that is, whether a GL is able to
capture and reveal a given community’s structure
from data describing links between agents and con-
cepts. The present section will be devoted to argu-
ing why it can be used as such a tool. In particular,
there are several stylized facts regarding the under-
lying community structuration we would like GLs
to rebuild, primarily the existence of subfields and
significant groups of agents working within those
subfields. Assuming a certain organization of sci-
entific communities, the cornerstone of the justi-
fication of our utilization of this method will lie
(i) in the fact that it does partition a field into
various smaller subfields corresponding to actual
scientific communities, and (ii) eventually in the
agreement between epistemic communities rebuilt
by GLs and those explicitly given by domain ex-
perts.

Existing approaches Community and group
detection has been for a long time under study
in both computer science (graph theory as well
as artificial intelligence) and sociology. Clustering
methods (CM) originating from computer science
tend either to use graph theory and then propose
algorithms to partition graphs in a number of clus-
ters fixed a priori or not (such as spectral bisec-
tion or Kernighan-Lin algorithm [29]), or to con-
sider object properties as multi-dimensional vec-
tor and endeavor to grouping objects according
to their relative similarity (such as k-means [15],
probabilistic neural networks [36], Kohonen maps
[21]), similarity measures being mostly euclidian
distance-based. Nevertheless, the main disadvan-
tage of these methods lies in the delicate justifi-
cation of their relevance for social science: they
eventually produce clusters for which it is hard to
tell the connection with actual sociological com-
munities.

Approaches from sociology on the contrary in-
troduce hypothesis and tools proper to social net-
works (like centrality [8] or structural equivalence
[26]) yielding thus CMs more adequate to social
group detection than generic computer science
methods, for instance hierarchical clustering [19],
blockmodeling [2], structural balance [5] or, more
recently, structural cohesion and k-components
[28], and Girvan-Newman algorithm and its im-
provement by Radicchi [31].

Galois lattice theory offers a convenient way to

group agents with respect to concepts they share,
and in this sense, it is yet another CM. Some ap-
plications of GL to social networks had also al-
ready been explored, for instance by L. Freeman
and D. White [7] who actually apply GLs to agents
and social events they attend in order to describe
“event categories”. It is however not fortuitous
to show why this very method is precisely rele-
vant for achieving epistemic community descrip-
tion and categorization: in particular, for agent
and concept sets large enough, a GL will contain
really a lot of epistemic communities, with agents
belonging to many communities with various levels
of specificity.

2.2 Epistemic community struc-
turation

About relevant categorization Let us first
examine what CMs can reveal about data: from
any input set of objects provided with attributes,
CMs are designed to produce an output, namely
clusters of objects. However, CMs propose a
grouping even when the data is a total random
set of objects having almost no attribute in com-
mon, data for which any clustering would in fact be
meaningless or at least irrelevant for the purpose of
the study. One can try for instance sorting objects
from a yard sale, e.g. according to their size and
value: certainly clustering algorithms give results,
though these results are very unlikely to represent,
say, functional categories. To be relevant, the use
of CMs needs to be guided by particular assump-
tions about the data structure: a necessary as-
sumption is obviously that it does at least exhibit
a clustered structure. In other words, it is neces-
sary to inquire and specify what a given CM aims
to rebuild: it would be very imprudent to trust
its output without having checked its adequacy to
data and defined what really constitutes a cluster,
or a community, relatively to the data. In this
view, both the choice of the CM and the choice of
attributes (labelling of data) are decisive.5

5One might thus distinguish (i) labelling irrelevant for
the kind of data studied, while using a relevant CM; from
(ii) CM irrelevant for the kind of data studied, however la-
belled relevantly. Take for instance a linguist who would
like to group the words light, dark, holy and evil as re-
gards their semantic field. He might consider two criteria:
brightness and goodness, and select e.g. the following nu-
merical representations: light: +5 (brightness), +1 (good-
ness); dark: -5, -1; holy: +1, +5; evil: -1, -5. For sure an
irrelevant labelling, i.e. a bad choice in the previous cri-
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The same goes with Galois lattices: one can
draw a GL from any two sets of objects and a
given relation between them, but there is no rea-
son a priori that the lattice reveals a remarkable
structure, even if it is built, represented or man-
aged efficiently. In fact, there should exist a lot of
data for which this categorization is just not rele-
vant. Thus, in order to know whether and why GL
is an appropriate CM for producing a taxonomy
of knowledge communities, it is first necessary to
inquire the nature and organization of these very
communities.

Assumptions Our main assumption is that
there are fields of knowledge which can be de-
scribed by concept lists (relevant labelling), and
which are being implemented by sets of agents.
Taking again the first example, some people are
obviously linguists: among them, some deal with
a given aspect, say prosody, while others study
relevance; some other scientists deal with neuro-
science, while a few of them are interdisciplinary
and use both concepts. Knowledge fields and their
corresponding agent sets are in our case epistemic
communities, which are precisely what GLs con-
sist of (see prop. 2). Moreover and also crucial,
these fields are hierarchically organized: (i) a gen-
eral field can be divided into many subfields, them-
selves possibly having subcategories or belonging
to various general fields, and (ii) some fields can
be multi-disciplinary or inter-disciplinary in that
they respectively involve or integrate two or more
subfields [20]. For instance, cognitive science is
a general field gathering various subfields such as
cognitive linguistics and cognitive neuroscience,
thus being multidisciplinary. But the very sub-
field cognitive neurolinguistics is interdisciplinary
in that it mixes and coordinates the approaches
from both parent disciplines.

GL acute relevance as regards these properties
results actually from its natural partial order ⊑
defined such that given two epistemic communi-
ties (or closed couples) c = (X, X∧) and c′ =
(X ′, X ′∧), we have c ⊑ c′ ⇔ X ⊆ X ′. This partial
order indeed makes GS,C,R be a lattice, hence en-

teria (say, choosing the number of vowels and the number
of consonants) would obviously give him a meaningless re-
sult. But an irrelevant clustering method, e.g. based on
euclidian distances, would also give him inconsistent out-
put in grouping light with holy, and dark with evil, while
he wanted light with dark, and holy with evil.

(ABCDE,   )O

(ABCE;Lng) (BCD;NS)

(BC;Lng,NS) (CE;Lng,prs)(AB;Lng,rlv)

(B;Lng,NS,rlv) (C;Lng,NS,prs)

O(   ,Lng,NS,rlv,prs,dpm,psy)

(D;NS,dpm,psy)

Figure 3: Galois lattice of the extended sam-
ple community (hierarchical structure drawn in solid
lines relatively to ⊏, i.e. “bottom”⊏“top”). The
medium level (dashed ellipse) contains closed cou-
ples ({A,B,C,E};{Lng}) and ({B,C,D};{NS}) obvi-
ously corresponding to major fields (linguistics &
neuroscience). Hierarchy yields just below inter-
esting subcommunities like ({D};{NS,img,psy}) or
({B,C};{Lng,NS}), possibly prototypical of more spe-
cific subfields.

joying a hierarchical structure.6 More precisely,
the order reflects a generalization/specialization
relation, in the sense that c ⊑ c′ means that c

has a smaller extent and a greater intent than c′, c

represents a smaller community dealing with a big-
ger concept set than c′, c being thus more specific.
This hierarchy describes exactly relations between
fields and subfields as discussed in the previous
paragraph (fig. 3), as well as multidisciplinarity
and interdisciplinarity through particular patterns
called diamonds (fig. 4).

2.3 GL and categorization

Given their hierarchical structure, GLs are thus a
relevant method to list and order epistemic com-
munities and subcommunities. However, it is still
unclear why a GL, which is an ordered although
possibly huge set of epistemic communities, will
produce an useful and usable categorization of the
community under study. A GL contains indeed
all epistemic communities, a property already re-
strictive since agent or concept sets whose intent

6A lattice is a partially-ordered set such that any subset
has a least upper bound and a greatest lower bound – obvi-
ously a finite partially-ordered set is a lattice. Note that the
hierarchy here has nothing to do with the one introduced
in def. 3.
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Figure 4: Zoom on fig. 3 showing one possible
diamond. A multidisciplinary field is at the diamond’s
top (here “∅”, which relatively to the context can be
considered as “cognitive science”) and covers the two
intermediate subfields (cognitive linguistics and cogni-
tive neuroscience), which themselves, when combined,
define an interdisciplinary subfield (cognitive neurolin-
guistics).

or extent is ∅ (i.e. they have nothing or nobody
in common), or more generally is not “closed”, are
no epistemic communities and hence do not appear
in GL. However, many real epistemic communities
are still of no interest – in that they do not corre-
spond to an existing or relevant field of knowledge
– because for instance they are too small and/or
too specific. In particular, for a single scientist
{s}, the closure {s}∧⋆ will admittedly be equal to
{s}, since there are strong chances that no other
scientist uses at least the same concepts as s –
to some extent s is “original”. Certainly knowing
that ({s}, {s}∧) is an epistemic community is not
very enlightening. If however we consider that s

is working on a field F (i.e. F ⊂ {s}∧), when
adding more and more agents working on F to
{s}, as the cardinal of this agent set S increases
there are more and more chances that its (decreas-
ing) extent S∧ reaches the actual knowledge field
F . The intent S∧⋆ will be at this point the whole
community working on F : there will thus be a gap
between the small uninteresting epistemic commu-
nities reached hitherto, and the suddenly emerg-
ing epistemic community (S∧⋆, S∧ = F ). In other
words, we conjecture that there is a relevant level
for which closed sets S∧⋆, and identically C⋆∧,
are representative of a field or a trend. This also
means that some epistemic communities listed by
GLs are deemed to be prototypic of these fields.
They are located between the whole agent set (ob-
viously too general) and too specific communities,
that is, at a medium-level of generality which is to
be compared to Rosch’s basic-level of categoriza-

tion [33].

Given these assumptions, GS,C,R is expected to
exhibit significant structural properties – as re-
gards e.g. highly-populated communities, for there
will be aggregate of agents around some precise
fields (i.e. epistemic communities with high-size
agent set will prevail). These properties, once
identified, could help design criteria for detecting
in a somewhat automated manner major trends
(basic-level categories) within a more general field,
therefore making GL a powerful categorization
tool. This idea had been introduced by the present
authors in a previous paper [34], now we will bring
in section 3 empirical evidence to support this con-
jecture.

Comparison with existing approaches In
general, existing studies like those mentionned at
the beginning of this section attempt to infer com-
munities from a very general point of view (in
that there is no particular assumption on the na-
ture of the social groups that these CMs are sup-
posed to extract from data), and still focus and
rely only on single networks of social relationships
(e.g. coauthorship) that may prove to be insuf-
ficient and inefficient in order to find epistemic
communities which, as we said before, are not nec-
essarily socially linked. Data duality brought by
the reciprocal linkage of agents to concepts and the
corresponding symmetry between agent-based and
concept-based notions (def. 1, 2, 3 and EC-2 vs.
def. 4) is moreover particularly well rendered by a
GL, being a hierarchy of closed couples considered
indifferently as agent sets or as concept sets.

It is also worth noting that some of these meth-
ods produce hierarchically structured clusters (e.g.
hierarchical clustering and structural cohesion)
which seem to be close to GL hierarchical represen-
tation are in fact more or less dendrograms. Yet, a
dendrogram is a tree whereas a GL is a lattice, i.e.
a generalization of trees where ascendancies can
be multiple: a community is not bound to be em-
bedded into a lineage of increasing communities, it
can have ascendancies in various “directions”; in
other words, an agent can be part of many non-
embedded communities, he can be to some extent
“pluridisciplinary”.

GLs are hence a particularly adapted CM for the
very prospect of building knowledge community
taxonomy. Moreover, although GLs are within
this paper principally applied to scientific com-
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munities, we could yet easily apply it to other
spheres like for instance economic communities,
where companies deal with sets of technologies.

3 Empirical results

3.1 Experimental protocol

To lead our experiments on scientific communities,
we need data stipulating which agents use which
concepts. We consider article collections, assum-
ing that articles are a faithful account what their
authors are working on. However, an important
point is now to define precisely what a concept is,
and in particular what is a concept such that we
can observe its appearance in an article. This no-
tion needs not be too precise nor too wide. Is it a
paradigm like “universal gravitation” or a simple
word like “operon”? For instance, authors provide
their articles with keywords: apparently, consider-
ing these keywords as concepts seems to constitute
a relevant level of categorization while being a con-
venient idea. Yet, such keywords have not proven
to be very reliable indicators of the issues articles
are dealing with, for authors often omit important
keywords or specify poorly relevant ones; depend-
ing on the database, keywords for the same article
can strongly differ, requiring the additional help
of an expert ontology.

Word groups as concepts Getting concepts
through words and nominal groups (terms) from
article title, abstract or body appears to be a safer
method than using keywords. At first we will thus
say that each word or nominal group is a concept
even if we are still hampered by linguistic phenom-
ena like homonymy, polysemia, synonymy [17],
syllepsis [18], and the fact that different authors
might have different definitions of the same word
or understand different concepts under an iden-
tical nominal group [23]. Some techniques have
been proposed (see e.g. [37]) and could be used
to solve these problems and determine the con-
textual meaning of nominal groups, this is how-
ever not the purpose of the present article and
we will assume here that nominal groups repre-
sent sufficiently distinguishable and homogenous
references to concepts. Additionally, this defini-
tion does not prevent us from observing higher-
level concepts such as theories or even paradigms,
since we can easily refer to these concepts a poste-

riori by considering sets of words, like for example
interpreting {“cell”, “DNA”, “gene”, “genetics”,
“molecular”} as molecular biology.

We will also only proceed with title and ab-
stract words, first because complete article con-
tents are rarely available on an exhaustive basis
(that is, exhaustively available for a whole commu-
nity), and second because it could imply to take
into account too many very precise though irrele-
vant words (thus dramatically increasing set sizes
while massively introducing noise).

Data processing The data presented here has
been processed according to the following method-
ology:

1. Collect and automatically process article data
(title, abstract, authors) for a given commu-
nity and period of time. As regards abstract
and title, we apply a very basic linguistic pro-
cessing (though a good tradeoff between com-
plexity and efficiency) consisting in:� Excluding unsignificant words (stop-

words), such as common and rhetori-
cal english words (“often”, “then”, “we”,
etc.) and irrelevant words in respect
of the domain (“demonstrate”, “postu-
late”, “specimen”, “study”, etc.), using
a list of more than 2,500 words, to which
we add non-words such as figures, per-
centages, dates, etc.� Excluding rare words, i.e. words appear-
ing n times or less in the whole corpus
(such as words appearing only once, also
called hapax legomena or hapaxes). In
our case, we took n = 4.� Stemming the remaining words, i.e. re-
ducing morphological variants of words
to their stem (root form) using a slightly
improved version of Porter’s stemming
algorithm [30], and then creating the
corresponding word classes (for example,
“genetic” and “genetics” both reduce to
“genet”).

2. Identify unique authors and unique words,
and then create the weighted matrix M of
links between authors and words, where Mij

is equal to the number of articles where au-
thor i used concept j (see fig.5).
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Figure 5: Experimental protocol: step 1 and 2
help create the core network, and the correspond-
ing relation weighted matrix shown here (authors on
rows, concepts on columns). Some agents are removed
through step 3. The GL is then computed from the
binary matrix obtained after step 4.

3. Keep randomly a given fraction of authors,
that is, consider a representative sample of
the whole community by extracting randomly
and uniformly some lines from matrix M . We
chose to keep each line with probability .25
(this step aims only at GL reducing compu-
tation time)

4. Make M a binary matrix relatively to a given
threshold α, i.e. replace Mij by 0 if Mij < α,
else by 1: this means that an author will not
be related to a concept he used less than α

times. We actually used a threshold of 1 (in-
creasing the threshold would critically reduce
both computation costs and results signifi-
cance).

5. Calculate the Galois lattice for the binary re-
lation matrix M , using an implementation of
Ganter’s algorithm [9, 25].

3.2 Results and comparison with
random relations

We ran the process on articles published between
1990 and 1995 obtained through a search for “ze-
brafish” on the MedLine database, totalling 418
articles and mentioning 797 authors and 2129
words after step 2 of the protocol. After step 3,
only 218 authors and consequently 1817 concepts
remained in M . This is the relation matrix we
used for computing the GL (steps 4 and 5).

We noticed unsurprisingly that some authors
and concepts were appearing significantly more
frequently than others. More precisely, there was a
particular distribution of links from agents to con-
cepts (proportion of agents being related to a given
number of concepts) and from concepts to agents:
a lot of agents (resp. concepts) were linked to few
concepts (resp. agents) while few agents/concepts
were related to many concepts/agents. For this
reason, we could fear GL artefacts since frequent
authors or frequent concepts are more likely to
share or respectively be shared by more concepts
or agents, thus being part of bigger closed sets
and increasing the number of these big sets, even-
tually modifying artificially the GL structure, es-
pecially high-size closed sets. We hence decided
to compare our results with those from GLs calcu-
lated with random-generated relations where this
exact property of the empirical data was kept. In
other words, we kept the distributions of links on
rows and columns in the relation matrix from step
3 while we reshuffled the links themselves, using
an algorithm introduced by Molloy & Reed [27].7

From now on, we call “random case” the results
obtained from computations on 40 such random
relation matrices.8

Empirical vs. random In order to confirm the
intuition that we have relatively large communi-

7Briefly, this algorithm consists in assigning to each au-
thor a number of outgoing links to concepts according to the
desired distribution, and identically assigning to each con-
cept a number of outgoing links to authors; then matching
randomly the dangling links between authors and concepts.

8We also considered two other random cases: (i) keep
the same density in the relation (same proportion of real
links in respect of possible links), which is approximately
one link out of 30; and (ii) keep only the distribution of links
from agents to concepts. Interestingly, the corresponding
GLs are really poor: they are dramatically small, with
16,000 epistemic communities whose sizes do not exceed
5% of the whole community in general (see fig. 6). There-
fore, these cases were not investigated further.
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ties sharing concepts (prototypical of a subfield),
we looked at the proportion of high size epistemic
communities by drawing the distribution of agent
set sizes. In spite of the extremely rough linguis-
tic assumptions, we get strongly significant results
from empirical data, especially when compared to
the random case.

On the first graph (fig. 6) we plotted the raw
distributions of agent set sizes, i.e. the number
of epistemic communities relatively to the size of
their agent set. The empirical GL contains 214,000
closed couples, with agent set sizes ranging from 1
to 196 – admittedly excepting the epistemic com-
munity (S,∅) containing all the 218 agents under
study – to be compared with an average of around
207,000 closed couples in the random case (stan-
dard deviation σ ≃ 64, 700), with agent set sizes
ranging only from 1 to 60 (σ ≃ 5). This means
that while the empirical GL is generally approxi-
mately the same size as random GLs, it contains
dramatically more high-size epistemic communi-
ties (featuring 371 communities representing more
than a fifth of the whole agent set, when random
GLs hardly contain a dozen such communities).

The comparison is a bit more striking on the sec-
ond graph (fig. 7) representing distributions nor-
malized in respect of GL size (that is, each class
size has been divided by the GL total size): while
there is a quite perfect fit on the density of low-size
closed couples, the empirical GL is comparatively
dramatically denser on high-size couples, with a
deviation of one order of magnitude when consid-
ering communities with more than 20 agents, i.e.
10% of the whole. For the purpose of underlining
this effect, we finally considered cumulated densi-
ties on the third graph (fig. 8), i.e. the propor-
tion of closed couples containing at least a given
number of agents: 1% of the GL in the empir-
ical case is made of epistemic communities con-
taining 30 agents or more, versus .05% in the ran-
dom case (respectively one thousandth vs. one
thirty-thousandth for communities with 50 agents
or more).

Rebuilding the structure High-size epistemic
communities appear to be proper to our empiri-
cal data, suggesting that these high-size clusters
— that is, large groups of structurally equivalent
agents [26] pointing to the same groups of con-
cepts — are a remarkable stylized fact, providing
support to the conjecture outlined in section 2.3.

Figure 6: Raw distributions of agent set sizes (log/lin
graph). Abscissa: agent set sizes (percentage of the
whole community); ordinate (log scale): number of
corresponding epistemic communities. Circles: em-
pirical data; triangles: random case (random data
with same distributions, 40 computations, with stan-
dard deviation bars). Also plotted on the left are two
other random cases (see footnote 8): (i) random data
with same link density (squares) and (ii) random data
with same distribution from agents to concepts only
(crosses).

Figure 7: Normalized distributions of agent set sizes
(log/lin graph). Abscissa: agent set sizes; ordinate (log
scale): percentage of epistemic communities of a given
size within the whole GL. Circles: empirical data; tri-
angles: random case.
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Figure 8: Cumulated densities (frequencies) of agent
set sizes. Abscissa: agent set sizes; ordinate: per-
centage of epistemic communities containing at least
x agents. Dark circles: empirical data; grey triangles:
random case.

Nonetheless, it is also of great interest to know
whether these communities are significant and rel-
evant, and notably if they help partition a field
into various smaller subfields corresponding to real
epistemic communities – a stylized fact as much
crucial for the justification of the utilization of this
very CM.

With the help of a zebrafish expert, Nadine
Peyriéras, we observed that it was actually the
case:

(i) The first and biggest community is un-
surprisingly centered around the word “ze-
brafish” and contains 196 agents (90% of the
whole). The fact that it does not reach 100%
of the community as one would expect re-
flects the imperfection of the empirical data
collection and processing.

(ii) Then, a lot of large epistemic communities is
revolving around a small set of words, namely
“gene”, “expression”, “pattern”, “embryo”,
“develop” and “vertebrate”, that is, their in-
tents are a combination of some of these
words while their extents contain generally
around 100 agents. In fact, a large majority
of the 218 agents are present in at least one
of these communities; this word set seems ac-
cordingly to characterize the core paradigm
of zebrafish researchers (even if each agent
does not use it wholly, which is credible if we
consider that in the relatively few article ab-
stracts present in the database most authors
might have not cited every word of this word
set but only a partial subset). According to

our expert and the litterature [12], the ze-
brafish is indeed being used as a vertebrate
animal model for the study of gene expres-
sion and function during embryonic develop-
ment.

Similarly, another word subset of interest
is made of “cloning”, “stage”, “transcrip-
tion”, “sequence”, “protein”, “region”, “en-
code”, which constitute the intents of rel-
atively high-size epistemic communities (50
agents). According to our expert, these
words are proper to the paradigm of molecu-
lar biology or developmental studies in gen-
eral, or to zebrafish study, which consists in
isolating a large number of mutant fish lines,
isolating the corresponding mutated genes,
then investigating their involvement in bio-
logical processes. So, in the search for rele-
vant partitioning communities it is reason-
able to ignore these too trivial thus noisy
words and the corresponding closed sets.

(iii) Thereafter and once these words ignored,
some smaller and more precise communi-
ties appear around non-paradigmatic words.
Two major groups emerge first: (i) one with
the epistemic community based on “growth”
(39 agents), and (ii) the other around three
epistemic communities whose intents are
“neuron” (70 agents), “brain” (36 agents)
and {“nervous”, “system”} (28 agents), with
many common agents and which altogether
makes a group of 84 single agents. Interest-
ingly, there are only 15 agents common to
both communities (i) and (ii), so 108 agents
are well divided between the two. It is not
fortuitous to see that these groups corre-
spond exactly to what the litterature de-
scribes as significant subfields explicitly9 as
well as implicitly10.

Some other much smaller communities help

9At the beginning of the 90’s, according to Grunwald &
Eisen [12], “among the first mutants to be isolated was one

that was later discovered to be deficient in a growth factor
needed for axis determination, a second deficient in my-

ofibril organization, and a third in which a specific portion

of its nervous system failed to form”.
10According to the program of the first conference on

zebrafish development and genetics at the CSH Laboratory
in 1994, there were seven theme-based sessions, including
two on nervous system and one on growth control - so,
approximately, these two fields represented half the sessions
and half the community.
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Figure 9: Very partial view of the actual GL (which
contains more than 200,000 closed couples) hierarchi-
cally showing intents and extent sizes (in brackets) of
selected epistemic communities. Note that there are
various possible partitions of the whole agent set, de-
pending on what one is looking at: for example ob-
jects, processes, methods, etc.

structuring further the field: the epistemic
community based on {“toxicity”} is made of
23 agents with 9 shared with “growth” and
only three with “brain” – this group might
be related to the study of the toxic effect
of growth factors. The epistemic community
based on words “acid” (45 agents) has an
interesting descent, {“acid”, “amino”} (22
agents) and {“acid”, “retino”} (21 agents),
with only 3 agents in common in the extent of
{“acid”, “amino”, “retino”}, so this is a dia-
mond with no relation between people work-
ing on/with amino acid and retinoic acid.
Also, the closed couple with intent {“spinal”,
“cord”} (28 agents) includes the one based
on {“spinal”, “cord”, “neural”, “ventral”}
(20 agents) with almost as many agents, sug-
gesting that (i) “spinal” and “cord” cannot
be dissociated and (ii) people working on
spinal cord are also very familiar with con-
cepts “neural” and “ventral”.

All these findings are summed up on figure 9
and show that GLs are efficient both for determin-
ing the community paradigm (or common back-
ground) and for finding prevailing communities as
well as medium-level subcommunities. A further
study would consist in observing how the commu-
nity evolved through the dynamics of the GL (see
section 4.1), as this embryo of partition is made
from data of the period 1990-1995 and is supposed
to be a static photograph of the community struc-
ture as of December 1995, certainly appreciably

different now for some “fashionable” subfields may
have been abandoned while others have appeared.

Other findings and prospects From the ran-
dom case results we can also derive that distri-
butions of links between agents and concepts do
not alone account for the special embedded clus-
tered structure we observe – this result is neither
surprising nor new (see for instance [13]). Never-
theless, it would be interesting to see which class
of random relations (or random bipartite graphs
between agents and concepts) if any can produce
the same kind of GL as in our empirical case: other
properties might contribute to this structure, such
as e.g. assortativity, clustering coefficient etc. In
other words, how does the existence of real com-
munities actually translate in terms of properties
in relation matrix M , apart from a given distribu-
tion of links on rows and columns, between agents
and concepts ?

Moreover, these results show the usefulness of
binding social and conceptual networks and tak-
ing into account data from both networks, as pro-
posed previously in [34], since we have commu-
nities here that are not socially linked and cer-
tainly would have been uneasy to detect – if not
impossible – with single-network based methods
(namely, based on the social network): it would
be interesting to compare GL-based communities
with those obtained from single-network data, in
particular, see whether a single-network commu-
nity is included or not in a GL-community. Fi-
nally, considering that linguistic assumptions and
processing were very poor, these preliminary find-
ings are also very encouraging in the prospect of
improving both data quality and criteria for de-
tecting communities (see section 4.2 and 4.3).

4 Further directions

4.1 Dynamic community monitor-
ing

Having yet categorized epistemic communities on
a static basis, it would be interesting to have an ac-
count of their dynamics: we describe here how par-
ticular field evolutions could translate into prop-
erties both of epistemic communities and of the
GL.
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Field progress and specialization We could
easily monitor (i) the progress or decline of a field
characterized by a given concept set, by observing
respectively an increase or a decrease of the corre-
sponding agent set (i.e. a variation in the size of
the population dealing with this concept set); and
(ii) the specialization or generalization of an epis-
temic community and in particular its agent set,
by observing respectively an increase or a decrease
of its corresponding concept set (i.e. a variation
on the concept set this given agent set is working
on).

New fields Alternatively, one could monitor the
emergence of new fields, being either entirely new
fields, or fields stemming from already existing
fields (namely new interdisciplinary or multidis-
ciplinary fields). The latter is the case where dia-
monds emerge or grow: the epistemic communities
at the top or the bottom of a diamond are increas-
ing in agent set size. More precisely, we distinguish
two cases:

(i) emergence of a new “multidiscipline”: the
regrouping of two existing fields under a
more general epistemic community contain-
ing agents from the two former fields. This
happens when the epistemic community
based on the union of two agent sets S1∪S2 is
growing, thus having S∧

1
∩ S∧

2
as concept set

– in our exemple fig. 4, it would correspond
to the growth of the “cognitive science” com-
munity (diamond’s top).

(ii) emergence of a new “interdiscipline”: merg-
ing of two existing fields in a more specific
epistemic community with concepts from the
two former fields (growth of the epistemic
community based on the union of two con-
cept sets C1 ∪ C2, with C⋆

1 ∩C⋆
2 as agent set

– e.g. the “cognitive neurolinguistics” com-
munity on fig. 4, i.e. diamond’s bottom).

4.2 Linguistic processing

The improvement of linguistic processing is most
urgent, and could first include the use of:� Lemmatizers: algorithms giving the root of a

word, instead of using a stemmer like the one
used here (the “Porter stemmer”, though it is
also a quite simple yet efficient lemmatizer);

� Taggers: algorithms detecting word gram-
matical status in context, e.g. “subject”,
“verb”, etc.;� Morphological analyzers: algorithms recog-
nizing the shape of a word actually composed
of two or more words, like ”molecular biol-
ogy”, ”positon emission tomography”, etc.;� Dictionaries: ontologies of the domain, re-
turning classes of words considered as equiv-
alent (as stated in section 3), like “zebrafish”
and “rerio brachydanio”, the former being the
common name of the latter;� Disambiguators: algorithms determining the
meaning of words by examining the context
in which they are used [37].

Most of these tools already exist, although their
joint use would require a judicious work of inte-
gration.

Expert-processed data Alternatively, it could
be useful to compare these results with those from
data processed by human experts, where all lin-
guistic processing problems become quite obsolete.
For instance, (i) by providing them with a fixed
list of concepts and making them classify agents
according to this list, or (ii) by making them iden-
tify a restricted list of words they know to be
sufficiently descriptive for a given set of articles
(e.g. protein nomenclature consisting of very spe-
cific names [24]).

4.3 Community detection criteria

The design of better criteria in order to catego-
rize and distinguish medium-level epistemic com-
munities is also a critical question. In this pa-
per, we used the agent set size, which is actually
a quite simple criterion bearing some major draw-
backs, such as the fact that small communities are
ignored, even if they correspond to well-defined
though isolated fields. In this respect, taking the
communities which are close to the top (also called
anti-chains) can prove more relevant for they are
just more specific than the whole community, ob-
viously the most general epistemic community. In
a more general view, before designing efficient cri-
teria, it is most important to find the properties
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that make an epistemic community be a “medium-
level” community; obviously the property of gath-
ering an important proportion of the agents is a
good yet insufficient first estimate. Hence, a more
detailed set of properties might for instance in-
clude (i) distance from the top epistemic commu-
nity, (ii) distance from the empty epistemic com-
munity (∅,C), and (iii) concept set size.

GL handling In the prospect of making this
method available to scientists, a complementary
approach could be to design a software allowing
navigation through the lattice, like for instance
starting from the top community and progressively
narrowing the agent set by specifying concepts
from a list of possible choices.

Conclusion

In this paper we proposed a method for describ-
ing and categorizing communities of knowledge as
well as capturing essential stylized facts regarding
their structure. Assuming that such communities
are structured in fields and subfields of common
concerns, we aimed eventually at rebuilding this
structure and in particular at providing an accu-
rate taxonomy by automatically partitioning the
community into various hierarchic representative
subfields.

After having reviewed some definitions of knowl-
edge communities or “epistemic communities”
from social epistemology and economics, we in-
troduced yet a definition that reflected the ex-
act property of belonging to the same community
when sharing the same concerns and working on
the same concepts — a conception close to struc-
tural equivalence. For a GL contains exactly all
such epistemic communities, we showed next that
the Galois lattice structure was a particularly ad-
equate clustering method with respect to this def-
inition. However, it was unclear whether this was
sufficient to make it an useful categorizing tool in
that the set of all epistemic communities could
possibly prove really huge and intractable. To
this end, we conjectured that if knowledge fields
did indeed exist there should be a gap in agent set
size between epistemic communities corresponding
to real subfields and others (the former gathering
many more agents); this first criterium will then
have allowed us to discriminate within the lattice

between “uninteresting” communities and signifi-
cant ones. The lattice was thus expected to pro-
vide the hierarchic structure we wanted to rebuild.

Empirical results on an embryologist community
centered around the model animal zebrafish con-
firmed this expectation even though data quality
was somewhat imperfect, mostly because of an ap-
proximative linguistic processing. High-size epis-
temic communities were significantly numerous,
especially with respect to selected random cases,
and we managed to reproduce a partition of the
community (figure 9) confirmed relevant by do-
main experts.

Our method diverges essentially from single-
network-based methods using for instance rela-
tionships or semantic proximity, for it lies on the
very duality of epistemic communities (agents hav-
ing common interests) – it would nevertheless be
interestingly compared to results obtained through
these other clustering methods. Also, it could also
be fruitfully applied in other contexts such as the
field of technological cooperation between com-
panies through contracts, equivalent to authors
working on concepts through articles. Several im-
provements could be carried out, such as better
linguistic processing, better criteria design, and
better handling of the lattice. Finally, as we en-
deavored to define, describe and hierarchize epis-
temic communities, a further work will attempt
to explain how we could monitor their dynamics
and the coevolution of the social and conceptual
structures.
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