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Finite size effects on surface excess quantities and application to 
crystal growth and surface melting of epitaxial layers 

 
P. Müller  
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Campus de Luminy, case 913, F-13288 Marseille Cedex 9, France 

 
 

Abstract 
 
From a macroscopic viewpoint phase transitions as surface melting or growth mode can be 

described in terms of Gibbs excess quantity duly amended  by size effect. The aim of this 

study is to consider such amended quantities to describe surface melting and Stranski-

Krastanov transition of epitaxial layers. The size effect so introduced allow to predict the 

equilibrium thickness of the wetting layer of Stranski Krastanov growth mode and to describe 

and classify two different melting cases: the incomplete premelting relayed by a first order 

transition and the continuous premelting relayed by continuous overheating. 
 
Keywords: Surface energy, adhesion energy, size effects, Stranski-Krastanov, Surface melting 
 
Introduction: 
From a classical thermodynamic point of view phase transitions as surface melting of semi-

infinite crystals or crystal growth can be partially described in terms of Gibbs excess quantity 

duly amended  by size effects (since usual Gibbs excess quantities are only well defined for 

semi-infinite systems).The aim of this study is to generalise this approach in order to describe 

two dimensional (2D) towards three dimensional (3D) transition (Stranski-Krastanov or SK 

transition) of epitaxial layers as well as the surface melting of epitaxial layers. 

For this purpose in a first section we define surface excess quantities for finite size 

slabs useful to describe the SK transition (section I1). Then we define (section I.2) the surface 

and interfacial quantities for the more complex case of composite slabs useful for the 

description of surface melting of epitaxial layers and give some experimental evidences 

(section I.3). 

Concerning Stranski Krastanov transition (section II) we define a thermodynamical 

model to describe the conditions necessary for the transition (section II1) and  show how in 

near equilibrium conditions a good description of the size effect allow to calculate the 

thickness of the wetting layer and the activation energy of the transition. Nevertheless the 
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smaller the lattice mismatch between the deposit and its substrate, the greater the activation 

energy so that for couples A/B with small lattice mismatch another transition mechanism has 

to be described (section II2).  

Concerning  surface melting (section III) we will show how the use of finite size 

quantities allow us to describe and classify two different melting cases: the incomplete 

premelting relayed by a first order transition and the continuous premelting relayed by 

continuous overheating in agreement with more complex numerical calculations. 

 

I/ Size effect on surface excess quantities 
 I.1/ Simple slab (ni layers) 
As first described by Gibbs [1] all bulk extensive properties  can present some excess at the 

surface. Nevertheless all these excess quantities, as surface and adhesion energies and 

of a solid i, are well defined only for semi-infinite solids. For a finite solid i that only 

contains a few layers n

∞
iγ

∞
iβ

i, surface and adhesion energies depend on the number of layers of the 

solid. Indeed, considering not only short range “chemical interactions” but also longer ranged 

ones as -r-6  dispersion forces or - rar ζ−e  for screened Coulomb forces, to the chemical 

bonding between the layers of a slab of thickness d there adds d-3 or ade ζ−  contributions 

respectively. For screened Coulomb forces the surface energy ( )ii nγ  of a finite slab having ni 

layers thus reads 
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Where the material constant K characterising the chemical interactions has been 

asymptotically linked to the usual surface energy of semi-infinite solid by writing ∞
iγ

( ) ∞− =−=∞→ iii
ieKn γγ ζ11 . The same reasoning can be made for the adhesion energy 

β(ni,nj) of a film A (thickness nA) on a substrate B (thickness nB) which is connected to the 

interfacial bonding [2]. In this case the summation has to be made on the layers of the film A 

then on the layers of the substrate B so that β(nA,nB) reads [2] 

( )( )ζζββ // 11),( BA nn
BA eenn −−∞ −−=    (2) 

where  is the usual adhesion energy in between the two semi-infinite solids (for simplicity 

we do not distinguish ζ for A, B or AB long range interactions). The interfacial energy 

∞β
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γAB(nA,nB)  can now be obtained from the extended Dupré relation [3,4] 

 and thus reads: ),()()(),( BABBAABAAB nnnnnn βγγγ −+=

( ) ( ) ( )( )ζζζζ βγγγ BABA nnn
B

n
ABAAB eeeenn −−∞−∞−∞ −−−−+−= 1111),(  (3) 

I2/ Composite slab (ni/nj/nk) 

The  adhesion energy jki /β of a material i (ni layers) over a composite slab constituted by nj 

layers of material j over nk layers of material k can be obtained  by means of a thermodynamic 

process where the 3-composite slab ( ) ( ) ( )kji nknjn /i  is obtained as a combination of single 2-

composite slabs as: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( kjkjikj nkninknnnkn // )ji injni /i jn /i −++= . Thus there 

is [4] 

( ) ( )( ) ( )( )kkiijjjjii nnn
ki

nn
jikjijki eeeeennn ζζζζζ βββ −−−∞−−∞ −−+−−= 1111,, ///  (4) 

 We can thus define  the interfacial energy of material i (ni layers) onto the composite material 

( )kjijki nnn ,,/γ  by using again Dupré’s  relation , so that 

( ) ( ) ( ) ( )kjijkijjiikjijki nnnnnnnn ,,,, // βγγγ −+=   (5) 

Obviously equations (2) and (3) can be recovered from equations (4) and (5) with ni=nA, 

nj=nB and nk=0.  

Lastly lay stress on the fact that owing to Shuttleworth’ relation [5] all these size corrections 

also apply to surface and interfacial stress defined as excess quantities [6]. 

I3/ Experimental evidences: 

In our opinion such size effects have been clearly put in evidence by the experimental study 

of the asymptotic behaviour of stress establishment in thin films [7,2]. Indeed though usually 

the in-plane force exerted by a 2D film of material A epitaxially supported by a lattice-

mismatched thick film of material B is written ( ) shh AA ∆+=∑ σ  (where σ is the average 

stress in the film A of thickness hA and ∆s a contribution caused by the excess of stress at 

surfaces and interfaces), the true in-plane force must be written 

( ) ( )ah
AA

Aeshh ζσ −∞ −∆+=∑ 1  where  is the surface and interfacial contribution 

for semi infinite slab A and 

∞s∆

( )ahAe ζ−−1  the size correction factor of relation (1) where a is an 

atomic unit. Thus in the case of perfectly pseudomorphous film where the bulk contribution 

σhA can be easily calculated (provided the epitaxial misfit and the elastic constants are 

known), the surface contribution ( )aζhAe−−s∞∆ 1  can be easily extracted form experimental 

measurements of ( )∑ Ah  recorded by the cantilever method. It is the case of Ge/si(001) 
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experiments [7] where the surface stress contribution has been extracted and shown to be well 

fitted by ( )ahAes ζ−∞ −∆ 1

0>Φ∞

 with aζ=0.28 nm and =2.3 Jm∞∆s

∞− β2

-2 [2] (see figure 1). 

∆

Φ

Φ∞

o
2ε<

In the following we will use such amended excess quantities in order to revisit some well 

known epitaxial growth and surface melting phenomena. 

II/ Application to crystal growth: the Stranski Krastanov  transition  
Let us recall that three possible mechanisms of epitaxial growth have been recognised [8]: the 

three dimensional or Volmer-Weber growth, the layer by layer or Frank van der Merwe 

growth and the layer by layer growth followed by three dimensional growth or Stranski-

Krastanov (SK) growth.   

In absence of misfit and near equilibrium conditions Bauer [8] rationalised these growth 

modes  by defining the wetting energy    
∞

∞ =Φ γ A    (6) 

 It was then shown [9] that three dimensional (3D) growth near equilibrium conditions only 

takes place for  and at supersaturation 0>µ  (where ∆µ is the chemical potential 

difference per atom between the deposited crystal A and a reservoir of A) whereas two 

dimensional (2D) growth only takes place for 0<∞  and at undersaturation 0<∆µ . In 

absence of misfit  2D and 3D  growth modes thus are well differentiated but the condition for 

SK growth is not clear. It is not the case when the lattice mismatch  between the deposited 

crystal A and its foreign substrate B is duly considered. In this case  we will show that in 

absence of surface stress, the near equilibrium growth conditions are: 0>Φ∞

D
o

3ε

o
3ε

 with  

for 3D growth and :  with  for 2D growth where and  are the elastic 

energy density per atom  in two dimensional layer and three dimensional crystal respectively. 

Thus since, owing to the elastic relaxation of the  lateral faces a 3D crystal < ,  it can 

be believed that in near equilibrium conditions  SK growth could take place at  in a 

reduced domain of  supersaturation  . 

D3
0εµ >∆

D
o

2ε

0≈Φ∞

0< D2
0εµ <∆

D
o

3ε ∆<

D
o

2ε

D

Dµ

 In this section we want to precise the conditions  of SK growth and discuss the problem of the 

activation energy that has to be overpass for SK transition. For this purpose we will define a 

thermodynamic process by which a 3D crystal may grow on 2D layers, seek for equilibrium 

conditions and discuss activation energy involved in SK transition. 

II.1/ Free energy change for SK transition 
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The deposit A is considered to be obtained from the condensation of a perfect vapour onto a 

lattice mismatched semi-infinite crystal B. (A and B are cubic with parameter a and b and 

supposed not to mix). The epitaxy is with parallel axis on a (001) plane and the (001) surfaces 

and interface of A and B are supposed to be stable. The in-plane misfit being defined by 

( ) aabmo −= .The final state of the condensation is a 3D crystal of volume V sitting on z 

pseudomorphic layers over the substrate B (Stranski Krastanov case) (see figure 2). 

Furthermore we will only consider box shaped 3D crystals and  we will neglect surface stress.  

The free energy change of the SK condensation is composed of three terms: (i)  Τhe 

chemical work to form (on an area L2) a 2D film of z layers and an island (volume V ). 

It reads 

2lh=

( )22
1 lhzaLF +∆−=∆ µ  where µ∆  is the supersaturation per unit volume of vapour  A 

and a an atomic linear size. (ii) The work of formation of the surfaces of the crystal A 

followed by its adhesion on the bare substrate B: 

( ) ( )( )[ ] ll hF A
2

2 +=∆ l zL 22 exp1 −−−Φ∞
'4γ+  where )(zAB)(2)( zz A βγ −=Φ = 

( )( )ζz−exp−Φ∞ 1  is the size dependent wetting factor and where we have neglected 

( ))exp( ζah+z− )/ against exp( ζz−  [10]. In the following we will take ζ =1. (iii) The total 

elastic energy stored by the composite system [ ]),,(22 zhRh ll+3 zaLF o= ε∆   (with 

 and Y  a combination of elastic constants) which is the sum of the homogeneous 

energy stored by z pseudomorphous layers (thickness a, lateral size L) and the elastic energy 

of the 3D upperlying crystal of volume V

2
oYmo =ε

h 2l= . The factor 0< <1 is a relaxation 

factor describing the elastic relaxation of the 3D upperlying crystal. It has to be calculated for 

each specific case (see for example [11]). Finally the total energy change 

 can be written [10]:  

),,( zh lR

321 FFF ∆+∆+F ∆=∆

( ) ( ) ( )23/13/2'
3/23/2

22 41 zaLVRrV
r
Ve

r
VLzaLVF oA

z +++

















+−
















−Φ++∆−=∆ −

∞ εγµ  (7) 

where we introduce the aspect ratio lhr =  of the 3D crystal and write =R. ),,( zhR l

Notice that if the 2D layers have to be formed, A must wet B so that ∞Φ  must be negative. 

The equilibrium state is found by minimisation of the total energy change ∆F. The zeros of 

the partial derivatives of (7) in respect with z, V and r give the equilibrium values of z, V and 

r noted z*, V* and r* respectively. They are reported in table I 
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Table I:  equilibrium values z*,V*,r*  where ( )2Ll=θ defines the 3D coverage. The approximated relation is 
valid for weak coverage 
 

Notice that the expressions of z* and V* show that there is an interplay in between the 

wetting layer and the 3D crystal. More precisely the greater the volume of the 3D crystal, the 

smaller the number of underlying layers what is supported by both experimental evidences 

[12,13] and numerical calculations as well [14]. Thus one can adopt another point of view 

[15] to describe the SK transition by considering that owing to the energy gain due to the 

elastic relaxation of the 3D crystals, some of the upper layers of a metastable 2D strained film 

of thickness z’ can spontaneously transform into stable 3D islands supported by z<z’ 

underlying layers. The free energy change ∆F’ of this transition reads ∆F’=  

that means  for 

)0,'(),( zFVzF ∆−∆

12 <<ahθ   

[ ] 3/13/2'
3/2

4)(1' rVe
r
VVrRVF A

z
o γε ζ +


















−Φ+−=−∆ −

∞   (8) 

II.2/ Discussion 
II.2.1/ Layer by layer growth  

Here we are only concerned with Frank-van der Merwe growth that means Φ <0 for 

having 2D condensation with V=0 and thus θ=0 so that from table I there is 

∞

( ) 











∆−

Φ
= ∞

a
z

o µε
ln* . Since z must be positive, the z layers can only exist for 
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oεµ<∆<∞−

o

. Thus for having 2D growth, the supersaturation cannot overpass the bulk 

elastic energy density stored in the strained layers2. In figure 2 we plot the free energy density 

∆F/L2 as a function of z for different chemical potentials ∆µ.  ∆F/L2 shows minima, at z=z*, 

for εµ<∆ . In this case since ( ) 0/ *
2 <∆ zLF , 2D layers form spontaneously provided Φ∞<0 

that means each layer z is a 2D phase, built at a given undersaturation 

)exp( za −oz Φ−=∆ ∞εµ . Up to saturation µ∆ =0 there builds up a finite number of layers 

(o az ∞Φ= ln )oε  that only depends on the wetting over strain energy 

ratio [ ]2
oA Ymβγ −2o =aεΦ∞ . This result is largely experimentally supported on very 

different pairs A/B: reversible multilayers adsorption measurements (for a review see [16])3.  

oo R εµε <∆<

R

µ

µ 1(a*ε Φ−= ∞
−e z

o

Roεµ>∆

oεµ=

Φ∞

∆

0→−ze *
min

                                                          

However let us note that 2D growth may also take place at . Indeed for Roεµ>∆ Roεµ>∆  

the two members ∆F  (eq. (7)) are negative so that  ∆F/L2 is always negative and is a 

decreasing function of the number of layers z. In these conditions each supplementary layer 

decreases ∆F but ∆F has no minimum so that the equilibrium layers number can no more be 

defined (see figure 3) so that we will call these conditions out of equilibrium conditions. 

 

II.2.2/ 2D relayed by 3D growth:  

 Since for SK transition, z* and V* must be positive , from table I, Stranski Krastanov growth 

can only occur for: 

     (9) 

that means in a finite domain of chemical potential µ∆  (excepted when elastic relaxation 

does not play so that =1). In figure 4  we schematically plot the number of 2D layers as a 

function of the chemical potential ∆ . To each layer formation z* corresponds a constant 

value of ∆  given by )*)( θµ −z∆  but 3D islands may appear as soon as 

. The smallest volume reached by a 3D upperlying crystal can be obtained by 

injecting  in the expression of V* in table I. For a given aspect ratio r and for 

 this minimum volume reads [10] :  ( ) ( )[ ] rRr oA
3' 13/)( −εγV  which becomes 

infinite when elastic relaxation is not considered !  

8=

 
2 In absence of misfit (mo=0) the usual condition for 2D growth ∆µ<0 is recovered 
3 Let us note that for oεµ =∆  , z* becomes infinite but the elastic energy stored diverges so that the system 
has to relax either by plastic deformation or islanding [10]. 
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The activation energy for Stranski-Krastanov transition )'*(rF∆ can thus be obtained by 

injecting the equilibrium values V* and r* of the table I for 0<Φ ∞  in the equation (8). For 

 it reads: 0→Φ −
∞

ze
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3*38'* 3

3' Rr
R

F o
o

A εµ
εµ
γ    (10) 

Since oo R εµε <∆<

o

 the smaller value of the activation energy is reached for 

 εµ =∆ that means for ( )
( ) [ ]22

3'
*

1
*

3
4

3
4*)*,('

R
rzrF

o

A

−
=∆

ε
γ

3'
Aγ 22 )1( −− − Roε

 [10]. As usually the activation 

barrier   is   proportional to  but obviously plays 

the role of a driving force. At the limit z→∞ R can be analytically calculated [11] so that for 

Cu(111) where γ≈1300 ergcm

)'*(rF∆ 24 )1( −− −∝ Rm

-2 and 2
oo mε =2.310-12 ergcm-3 [17] the minimum value of ∆F* 

reaches the values ∆F*/kT≈100 for m0=1%, ∆F*/kT≈30 for m0=2% but ∆F*/kT≈2 for 

m0=8%) [10].  

Thus due to the upper limit of ∆µ the activation energy for nucleating the supported 3D 

crystal only catches reasonable values (a few kT) for sufficiently high misfit (m>2%).  

However since some cases of SK growth are well known for smaller misfit, some authors 

argue of the too high activation energy to consider that the SK growth is a pure matter of 

kinetics [18-21], nevertheless electrochemical studies have clearly shown that SK growth can 

take place in near equilibrium conditions [22]. Some other authors try to find a mechanism by 

which the activation energy could be lowered. It could be classically the case of adsorption on 

the 3D facets which lowers γ’, faceting of the instable 2D layers, or more exotic phenomena 

as sequential nucleation of islands and pits [23] somewhat similar to Asaro-Tiller-Grienfeld 

instability,  and even the appearance of a liquid layer at the 2D/3D interface [24] !.  

However in our opinion the activation energy of SK transition  can be lowered if the 2D 

underlying layers do not grow in near equilibrium conditions. Indeed we have seen in section 

II.2.1 that 2D layers can grow even for ∆µ>Eo condition. In this case the growth can start by 

2D growth at <0 so that each new 2D layer lowers the free energy change. One can no 

more define an equilibrium number of 2D layers ( ) but for high positive value of the 

supersaturation ∆µ the equilibrium volume of the 3D islands can become very small (a few 

atoms)  so that the activation energy for the transition becomes negligible. The number of 

∞Φ

∞→*z
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underlying layers thus should be fixed by kinetics and evaluated by the following procedure 

when the accessible SK activation energy is fixed to a certain amount of kT. Indeed let us 

suppose that SK transition occurs when the activation energy ∆F*=n kT. It is then formally 

possible to plot the abacus given by (10) as a function of z and thus to find the 

value of z  for which ∆F*=n kT and thus for which SK transition starts. It is thus very 

important to be able to calculate the z dependence of the relaxation factor R that means the 

Green function describing the effect of a point force on a composite slab (z layers of material 

A on a semi infinite material B). Nevertheless up to now and to the best of our knowledge 

such z dependence of relaxation factor R has not been calculated so that no predictions can be 

made for the moment. However we believe that our proposition of non equilibrium 2D growth 

at ∆µ>E

)*,(* zrF∆

o  but  followed by 3D growth near equilibrium conditions is a quite simple 

solution to obtain SK transition for very weak values of misfit. 

0<Φ∞

lnn +=

l
l GGN +

)([ sll βγ − 1/γ2Navo

 

 

III/ Application to surface melting 
Substrate S of material B now bears a lattice-mismatched composite material A  of ns 

solid layers and nl liquid layers (fig.). The ns layers are in pseudomorphous contact and 

epitaxially stressed by S whereas its nl upper layers A are in the liquid state.  

Our model of surface melting uses the notion of finite size surface and interfacial specific 

energies as justified by [25]. 

III.1/ Free energy of the system   
Our purpose being to seek for the equilibrium number of liquid layers as a function of 

temperature4, we have to minimise a thermodynamic potential of the composite system 

constituted of layers of A sitting on a semi-infinite substrate S (see fig.5). We will 

note this system l/s/S. Therefore we have to minimise the Gibbs free energy per solid mole : 

sn

G=  where Gsurfs
sGNG += s

 is the Gibbs free energy per solid mole (number Ns per 

unit area), Gl
 the Gibbs energy per liquid mole (number Nl per unit area). Taking into account 

the size effect via equations (4) and (5),  the excess energy due to surface and interfaces Gsurf 

reads [4]: 

( ) ( ) ( )( ) ( ) ( )]llssssll nn
Slsl

n
Sss

n
Sl eeeen ζζζζ βββγ −−−− −−+−−+−+= 1122,nG ///s

surf

 

                                                          
4 The melting point of S (TS) is much higher that the melting point Tm of A so that experiments can be done 

around Tm without alteration of B and A. 
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III.2/ Equilibrium conditions: 

 The equilibrium number of liquid layers can be obtained by the condition  0=∂
NlNG∂ . For 

essentialness, we neglect the size differences of vS and vl and suppose ζs=ζl=ζ, so that 

0=∂∂
NlNG  reads: 

( ) ( ) [ ] 0N
1

2

av

2

=Γ−Φ+
−

−∆−∆ −− ζζ

ζν
sl nn

s

eebEmVTSTTU   (11) 

where ,  are the melting energy and entropy respectively. The 

constants Φ and Γ read: 

sl UUU −=∆ sl SSS −=∆

slslsll γγγβγ −+≡−=Φ /2     (12) 

( ) ( ) lSlssSslSlSss γγγβββγ −+≡−+−=Γ ///2     (13) 

where all specific energies are those of the semi-infinite phases with planar surfaces γi, γij or 

βi/j  (we omit ∞ subscript). According to the sign of the factors Φ and Γ there follows two new 

premelting cases  we analyse more clearly in the following discussion.  

Since at the bulk melting point Tm (without stress) there is ( ) mmmmm TSTTU ∆ ( )=∆ , neglecting 

the heat capacity change at constant pression ∆Cm one has not too far from the melting point 

the linear dependence  ( ) ( ) ( )( )TTTSTSTTU mmm −∆≈∆−∆  where ∆Sm (Tm) is the latent 

melting entropy at the melting point Tm . In the following we will note the melting latent 

entropy ∆Sm. The equilibrium condition thus reads:  

[ ]ζζ

ζ
sl nn

m
m eeb

STT −−
Γ−Φ∆−=−

2
av' N  with  

m

s

mm S
VEmT
∆−

−=
ν1

2

T '    (14) 

where defines the melting point of the strained film. Indeed since ∆S'
mT m >0 an epitaxial 

coherent strained film melts at a lower temperature than a strain free film. This shift may be 

important since for  typical values ∆Sm = 2 cal mole-1deg-1, E=1011 ergcm-3, ν=1/3, Vs= 20 

cm3 mole-1 the shift is 3.7, 15, 60 K for misfits of 1, 2 or 4 % respectively.  

Finally for the easiness of the discussion let us consider the second derivative of G in respect 

to Nl at constant T and N: 

[ ]ζζζ

ζ
ll nnnav

NT
l eeebNNG −−

Γ+Φ−=∂∂ 2

2

,

22
  (15) 

III.3. Discussion: 
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The condition Φ>0 being precluded for surface melting [26], two cases can be encountered 

according to the sign of Γ. Indeed according to the definition (13) Γ<0 may be written 

lSlsSlsl γγγγγ +<++  what means the l/s/S system is preferred to the l/S one. Therefore if 

Φ<0 and Γ<0 the interface l/s is pushed away from both the liquid surface and the substrate S. 

These two forces thus may balance each other. In the case  Φ<0 and Γ>0 the two effective 

forces act in the same sense so that there is no more balance and the l/s interface must be 

attracted to the substrate S. We will see that the case Φ<0 and Γ<0 leads to a continuous 

increase of the number of liquid layers with temperature whereas in the case Φ<0 and Γ>0 

some instability from continuous to discontinuous behaviour occurs. 

 

III.3.1/  Φ<0 and Γ<0: the surface induced continuous premelting and 

superheating: 

From (15) there is 0
,

22 >∂∂
NT

lNG  for all values of nl, so that in all the domain 0<nl<n, there is 

continuous stable melting from the dry point Ts (the temperature above which the first liquid 

layer forms) to Tl (the temperature where the last solid layer melts) defined by  

[ ] '
2

av' N
m

n

m
ms Teb

S
TT <Γ−Φ

∆
+= − ζ

ζ
   and   [ ] '

2
av' N

m
n

m
ml Teb

S
TT >Γ−Φ

∆
+= − ζ

ζ
   (16) 

So that for a thick enough film  Ts depends only upon the wetting factor  Φ whereas Tl only 

depends only upon Γ. The domain of continuous melting thus has to be called premelting 

when T<T or overheating when T> 'T .  This continuous melting at astride T   can be 

explicitly  calculated by solving the quadratic equation: 

'm m 'm

( ) 0
N

'
2

av

2 =Γ−−
∆

+Φ −−− ζζζ ζ nn
m

mn eeTT
b

S
e ll   (17) 

The result is given on figure 6 (the used data are given in the figure caption)   
 

III.3.2. Φ<0 and Γ>0: the surface induced two stage premelting:  

In this case, it can be seen  from (15) that 
NTlNG

,

22 ∂∂  may have positive or negative 

values according to the value of  







Φ
Γ−= ln22

* ζn
ln  where   ∞=*

lnl dTdn .  

Let us describe the surface melting  as a function of temperature that means for 

increasing number of liquid layers from nnl <<0 .  

 11



 * For 0< n , equation (17) with now Γ>0 has two solutions. A stable one 

 (corresponding to a minimum of G)  where 

*
ll n<

*
l

stable
l nn < 0

,

22 >∂∂
NT

lNG  and an unstable one 

 (corresponding to a maximum of G) where now *.
l

unst
l nn ≥ 0

,

22 ≤∂∂
NTlNG . These two 

solutions  continuously meet at the temperature  ζ

ζ
2

2
'* 2 n

m

av
m e

S
bN

T −ΦΓ
∆

−=T  [4]. Since at 

this point 02 =∂G
,

2

NTlN

'*
mT<

∂  any further increase of temperature produces an irreversible first 

order melting at T .  

* For n , there is only a  stable solution corresponding to a continuous premelting 

from T

*
ll n>

s toTl  (see figure 5) 

 

Therefore when Φ<0, Γ>0 there is  a two stage premelting. The first stage roughly 

concerns half the film (0< ) which continuously melt. The second stage ( ) 

corresponds to a first order melting at T . (see figure ). Thus in a first stage the 

equilibrium thickness of the premelted liquid continuously increases with temperature, then 

below some critical temperature T

*
ll nn < *

ll nn >

'*
mT<

c<Tm the solid the slab melts completely (first order 

transition). Let us note that such two stage premelting has been  recently predicted by 

numerically calculations [27]. Obviously a more complete discussion for specific systems 

needs thermodynamic data on surface and interfacial quantities. (For a more complete 

discussion see [4]) 

Conclusion 

Though Landau’s theory of phase transitions can be expressed in very general terms of order 

parameter, relations of quantitative interest can only be obtained by adjoining models. In this 

more classical approach of some phase transitions we use some macroscopic quantities 

(measurable from semi-infinite phases) but duly amended from size effect by means of an 

interlayer potential. It is thus possible to describe and discuss the physics of some phase 

transitions of finite size systems. The so-obtained results are in quite good agreement with 

experiments as well as other more complex numerical approaches but  clearly give access to 

the physical meaning in a quite simple form. 
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Figure captions: 
 
Figure 1: Stress change versus thickness h (in angstroms) recorded during Ge/Si(001) growth 
[7]. Diamonds: experimental results Σ(hA); straight line: bulk contribution σAhA; dots: surface 
contribution Σ(hA)- σAhA; continuous line: fit of surface contribution by  ( )ahAes ζ−∞ −∆ 1  [2]. 
  
 
Figure 2: Stranski Krastanov schema (3D crystal on 2D wetting layer supported by a 
substrate B) before (left) and after(right)  elastic relaxation of the 3D upperlying crystal. 
 
 
Figure 3 :  a/ Free energy change ∆F/L2 for layer growth versus the number of wetting layers 
z for different chemical potentials ∆µ. Beyond oεµ =∆ the curves no more exhibit a 
minimum excepted for .b/ Number of equilibrium layers versus the chemical 
potential ∆µ. Beyond 

∞→*z
oεµ =∆ , z* tends towards infinity. 

 
Figure 4: Number of equilibrium layers z* versus the chemical potential Dm in case of SK 
growth. For mo≠0, 3D islands may  appear as soon as oo R εεµ <>∆ . 
 
Figure 5: Schematic drawing of surface induced melting of epitaxial layers. Substrate S of 
material B, deposited film (thickness n) of material A with ns solid layers and nl=n-ns liquid 
layers. 
 
Figure 6: Premelting  nl versus T. Four cases with the same wetting parameter Φ<0. (1) Usal 
premelting of a thick solid (ns=∞) reaching asymptotically T  the bulk melting point of the 
strained material. (2) premelting of thin solid  film  (n layers): Γ=0: same premelting curve as 
(1) but ending in n

'
m

'
ml=n; case Γ<0 n-finite, melting astride T  with its overheating zone T>T ;  

Γ>0 n-finite, premelting going over continuously at T

'
m

*< , followed by first order premelting 
at n

'
mT

l≈n/2. (Calculations have been performed for:  n=8, Φ=-50 erg cm-2, Γ=-50, 0, +50 erg cm-

2.) 
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